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Abstract: The main aim of this paper is to introduce a new class of orthogonal polynomials that
generalizes the class of Chebyshev polynomials of the first kind. Some basic properties of the
generalized Chebyshev polynomials and their shifted ones are established. Additionally, some
new formulas concerned with these generalized polynomials are established. These generalized
orthogonal polynomials are employed to treat the multi-term linear fractional differential equations
(FDEs) that include some specific problems that arise in many applications. The basic idea behind
the derivation of our proposed algorithm is built on utilizing a new power form representation of
the shifted generalized Chebyshev polynomials along with the application of the spectral Galerkin
method to transform the FDE governed by its initial conditions into a system of linear equations that
can be efficiently solved via a suitable numerical solver. Some illustrative examples accompanied by
comparisons with some other methods are presented to show that the presented algorithm is useful
and effective.

Keywords: generalized polynomials; Chebyshev polynomials; recurrence relation; fractional differ-
ential equations; Galerkin method
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1. Introduction

Numerous scientific and engineering disciplines rely heavily on fractional calculus,
including economics [1], viscoelasticity [2], and hydrology [3]. Many phenomena that arise
in the different fields of applied sciences can be modeled by fractional differential equations
(FDEs), so studies regarding these types of equations are important. Because explicit
analytic solutions are often not obtainable for these equations, approximate techniques
based on numerical algorithms are often required. For examples of articles concerned with
different numerical methods for solving FDEs, see, for example, [4–9]. Different multi-term
FDEs are used to model many models that arise in many domains, such as rheology and
mechanical models; for example, see [10]. A number of articles focus on dealing with
these FDEs because of how crucial they are. Spectral methods were heavily relied upon in
order to solve these problems. For example, the authors in [11] established an operational
matrix of fractional derivatives of Fibonacci polynomials in the Caputo sense, and they
employed them to treat some types of muti-type FDEs. Some other techniques were utilized
to treat multi-term FDEs. For example, in [12], the authors followed a wavelet approach to
treat certain types of multi-term FDEs. Two numerical algorithms were utilized in [13] to
treat multi-term fractional diffusion-wave equations. In [14], the authors followed certain
difference schemes for treating the time multi-term fractional wave equation.

Fractal Fract. 2023, 7, 74. https://doi.org/10.3390/fractalfract7010074 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7010074
https://doi.org/10.3390/fractalfract7010074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-6102-671X
https://orcid.org/0000-0002-5570-6815
https://doi.org/10.3390/fractalfract7010074
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7010074?type=check_update&version=1


Fractal Fract. 2023, 7, 74 2 of 22

It is possible to categorize the numerical methods used for differential equations
into local and global categories. In contrast to the spectral method, which takes a more
global approach, the finite-difference and finite-element approaches are founded on locally
relevant arguments. In reality, problems with complex geometries are particularly well-
suited to finite-element methods, while spectral methods can offer greater accuracy. There
are three main types of spectral methods used to solve the various integral and differential
equations that were considered. For the tau and Galerkin spectral methods, we select
two sets of basis functions, respectively referred to as “trial” and “test” functions. When
employing the Galerkin approach, we select trial functions so that all of them verify the
underlying conditions. In this case, the trial functions are the same as the test functions.
(see, for example, [15–17]). In contrast, the tau method allows for flexibility in selecting both
of the basis functions. Based on this comparison, the tau method appears to be more flexible
than the Galerkin approach (see, for example, [18,19]). Of all the spectral approaches, the
collocation approach seems to be the most used for any differential equation. For example,
it is used to solve the fourth-order BVPs (see, [20]). The author in [21] applied two schemes
based on the Fibonacci operational matrix to treat the nonlinear fractional Klein–Gordon
equation. The author in [22] employed the fractional-order shifted Legendre collocation
method for a type of fractional Fredholm integro-differential equations. Another type of
FDEs is treated using the implicit wavelet collocation method in [23]).

Chebyshev polynomials were defined nearly a century ago by the Russian mathemati-
cian “Chebyshev”. However, Lanczos, a pioneer in the field of numerical mathematics,
rediscovered their importance for practical computation some thirty years ago. The intro-
duction of the digital computer emphasized this advancement even more. Of the various
sets of orthogonal polynomials, the Chebyshev polynomials have a long history because
they have a trigonometric representation. These polynomials are regarded as special Jacobi
polynomials as well. There are four distinct Chebyshev polynomials in Jacobi polyno-
mials. All of these kinds can be represented trigonometrically, which is advantageous
for using them in various applications. They play a great part in numerical analysis and
approximation theory. The first and second kinds are most frequently used in treating
different types of differential equations (see, for instance, [24]). The third and fourth kinds,
in addition, were also used in a variety of applications. They were employed in [25] to treat
the non-linear Lane–Emden-type equations. In addition, they were utilized in [26] to obtain
a numerical solution for multi-term variable order FEDs using the shifted third-kind Cheby-
shev polynomials. Recently, the two types of Chebyshev polynomials, called Chebyshev
polynomials of the fifth and sixth kinds, were utilized to treat several types of differential
equations. For instance, the fifth-kind Chebyshev polynomials were employed in [27] to
treat a multi-term variable-order time-fractional diffusion-wave equation. In addition,
Abd-Elhameed in [28] derived new expressions for the high-order derivatives of the sixth-
kind Chebyshev polynomials and utilized them to treat the non-linear one-dimensional
Burgers’ equation.

Numerous theoretical and practical investigations concerning different generalized
and modified polynomials have been carried out. Regarding the modified and generalized
polynomials of Chebyshev polynomials, the authors in [29] introduced certain generalized
shifted Chebyshev polynomials. In addition, they employed them to handle fractional opti-
mal control problems. A type of multi-dimensional Chebyshev polynomials is introduced
in [30]. Another type of generalized second-kind Chebyshev polynomials is introduced
in [31]. The authors in [32] established some new formulas for a class of polynomials
that generalizes the third-kind Chebyshev polynomials class. In addition, they employed
this class of polynomials to treat certain types of even-order BVPs. The authors in [33,34]
handled some BVPs and IVP using the Chebyshev polynomials’ first derivative.

This paper is dedicated to introducing a type of orthogonal generalized Chebyshev
polynomials of the first kind. Their shifted polynomials are also introduced. Aiming to
employ these polynomials from a practical point of view, some fundamental properties
of the shifted polynomials will be established. More precisely, the orthogonality relation,
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power form and inversion formulas of these polynomials will be also found in simple forms
that are free of any hypergeometric forms. This type of polynomial will be employed for
treating multi-term FDEs.

We believe that the following two issues account for the novelty of the contribution in
this paper:

• The theoretical results for the developed type of generalized Chebyshev polynomials
are novel.

• The employment of these polynomials from a numerical point of view is also new.

The above two reasons, of course, motivate us to investigate this kind of generalized
Chebyshev polynomial both theoretically and practically.

This paper has the following structure: The next section presents some preliminary
information involving an overview of certain polynomials that involve five parameters
along with some properties of fractional calculus. A new type of generalized polynomials
of the first kind and their shifted ones is introduced in Section 3. The proposed numerical
algorithm for treating the multi-term FDEs is proposed in Section 4. Numerical experiments
are displayed in Section 5 to validate the efficiency and applicability of our proposed
algorithm. Finally, the conclusion is presented in Section 6.

2. Preliminaries and Some Fundamental Formulas

This section is confined to presenting an overview of a certain generalized polynomial
sequence that generalizes some well-known classes of orthogonal polynomials. Further-
more, some fundamental properties of fractional calculus are presented.

2.1. An Overview on Certain Orthogonal Polynomials of Five Parameters

In his interesting PhD thesis [35], Masjed-Jamei investigated the polynomial solution
of the differential equation(

a x2 + b x + c
)

φ′′i (x) + (d x + e) φ′i(x)− i((i− 1) a + d) φi(x) = 0. (1)

The main advantage of investigating the polynomials that satisfy the second-order
recurrence relation (1) is that they generalize some well-known classical polynomials. It
was shown in [35] that the monic polynomials solution of (1) is given by the following
explicit formula:

φi(x) = φa,b,c,d,e
i (x) =

i

∑
k=0

Ak,i(a, b, c, d, e) xk, (2)

where the coefficients Ak,i(a, b, c, d, e) are explicitly given by

Ak,i(a, b, c, d, e) =
(

i
k

)(
2 a

b +
√

b2 − 4 a c

)k−i
×

2F1

 k− i,
2 a e− b d

2 a
√

b2 − 4 a c
+ 1− d

2 a
− i

2− d
a
− 2i

∣∣∣∣∣∣∣∣
2
√

b2 − 4 a c
b +
√

b2 − 4 a c

.

(3)

Note that the coefficients ( i
k) are the well-known binomial coefficients. In addition, the

2F1 that appears in (3) is the hypergeometric function that is a special case of the following

generalized hypergeometric function rFs

(
α1, α2, . . . , αr
β1, β2, . . . , βs

∣∣∣∣x) defined as [36]:

rFs

(
α1, α2, . . . , αr
β1, β2, . . . , ds

∣∣∣∣x) =
∞

∑
`=0

(α1)` (α2)` . . . (αr)`
(β1)` (β2)` . . . (βs)`

x`

`!
,
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where r and s are non-negative integers, and no βi, 1 ≤ i ≤ s is zero or a negative integer,
and the symbol (z)` denotes the Pochhammer symbol.

The author in [35] commented that many general properties of the polynomials in (2)
whose power form representation is given in (2) were presented in the famous book of
Nikiforov and Uvarov [37]. For example, the Rodrigues formula for φa,b,c,d,e

i (x) is given by

φa,b,c,d,e
i (x) =

1(
d
a + i− 1

)
ai wa,b,c,d,e(x)

Di
{
(a x2 + b x + c)i wa,b,c,d,e(x)

}
, (4)

where wa,b,c,d,e(x) is given by

wa,b,c,d,e(x) = exp
(∫

(d− 2a)x + (e− b)
ax2 + bx + c

dx
)

.

It was shown in [35] that the polynomials
{

φa,b,c,d,e
i (x)

}
i≥0

are orthogonal for suitable

choices of the parameters a, b, c, d and e on the interval (L, U) where L and U are the zeros
of the second-order equation: a x2 + b x + c = 0. It was also shown that the following
important identity is valid:

∫ U

L
wa,b,c,d,e(x)

(
φa,b,c,d,e

i (x)
)2

dx =
(−1)i i!(

d
a + i− 1

)
i
ai

∫ U

L

(
ax2 + bx + c

)i
exp

(∫
(d− 2a)x + (e− b)

ax2 + bx + c
dx
)

dx. (5)

Remark 1. It is worth noting here that the presence of five parameters in the polynomials φa,b,c,d,e
i (x)

implies that several sequences of orthogonal polynomials involving the classical Jacobi and Laguerre
polynomials are special ones of the generalized polynomials. This, of course, shows the importance of
investigating such polynomials and their special classes.

Remark 2. It is important to note that the formulas involving the five-parameter polynomials
φa,b,c,d,e

i (x) are challenging to apply in practice. Consequently, we will limit ourselves to selecting
appropriate parameters that allow us to derive some fundamental properties of these polynomials
and use them to solve several types of differential equations.

2.2. Some Fundamentals of Fractional Calculus

Some elementary characteristics of certain fractional derivative operators are shown here.

2.2.1. Riemann-Liouville Definition

Definition 1. The following is the definition of the Riemann–Liouville fractional integral operator
Iυ

x of order υ > 0

Iυ
x Z(x) =

1
Γ(υ)

∫ x

0

Z(τ)
(x− τ)1−υ

dτ,

in which the well-known Gamma function is represented by Γ(.).

Definition 2. The Riemann–Liouville fractional derivative operator Dυ
x of order υ > 0 is defined as

Dυ
x Z(x) =

dn

dxn In−υ
x Z(x), n− 1 ≤ υ < n, n ∈ N.

2.2.2. Caputo Definition

Definition 3. The Caputo fractional derivative operator Dυ
x of order υ > 0 is defined as

Dυ
x Z(x) =

1
Γ(dυe − υ)

∫ x

0

Z (dυe)(τ)

(x− τ)υ+1−dυe dτ, x > 0,

where d.e denotes the well-known ceiling function.
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Property 1. The basic properties of the Caputo fractional integral Iυ
x and derivative Dυ

x operators
of order υ > 0 are

Iυ
x xn =

Γ(n + 1)
Γ(n + 1 + υ)

xn+υ, n ∈ N, n ≥ dυe,

and

Dυ
x xn =

Γ(n + 1)
Γ(n + 1− υ)

xn−υ, n ∈ N, n ≥ dυe. (6)

For more details about fractional calculus, one can consult [38,39].

3. A Kind of Generalized First-Kind Chebyshev Polynomials

This section is confined to introducing a new class of polynomials that generalizes
the class of Chebyshev polynomials of the first kind. In addition, we will present some
fundamental properties of these polynomials. Furthermore, the shifted generalized Cheby-
shev polynomials will be introduced, and some of their fundamental properties will be
developed.

3.1. Introducing Generalized Chebyshev Polynomials of the First Kind

In this section, we will extract a generalized class of Chebyshev polynomials. This
class is a special class of the class of polynomials φa,b,c,d,e

i (x) in (2). For this purpose, we
make the following choices:

a = −1, c = b + 1, d = −1, e = 0. (7)

Thus, we have only a free parameter b. Let us denote the resulting polynomials by
Tb

i (x). That is

Tb
i (x) =

i

∑
k=0

Ak,i(−1, b, b + 1,−1, 0) xk.

It can be seen that the polynomials Tb
i (x) are orthogonal on [−1, b + 1] with respect to

the following weight function w(x):

w(x) = (b− x + 1)−
1

b+2 (1 + x)−
b+1
b+2 . (8)

From the Rodrigues formula in (4) for the polynomials φa,b,c,d,e
i (x), it can be shown

that the Rodrigues formula for the polynomials Tb
i (x) is given by

Tb
i (x) =

2 (−1)i i!
(2i)! w(x)

Di
{
(b− x + 1)i(1 + x)i w(x)

}
, i ≥ 1. (9)

We comment here that we have two main reasons for selecting the five parameters as
in (7):

• These choices will lead to reducing the generalized polynomials of five parameters
that are given in (2) into polynomials involving one parameter that generalizes the
Chebyshev polynomials of the first kind. Thus, this generalization is a new generaliza-
tion of the first kind of Chebyshev polynomials that was not investigated before from
both theatrical and practical points of view.

• This choice will lead to a simplified power form and inversion formulas for the shifted
generalized polynomials on [0, 1]. We will show that these formulas do not involve
any hypergeometric functions. These formulas will be of fundamental importance in
the sequel.

Now, we are going to find the orthogonality relation to the polynomials Tb
i (x). First,

the following lemma is needed.
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Lemma 1. For every positive integer n and every non-negative real number b, the following integral
formula holds:

b+1∫
−1

(
1 + b + bx− x2

)n
w(x) dx =

(b + 2)2n Γ
(

1
b+2 + n

)
Γ
(

b+1
b+2 + n

)
(2n)!

.

Proof. In order to make the integral easier to compute, we replace x by ((b + 2) x− 1), that
is, we have the following formula:

∫ b+1

−1

(
1 + b + bx− x2

)n
w(x) dx = (b + 2)2n

∫ 1

0
(1− x)−

1
b+2+nx−1+ 1

b+2+n dx.

It is not difficult to show that the following identity holds:

∫ 1

0
(1− x)n− 1

b+2 xn− b+1
b+2 dx =

Γ
(

1
b+2 + n

)
Γ
(

b+1
b+2 + n

)
(2n)!

,

and this accordingly leads to the following identity:

∫ b+1

−1

(
1 + b + bx− x2

)n
w(x) dx =

(b + 2)2nΓ
(

1
b+2 + n

)
Γ
(

b+1
b+2 + n

)
(2n)!

.

Lemma 1 is now proved.

Now, we are able to state and prove the following relation of Tb
i (x).

Theorem 1. For every positive integer i and every non-negative real number b, the following
integral formula holds:

∫ b+1

−1

(
Tb

i (x)
)2

w(x) dx =
21−4i (b + 2)2i π Γ

(
1

b+2 + i
)

Γ
(

b+1
b+2 + i

)
(

Γ
(

i + 1
2

))2 , (10)

where the weight function w(x) is given by (8).

Proof. The proof of Identity (10) is based on making use of Formula (5). More precisely, if
we substitute by a = −1, c = b + 1, d = −1, e = 0, then we obtain

∫ b+1

−1

(
Tb

i (x)
)2

w(x) dx =
2(i!)2

(2i)!

∫ b+1

−1

(
1 + b + bx− x2

)i
w(x) dx.

The direct application to Lemma 1 yields Formula (10).

3.2. Shifted Generalized Chebyshev Polynomials

In many practical problems and applications, it is required to define and employ the
shifted polynomials on the interval [0, 1]. We define the shifted polynomials STb

i (x) on
[0, 1] as

STb
i (x) = Tb

i ((b + 2) x− 1). (11)

The Rodrigues formula for the generalized Chebyshev polynomials Tb
i (x) in (9) can

be easily transformed to give the counterpart for the shifted generalized Chebyshev poly-
nomials that are defined in (11). In fact, the polynomials STb

i (x) may be generated using
the following Rodrigues formula:

STb
i (x) =

2 (−1)i i! (b + 2)i

(2i)! w̃(x)
Di
{
(1− x)i xi w̃(x)

}
, i ≥ 1,
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where w̃(x) is given by:

w̃(x) =
1

b + 2
x

1
b+2−1 (1− x)−

1
b+2 .

For our subsequent purposes, it is very useful to establish some fundamental proper-
ties of the shifted generalized Chebyshev polynomials STb

i (x). The following two theorems
display the power form representation and inversion formula to the polynomials STb

i (x).

Theorem 2. For every non-negative integer i, the polynomials STb
i (x) can be represented explicitly

in the following form:

STb
i (x) = (b + 2)i

i

∑
k=0

(−1)k( i
k)
(

1
b+2 + i− k

)
k

(2i− k)k
xi−k. (12)

Proof. If we substitute by the following choices: a = −1, c = b + 1, d = −1, e = 0 in the
general Formula (2), then it reduces to the following formula:

Tb
i (x) =

i

∑
k=0

Gk,i xk, (13)

where Gk,i = A(−1, b, b + 1,−1, 0) are given by

Gk,i = 2k−i
(
−1

2(b + 1)

)k−i( i
k

)
2F1

(
k− i, 1

b+2 − i
1− 2i

∣∣∣∣ b + 2
b + 1

)
.

The power form representation of the shifted polynomials STb
i (x) on [0, 1] can be

obtained from relation (13) by replacing x by ((b + 2) x− 1). Therefore, we can write the
following formula:

STb
i (x) =

i

∑
k=0

Gk,i ((b + 2)x− 1)k,

which can be written alternatively in the form:

STb
i (x) =

i

∑
k=0

Fk,i ((b + 2)x− 1)i−k, (14)

where Fk,i are given as follows:

Fk,i = (−1)k (b + 1)k
(

i
i− k

)
2F1

(
−k, 1

b+2 − i
1− 2i

∣∣∣∣ b + 2
b + 1

)
.

The binomial theorem enables one to write Formula (14) in the following form:

STb
i (x) =

i

∑
k=0

Fk,i

i−k

∑
`=0

B`,k,i x`, (15)

where the coefficients B`,k,i are given as:

B`,k,i = (−1)i−k−` (b + 2)`
(

i− k
`

)
.

Performing some manipulations on (15) turns it into the following form:
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STb
i (x) =

i

∑
k=0

Hk,i xi−k,

where the coefficients Hk,i are given explicitly by

Hk,i = (b + 2)i−k
k

∑
`=0

(−1)k (b + 1)`
(

i
i− `

)(
i− `

i− k

)
2F1

(
−`, 1

b+2 − i
1− 2i

∣∣∣∣ b + 2
b + 1

)
. (16)

Although the hypergeometric form in (16) cannot be summed except for specific
values of the parameter b, the coefficients Hk,i can be reduced for all values of b using the
celebrated algorithm of Zeilberger [40]. In fact, the employment of this algorithm shows
that the following recurrence relation of order one can be obtained:

Hk+1,i −
(k− i)(1 + b + 2k + bk− (b + 2)i)

(b + 2)(1 + k)(1 + k− 2i)
Hk,i = 0, H0,i = (b + 2)i.

Given that the last recurrence relation is of order one, its solution can be provided
immediately in the form:

Hk,i =
(−1)k ( i

k) (b + 2)i
(

1
b+2 + i− k

)
k

(2i− k)k
.

Therefore, Formula (12) is now proved.

Now, the integral formula that corresponds to Formula (10) regarding the shifted
polynomials STb

i (x) will be stated and proved in the following corollary.

Corollary 1. For every non-negative integer i and every non-negative real number b, the following
integral formula is valid:

∫ 1

0

(
STb

i (x)
)2

w̃(x) dx =
21−4i (b + 2)2i−1 π Γ

(
1

b+2 + i
)

Γ
(

1− 1
b+2 + i

)
(

Γ
(

i + 1
2

))2 . (17)

Proof. A direct consequence of relation (10).

We will now present and demonstrate a significant theorem that illustrates the inver-
sion formula of the shifted polynomials STb

i (x). The following lemma is necessary first.

Lemma 2. For all non-negative integers r and j with r ≥ j, the following identity applies:

r−j

∑
m=0

(−1)m (r−j
m ) Γ

(
1

b+2 − j−m + 2r
) (

1
b+2 − j−m + r

)
m

(2r− j−m)! (2r− 2j−m)m
=

θr−j
√

π r! Γ
(

1
b+2 + r

)
Γ
(

b+1
b+2 − j + r

)
22r−2j−1Γ

(
b+1
b+2

)
j! (2r− j)! Γ

(
1
2 − j + r

) , (18)

where θ` is defined as

θ` =

{
1
2 , ` = 0,
1, ` > 0.

(19)

Proof. Setting ` = r− j ≥ 0, then to prove Identity (18), it is enough to prove the following
identity:

`

∑
m=0

(−1)m ( `m) Γ
(

1
b+2 + j + 2`−m

)(
1

b+2 + `−m
)

m
(j + 2`−m)! (2`−m)m

=

√
π θ` Γ

(
b+1
b+2 + `

)
(j + `)! Γ

(
1

b+2 + j + `
)

22`−1 j! (j + 2`)! Γ
(

b+1
b+2

)
Γ
(

1
2 + `

) .
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For this purpose, set

S`,j =
`

∑
m=0

(−1)m( `m)Γ
(

1
b+2 + j + 2`−m

)(
1

b+2 + `−m
)

m
(j + 2`−m)! (2`−m)m

.

The utilization of Zeilberger’s algorithm again [40] demonstrates that the following
first-order recurrence relation is satisfied by S`,j:

2(b + 2)2 (1 + j + 2 `)(2 + j + 2 `)(1 + 2 `)θ` S`+1,j

− (1 + j + `)(1 + b + (b + 2) `)(1 + (b + 2)j + (b + 2) `) S`,j = 0,
(20)

with the initial value
S0,j = 1,

Immediately, we may solve the recurrence relation (20) to obtain

S`,j =

√
π θ` Γ

(
b+1
b+2 + `

)
(j + `)! Γ

(
1

b+2 + j + `
)

22`−1 j! (j + 2`)! Γ
(

b+1
b+2

)
Γ
(

1
2 + `

) .

This proves Formula (18), and hence completes the proof of Lemma 2.

Theorem 3. For every non-negative integer r, the following formula holds:

xr =
r

∑
j=0

(b + 2)j−r(1 + r− j)j

(
1

b+2 + r− j
)

j

j! (2r− 2j + 1)j
STb

r−j(x). (21)

Proof. First, we can write the identity:

xr =
r

∑
j=0

Aj,r STb
r−j(x), (22)

then to prove Identity (21), we have to find the coefficients Aj,r.
Now, multiplying both sides of (22) by STb

m(x) w̃(x) and integrating from 0 to 1, we
obtain

r

∑
j=0

Aj,r

∫ 1

0
STb

r−j(x) STb
m(x) w̃(x) dx =

∫ 1

0
xr STb

m(x) w̃(x) dx.

The orthogonality relation of STb
i (x) in (17) enables one to determine the coefficients

Aj,r in the form

Aj,r =
1

hr−j θr−j

∫ 1

0
xrSTb

r−j(x) w̃(x) dx, (23)

where θ` is as defined in (19).
Now, from the power form representation of STb

i (x) in (12), we can write

STb
i (x) =

i

∑
m=0

Hm,i xi−m, (24)

where the coefficients Hm,i are given by (16).
Inserting Formula (24) into Formula (23), the coefficients Aj,r can be written in the

form

Aj,r =
1

hr−j θr−j

r−j

∑
m=0

Hm,r−j

∫ 1

0
x2r−j−m w̃(x) dx. (25)
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It is not difficult to note the following identity:

∫ 1

0
xr w̃(x) dx =

Γ
(

b+1
b+2

)
Γ
(

1
b+2 + r

)
(b + 2) r!

,

and consequently, Formula (25) explicitly gives

Aj,r =
24r−4j−1 (b + 2)j−r Γ

(
b+1
b+2

) (
Γ
(

1
2 − j + r

))2

π θr−j Γ
(

1
b+2 − j + r

)
Γ
(

b+1
b+2 − j + r

) ×

r−j

∑
m=0

(−1)m (r−j
m ) Γ

(
1

b+2 − j−m + 2r
)(

1
b+2 − j−m + r

)
m

(2r− j−m)! (2r− 2j−m)m
.

The application of Lemma 2 leads to putting the coefficients Aj,r in the following form:

Aj,r =
(b + 2)j−r (1 + r− j)j

(
1

b+2 + r− j
)

j

j! (1 + 2r− 2j)j
.

This finalizes the proof of Theorem 3.

4. Treating Multi-Term FDEs via the Shifted Polynomials STb
i (x)

In this section, we are interested in employing the generalized shifted first-kind
Chebyshev–Galerkin method (GS1KCGM) to solve the linear FDEs governed by the homo-
geneous and nonhomogeneous initial conditions.

Before proceeding in developing our proposed algorithm, the following lemma is
needed.

Lemma 3. For every non-negative integer i and for every positive real number µ, the following
integral formula holds:

∫ 1

0
xµSTb

i (x) w̃(x) dx =
21−2i√π θi (b + 2)i−1 Γ(1 + µ) Γ

(
b+1
b+2 + i

)
Γ
(

1
b+2 + µ

)
Γ
(

1
2 + i

)
Γ(1− i + µ) Γ(1 + i + µ)

.

Proof. From the inversion Formula (21), the following formula holds for every positive
integer r

xr =
r

∑
j=0

(b + 2)−j (2 j)! (j + 1)r−j

(
1

b+2 + j
)

r−j

(r− j)!(r + j)!
STb

j (x).

However, for any positive real number µ, one can write

xµ =
∞

∑
j=0

Mj,µ STb
j (x),

where Mj,µ is given by

Mj,µ =
(b + 2)−j (2j)! (j + 1)µ−j

(
1

b+2 + j
)

µ−j

Γ(1− j + µ) Γ(j + µ + 1)
.
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Now, we have∫ 1

0
xµ STb

i (x) w̃(x) dx =
∞

∑
j=0

Mj,µ

(
STb

j (x), STb
i (x)

)
w̃

.

Formula (17) allows one to reduce the last identity into the following form:∫ 1

0
xµ STb

i (x) w̃(x) dx = Mi,µ hi,

where hi are given as

hi =
21−4i (b + 2)2i−1 π Γ

(
1

b+2 + i
)

Γ
(

1− 1
b+2 + i

)
(

Γ
(

i + 1
2

))2 ,

and this consequently yields the following identity:

∫ 1

0
xµSTb

i (x) w̃(x) dx =
21−2i√π θi (b + 2)i−1 Γ(1 + µ)Γ

(
b+1
b+2 + i

)
Γ
(

1
b+2 + µ

)
Γ
(

1
2 + i

)
Γ(1− i + µ) Γ(1 + i + µ)

.

This completes the proof of Lemma 3.

Our Proposed Galerkin Approach

This section is confined to introducing a Galerkin approach for treating multi-term
FDEs. Now consider the following linear FDEs:

Dυn
x Z(x) +

n−1

∑
m=0

ηmDυm
x Z(x) = g(x), x ∈ [0, 1], (26)

governed by the following homogeneous initial conditions

Z (m)(0) = 0, m = 0, 1, · · · , n− 1, (27)

where 0 ≤ x ≤ 1, m − 1 < υm ≤ m, (m = 1, 2, · · · , n) and υ0 = 0, while ηm, for
m = 0, 1, 2, · · · , n− 1, are given constants and g(x) is a given smooth function on [0, 1],
while Dυ

xZ(x) denotes the Caputo fractional derivative of order υ, with respect to x given
in Definition 3.

If we define the following spaces,

SN = span{STb
0 (x), STb

1 (x), . . . , STb
N−n(x)},

ΦN = {ϕ(x) ∈ SN : ϕ(m)(0) = 0, m = 0, 1, . . . , n− 1},

then the GS1KCGM approximation to (26) and (27) is to find ZN(x) ∈ ΦN such that

(Dυn
x Z(x), ϕ(x))w̃ +

n−1

∑
m=0

ηm(Dυm
x Z(x), ϕ(x))w̃ = (g(x), ϕ(x))w̃, ∀ϕ(x) ∈ ΦN ,

where

(
Z(x), ϕ(x)

)
w̃ =

∫ 1

0
Z(x) ϕ(x) w̃(x) dx.
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We construct reasonable basis functions that satisfy the homogeneous initial condi-
tions as

ϕi(x) = xn STb
i (x), x ∈ [0, 1]. (28)

To solve the initial value problem (26) and (27), Z(x) can be approximated as

ZN(x) =
N−n

∑
i=0

ci ϕi(x), x ∈ [0, 1]. (29)

Using the approximation in (29), we have

N−n

∑
i=0

ci
(
Dυn

x ϕi(x), ϕj(x)
)

w̃ +
N−n

∑
i=0

ci

n−1

∑
m=0

ηm
(
Dυm

x ϕi(x), ϕj(x)
)

w̃ = (g(x), ϕj(x))w̃,

∀ ϕj(x) ∈ ΦN .

(30)

Let us denote

A =
(
αij
)

0≤i,j≤N−n, αij =
(
Dυn

x ϕi(x), ϕj(x)
)

w̃,

Bm =
(

βm
ij
)

0≤i,j≤N−n, βm
ij =

(
Dυm

x ϕi(x), ϕj(x)
)

w̃, 0 ≤ m ≤ n− 1,

G =
(
γj
)

0≤j≤N−n, γj =
(

g(x), ϕj(x)
)

w̃.

Then (30) is equivalent to the following matrix system:(
A +

n−1

∑
m=0

ηm Bm

)
C = G, (31)

where C =
(
c0, c1, . . . , cN−n

)T is the unknown vector to be determined. In addition, the
nonzero elements of the matrices A and Bm (0 ≤ m ≤ n− 1) are explicitly provided in the
next theorem.

Theorem 4. Let ϕi(x) be as selected in (28), and assume that αij =
(
Dυn

x ϕi(x), ϕj(x)
)

w̃ and
βm

ij =
(
Dυm

x ϕi(x), ϕj(x)
)

w̃, 0 ≤ m ≤ n− 1. We have

ΦN = {ϕ0(x), ϕ1(x), · · · , ϕN−n(x)}.

Furthermore, the nonzero entries of A and Bm (0 ≤ m ≤ n− 1) can be computed by

αij =
i

∑
r=0

ζi,j,b,n,υn , (32)

βm
ij =

i

∑
r=0

ζi,j,b,n,υm , (33)

where ζi,j,b,n,υ is given by
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ζi,j,b,n,υ =

√
π θj (b + 1− (b + 2)i) (i

r) Γ
(

b+1
b+2 + j

)
(i + n− r)! Γ(i + 2n− r− υ + 1)

22j−1(b + 2)2−i−j Γ
(

j + 1
2

)
Γ(i + n− r− υ + 1) Γ(i− j + 2n− r− υ + 1)

×
Γ
(

i + 2n− r− υ + 1
b+2

)(
b+1
b+2 − i + 1

)
r−1

Γ(i + j + 2n− r− υ + 1)(2i− r)r
.

Proof. The basis functions ϕi(x) are selected so that each one of its components meets (27).
It is also clear that {ϕi(x)}0≤i≤N−n are linearly independent and the dimension of ΦN is
equal to (N − n + 1). Hence,

ΦN = {ϕ0(x), ϕ1(x), . . . , ϕN−n(x)}.

Now, we prove (32). Using (28) and Theorem 2 , we have

ϕi(x) = xn (b + 2)i
i

∑
r=0

(i
r)
(

1− i− 1
b+2

)(
1− i + b+1

b+2

)
r−1

(2i− r)r
xi−r,

and making use of relation (6) yields

Dυ
x ϕi(x) = (b + 2)i−1

i

∑
r=0

(b + 1− (b + 2)i)(i
r)(i + n− r)!

(
1− i + b+1

b+2

)
r−1

Γ(i + n− r− υ + 1)(2i− r)r
xi+n−r−υ,

and therefore, we obtain

(
Dυ

x ϕi(x), ϕj(x)
)

w̃ =
i

∑
r=0

(b + 1− (b + 2)i)(i
r)(i + n− r)!

(
1− i + b+1

b+2

)
r−1

(b + 2)1−i Γ(i + n− r− υ + 1)(2i− r)r

(
xi+n−r−υ, ϕj(x)

)
w̃

.

If we make use of Lemma 3, then after performing some algebraic computations,
we obtain (

Dυ
x ϕi(x), ϕj(x)

)
w̃ =

i

∑
r=0

ζi,j,b,n,υ,

where ζi,j,b,n,υ is given by

ζi,j,b,n,υ =

√
π θj (b + 1− (b + 2)i) (i

r) Γ
(

b+1
b+2 + j

)
(i + n− r)! Γ(i + 2n− r− υ + 1)

22j−1(b + 2)2−i−j Γ
(

j + 1
2

)
Γ(i + n− r− υ + 1) Γ(i− j + 2n− r− υ + 1)

×
Γ
(

i + 2n− r− υ + 1
b+2

)(
b+1
b+2 − i + 1

)
r−1

Γ(i + j + 2n− r− υ + 1)(2i− r)r
.

Replacing υ by υn and υm to prove (32) and (33), respectively, completes the proof.
Finally, using any appropriate numerical algorithm, we solve the linear algebraic

system (31) in the unknown coefficients ci, i = 0, 1, . . . , N − n.

Remark 3. In order to deal with the multi-term linear FDEs (26) directed by non-homogeneous
initial conditions, namely,

Z (m)(0) = δm, m = 0, 1, · · · , n− 1,

where δm are arbitrary constants, 0 ≤ m ≤ n− 1, the following transformation is used:
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Z̃(x) = Z(x)−
n−1

∑
m=0

δm

m!
xm,

to turn the non-homogeneous conditions into homogeneous ones, and so the same derived algorithm
can be utilized.

5. Illustrative Problems and Comparisons

This section is confined to testing our proposed algorithm. For this purpose, we will
present four numerical examples accompanied by comparisons with some other techniques
in the literature to demonstrate the efficiency and high accuracy of our proposed numerical
algorithm.

Example 1. Consider a composite fractional oscillation equation that immerses in a Newtonian
fluid [41,42]:

Dυ1
x Z(x) +Z(x) = x4 − 1

2
x3 − 3

Γ(4− υ1)
x3−υ1 +

24
Γ(5− υ1)

x4−υ1 , 0 < υ1 < 1, (34)

Z(0) = 0.

The exact solution of (34) is: Z(x) = x4 − 1
2 x3.

Talaei and Asgar [41] and Chen et al. [42] solved numerically this problem. In [41], the
authors suggested an operational approach based on the Chelyshkov-collocation spectral
method (CCSM) for the numerical solution of (34), while the authors in [42] applied the
Haar wavelets method (HWM) for the numerical treatment of (34). The L2 and L∞-errors
of our presented method for different values of N with υ1 = 0.25 and b = 2 are shown
in Table 1. Furthermore, our results are compared in Table 2 with those obtained by [41]
and [42]. The results of this table ensure the superiority of our method when compared with
the other two methods. Additionally, Figure 1 plots the maximum absolute error (MAE) of
the solutions resulting from the application of our proposed algorithm for υ1 = 0.5, b = 0
and N = 4, while Figure 2 displays the Log10(L∞− errors) and Log10(L2− errors) of our
proposed algorithm for the case corresponds to: υ1 = 0.25 and b = 2 with various values
of N.

Table 1. Comparison of L∞- and L2-errors of our algorithm at υ1 = 0.25 and N = 4 with distinct b for
Example 1.

b L∞-Errors L2-Errors

0 4.03475× 10−14 2.22751× 10−14

1 5.13031× 10−14 3.68354× 10−14

2 7.99751× 10−15 4.79207× 10−15

3 1.84575× 10−15 7.49521× 10−15

4 6.18255× 10−15 2.56281× 10−14

5 1.29436× 10−14 9.71245× 10−15

Table 2. Comparison of L2-errors of our algorithm at υ1 = 0.25 and b = 2 for distinct N with the
CCSM [41] and HWM [42] for Example 1.

CCSM [41] HWM [42] Our Method

N L2-Errors L2-Errors N L2-Errors

8 3.07× 10−7 4.50× 10−3 3 6.36× 10−3

16 2.87× 10−9 1.80× 10−3 4 4.79× 10−15

32 2.79× 10−11 7.00× 10−4 5 1.88× 10−14
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Figure 1. MAE of ZN(x) of our algorithm for υ1 = 0.5 and N = 4 with b = 0 for Example 1.

1 2 3 4 5

-14

-12

-10

-8

-6

-4

-2

0

N

L
o
g
1
0
(E
rr
o
r)

■ L
2-errors

● L
∞-errors

Figure 2. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm at υ1 = 0.25 and b = 2 with
distinct N for Example 1.

Remark 4. From the data in Table 2, we can infer that the standard Chebyshev polynomials of the
first kind are not the best approximations among the various classes of shifted polynomials STb

i (x).
This demonstrates the significance of our generalization to the first kind of Chebyshev polynomials
and their shifted ones, and it also demonstrates the impact of the parameter b that occurs in the
shifted polynomials.

Example 2. Consider the following FDE [43]:

Dυ1
x Z(x) +Z(x) = x2 +

2
Γ(3− υ1)

x2−υ1 , 0 < υ1 < 1,

Z(0) = 0,

in which Z(x) = x2 is the exact solution.

Several methods have been developed to treat numerically this problem. Bonab and
Javidi [43] proposed some explicit methods based on the fractional backward differentiation
method (FBDM) of order three for the numerical solution of the current problem. We
applied our algorithm for obtaining the numerical solution to this problem. In Table 3,
the L∞-errors resulting from that application of our algorithm are presented for the case
corresponding to υ1 = 0.5 and N = 2 with distinct b. Furthermore, Table 4 gives a
comparison of L∞-errors resulting from our algorithm for υ1 = 0.7, 0.8 and b = 1 for N = 2
with the FBDM that developed in [43] (h is the mesh size). Furthermore, to illustrate the
influence of the parameter b, we compare in Figure 3 the resulting Log10(L∞− errors) of
our algorithm for b = 0 and b = 1 , N = 2 with distinct υ1. Figures 4 and 5 give the
MAE of ZN(x) of our algorithm at respectively: υ1 = 0.7, b = 1, N = 2 and υ1 = 0.8 and
b = 1, N = 2.
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Table 3. L∞-errors of our algorithm at υ1 = 0.5 and N = 2 with distinct b for Example 2.

b L∞-Errors

0 1.21431× 10−16

1 1.11022× 10−16

2 6.93889× 10−16

3 3.60822× 10−16

4 4.16334× 10−16

5 6.66134× 10−16

Table 4. Comparison of L∞-errors of our algorithm at υ1 = 0.7, 0.8 and b = 1 for N = 2 with the
FBDM [43] for Example 2.

FBDM [43] Our Method

υ1 h = 0.1 h = 0.01 h = 0.001 N = 2

0.7 2.50× 10−3 9.62× 10−6 4.74× 10−8 7.63× 10−16

0.8 4.20× 10−3 2.00× 10−5 1.23× 10−7 2.22× 10−16

0.2 0.4 0.6 0.8
-16.0
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-15.2
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L
o
g
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Figure 3. Comparison of Log10(L∞ − errors) of our algorithm at b = 0 and b = 1 for N = 2 with
distinct υ1 for Example 2.

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-16

4.×10-16

6.×10-16

Figure 4. MAE of ZN(x) of our algorithm at υ1 = 0.7 and b = 1 with N = 2 for Example 2.

Example 3. Consider the following FDE [44]:

Dυ1
x Z(x) + 2Z(x) = 2 cos(πx) +

t−υ1

2Γ(1− υ1)

(
1F1(1; 1− υ1; iπx).1F1(1; 1− υ1;−iπx)

)
− 2, 0 < υ1 < 1,

Z(0) = 1,

exact solution Z(x) = cos(πx).
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Table 5 displays a comparison of L∞- and L2-errors of our algorithm at υ1 = 0.5 and
N = 15 with distinct b, while Table 6 compares L∞-errors of our algorithm for υ1 = 0.5
and b = 0 with the Tau method applied in [44], which were based using Chebyshev
and Legendre namely, “Legendre–Gauss–Lobatto (LGL) points” and “Chebyshev–Gauss–
Lobatto (CGL) points” by the approximate solution of degree M. Figure 6 plots the
Log10(L∞− errors) and Log10(L2− errors) resulted from the application of our algorithm
at υ1 = 0.5 and b = 0 with distinct N. Figure 7 displays the Log10(L∞− errors) and
Log10(L2 − errors) of our algorithm at υ1 = 0.5 and N = 15 with distinct b. Figure 8 shows
the MAE of ZN(x) of our proposed algorithm for υ1 = 0.5 and N = 15 with b = 0 (figure
at left) and b = 2 (figure at right).

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-17

4.×10-17

6.×10-17

8.×10-17

1.×10-16

Figure 5. MAE of ZN(x) of our algorithm at υ1 = 0.8 and b = 1 with N = 2 for Example 2.

Table 5. Comparison of L∞- and L2-errors of our algorithm at υ1 = 0.5 and N = 15 with distinct b for
Example 3.

b L∞-Errors L2-Errors

0 1.11022× 10−15 7.37610× 10−17

1 1.77636× 10−15 7.07907× 10−17

2 9.99201× 10−16 7.08155× 10−17

3 1.77636× 10−15 7.13179× 10−17

4 1.66533× 10−15 7.18620× 10−17

5 1.44329× 10−15 7.23560× 10−17

Table 6. Comparison of L∞-errors of our algorithm for υ1 = 0.5 and b = 0 with the Tau method
in [44] by the approximate solution of degree M for Example 3.

O(L∞− errors)

LTM [44] CTM [44] Our Method

M of LGL Points M of
[0, 1] M of CGL Points M of

[0, 1] M

10−07 − − 09 − 07
10−09 11 11 11 11 09
10−11 13 13 13 13 11
10−14 − − − − 13
10−15 − − − − 15
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Figure 6. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm at υ1 = 0.5 and b = 0 with
distinct N for Example 3.
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Figure 7. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm at υ1 = 0.5 and N = 15 with
distinct b for Example 3.
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Figure 8. MAE of ZN(x) of our algorithm for υ1 = 0.5 and N = 15 with b = 0 (figure at left) and
b = 2 (figure at right) for Example 3.

Example 4. Consider the following linear initial value problem [41]:

Z ′(x) +Dυ1
x Z(x) +Z(x) =

5
2

x
3
2 + x

5
2 +

15
8

√
π

Γ( 13
4 )

x
9
4 ,

with the initial condition
Z(0) = 0.

The exact solution of this problem is Z(x) = x2√x.

Table 7 compares the L∞- and L2-errors of our algorithm at υ1 = 0.5 and N = 20
with distinct b, while Table 8 gives a comparison of L∞- and L2-errors of our algorithm for
υ1 = 0.5 and b = 0 with the CCSM that proposed in [41] by the approximate solution of
degree M. Figure 8 displays the MAE of ZN(x) of our algorithm for υ1 = 0.5 and N = 15



Fractal Fract. 2023, 7, 74 19 of 22

with b = 0 (figure at left) and b = 2 (figure at right). Figure 9 displays the Log10(L∞− errors)
and Log10(L2− errors) of our algorithm at υ1 = 0.5 and b = 0 with distinct N. Figure 10
describes the Log10(L∞− errors) and Log10(L2− errors) of our algorithm at υ1 = 0.5 and
N = 20 with distinct b. Finally, Figure 11 displays the MAE of ZN(x) of our algorithm for
υ1 = 0.5 and N = 20 with b = 0 (figure at left) and b = 3 (figure at right).

Table 7. Comparison of L∞- and L2-errors of our algorithm at υ1 = 0.5 and N = 20 with distinct b for
Example 4.

b L∞-Errors L2-Errors

0 2.64986× 10−7 7.13878× 10−8

1 1.64009× 10−7 4.58693× 10−8

2 1.32802× 10−7 4.08146× 10−8

3 1.21717× 10−7 3.74664× 10−8

4 1.40818× 10−7 3.74237× 10−8

5 1.35236× 10−7 3.74547× 10−8

Table 8. Comparison of L∞- and L2-errors of our algorithm for υ1 = 0.5 and b = 0 with the CCSM
in [41] by the approximate solution of degree M for Example 4.

O(errors)
CCSM [41] Our Method CCSM [41] Our Method

M of L∞-Errors M of L∞-Errors M of L2-Errors M of L2-Errors

10−3 5 4 − 4
10−4 − 5 5 5
10−5 9 8 9 6
10−6 17 11 − 9
10−7 21 17 17 13
10−8 − − − 20

4 6 8 10 12 14 16
-7

-6

-5

-4

-3

-2

-1

0

N

L
o
g
1
0
(E
rr
o
r)

■ L
2-errors

● L
∞-errors

Figure 9. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm at υ1 = 0.5 and b = 0 with
distinct N for Example 4.
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Figure 10. Log10(L∞ − errors) and Log10(L2 − errors) of our algorithm at υ1 = 0.5 and N = 20 with
distinct b for Example 4.
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Figure 11. MAE of ZN(x) of our algorithm for υ1 = 0.5 and N = 20 with b = 0 (figure at left) and
b = 3 (figure at right) for Example 4.

6. Conclusions

The spectral Galerkin method was utilized to treat multi-term FDEs governed by their
initial conditions. Shifted generalized Chebyshev polynomials of the first kind were a
newly introduced type that was used as basis functions. The Galerkin method was used
to convert the FDE governed by its initial conditions into a linear matrix system with
explicitly stated elements. Using a suitable numerical solver, this system of equations could
be solved. Additionally, a few test examples were displayed to ensure the applicability and
accuracy. As an important note, the case that corresponds to the standard shifted first-kind
Chebyshev polynomials is not always better than the other special polynomials of our
introduced generalized polynomials. To the best of our knowledge, this is the first time that
differential equations were solved using these generalized polynomials. In upcoming work,
we intend to use these orthogonal polynomials to solve a number of differential equations.
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