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Abstract: The Korteweg–de Vries (KDV) equation is one of the most well-known models in nonlinear
physics, such as fluid physics, plasma, and ocean engineering. It is very important to obtain the
exact solutions of this model in the process of studying these topics. In the present paper, using
distinct function iteration relations in two ways, namely, squaring infinitely and extracting the square
root infinitely, which have not been reported in other documents, we construct abundant types of
new infinite-series exact solitary wave solutions using the auxiliary equation method. Most of these
solutions have not been reported in previous papers. The numerical analysis of some solutions shows
complex solitary wave phenomena. Some solutions can have stable solitary wave structures, while
others may have singularities in certain space–time positions. The results show that the analysis
model we use is very simple and effective for the construction of new infinite-series solutions and
new solitary wave structures of nonlinear models.

Keywords: hyperbolic function; KDV equation; nonlinear evolution equation; infinite-series exact
solitary wave solutions; auxiliary equation

1. Introduction

The exploration of solitary waves and solitons has been always at the forefront of
modern nonlinear science topics. They have been gradually applied to various fields of
natural science [1–6]. Research shows that most nonlinear physical phenomena can be
expressed as corresponding mathematical models under specific approximate conditions
and finally simplified as nonlinear evolution equations (NLEEs) varying with time and
space. Thus, how to find the exact solutions of NLEEs using analytical and numerical
methods is of great physical and practical value for understanding their characteristics and
supplying wave parameter data and their applications. It is very important to construct
exact solutions for various nonlinear models in the interdisciplinarity of mathematics
and physics and to understand the exact solutions of NLEEs for finding out the dynamic
mechanisms and their processes in different fields of scientific research. Through these
exact solutions, we can understand the composition and propagation of various complex
nonlinear wave phenomena from the perspective of physical images, such as the shape of
waves, the appearance of peaking states, the steady state, instability or coexistence under
certain conditions, and the space–time positioning of the propagation process.

Since NLEEs are widely used in natural science and their solutions can clarify the
dynamic behavior of complex nonlinear phenomena, it is necessary to analyze and study
them with effective and powerful methods. In recent years, remarkable advances have
been made in solving nonlinear equations. Many strong and effective methods have been
developed, and abundant solutions have been obtained, for example, the F-expansion
method in Refs. [7,8], the tanh-sech method and its extension in Refs. [9–11], the Jacobi
elliptic function method in Refs. [12,13], the auxiliary equation method in Refs. [14–18], the
(G′/G)-expansion method and its extension in Refs. [19–22], and so on. These methods
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can construct a large number of exact solutions when dealing with some types of NLEEs.
However, there are still many problems to be solved, such as developing a universal and
simple method to construct complex and diverse exact analytical solutions. Theoretically,
NLEEs have infinite solutions. In Refs. [23,24], a Bäcklund transformation is used to
construct new infinite-series soliton-like solutions of NLEEs. For this kind of method, the
auxiliary equation is the key to construct infinite-series solutions of NLEEs. An optimal
auxiliary equation can greatly simplify the solving progress of NLEEs and can also provide
various complex and diverse infinite-series exact solutions.

Because of its simple structure, the Riccati equation is an ideal auxiliary equation,
which can greatly simplify the solving process, so it has a very wide range of applications
for solving NLEEs. In the present work, we propose a new method to construct infinite-
series solutions of NLEEs using the Riccati equation as an auxiliary equation. After the
Riccati equation is treated in this way, we obtain many new infinite-series solutions. Then,
as an application, this method is used to deal with the standard KDV equation, i.e.,

ut + 6uux + uxxx = 0, (1)

which is one of the most well-known models in fluid physics [25] and in plasmas [26],
where u(x, t) is a real differential wave function depending on one-dimensional space
variable x and one-dimensional time variable t. It is a kind of one-way shallow-water wave
partial differential equation discovered when studying small-amplitude long-wave motion
in shallow water. It is also the first equation used to study soliton phenomena. Several meth-
ods have been proposed to solve this equation and KDV-type equations, for example, the
tanh function method [27,28], the variable separation method [29,30], the simplified Hirota
method [31], the homotopy perturbation method [32], and some other methods [33–35]. In
these literature works, different types of KDV equations have been studied, and many new
exact solutions and solitary wave structures have been obtained. Although these methods,
including those described above, are very effective in solving the KDV equation and KDV-
type equations, under certain conditions, the structure of the solution of the KDV equation
has some commonness with the Benjamin equation [36], the Boussinesq equation [37], the
Benjamin–Bona–Mahony (BBM) equation [38], the (2 + 1)-dimensional KDV equation [39],
the asymmetrical Nizhnik–Novikov–Veselov (aNNV) system [40], etc. Therefore, the ex-
ploration of new exact solutions and complex wave phenomena of the KDV equation is
not only important for understanding the dynamic behavior of the KDV equation, but
it also provides reference for solving the above equations and analyzing their dynamic
behavior. At the same time, it also provides some ideas for solving other NLEEs. The
method we use in this paper, that is, the construction of solutions by squaring infinitely and
extracting the square root infinitely, is a new method that has not been previously reported
in other literature studies. It is also quite different from the above Bäcklund transformation
method for constructing infinite-series solutions. After the KDV equation is treated using
this method, many new forms of exact solutions and solitary wave structures are obtained.

The manuscript is organized in the following way: In Section 2, the new infinite-series
exact solutions of the Riccati equation are constructed, which gives abundant hyperbolic
function solutions. This part is the theoretic basis of this paper. In Section 3, the main
steps of the scheme are described in detail. As an application, this method is used to solve
the KDV equation to prove the wider applicability of handling NLEEs with a simplified
process. Finally, the conclusion and discussion are given in Section 4.

2. Construction of Infinite-Series Solitary Wave Solutions

To construct new infinite-series exact solitary wave solutions for NLEEs, the following
form of a 0-order auxiliary equation is introduced:

[g0
′(ξ)]

2
= p0 g0

2(ξ) + q0, (2)
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where p0 and q0 are constants that can be obtained later. It is obvious that Equation (1) has
the following solutions:

g01(ξ) = sinh(ξ),(p0 = 1, q0 = 1). (3)

g02(ξ) = cosh(ξ), (p0 = 1, q0 = −1). (4)

g03(ξ) = sinh(ξ)± cosh(ξ), (p0 = 1, q0 = 0). (5)

Next, we introduce the 1-order equation of Equation (2), which satisfies the
following relationship:

[g1
′(ξ)]

2
= p1g1

2(ξ) + q1, (6)

where p1 and q1 are constants that can be obtained later. We first assume that 1-order
Equation (6) and 0-order Equation (2) have the following relationship:

Case 1:

g1(ξ) = g0
2(ξ) + a0, (7)

where a0 is a constant. We substitute Equation (7) into Equation (6) and use Equation (2)
to obtain 

4p0 = p1,
4q0 = 2p1a0,

p1a0
2 + q1 = 0.

. (8)

These equations were solved using MATLAB 2014a and 2021b software (so were the
following; these software applications were used to plot all the figures and check all the

results), obtaining the following results: p1 = 4p0, q1 = − q0
2

p0
, and a0 = q0

2p0
. Then, we

can obtain
g11(ξ) = sinh2(ξ) +

1
2

, (p1 = 4, q1 = −1). (9)

g12(ξ) = cosh2(ξ)− 1
2

, (p1 = 4, q1 = −1). (10)

g13(ξ) = [sinh(ξ)± cosh(ξ)]2, (p1 = 4, q1 = 0). (11)

For the second case, we adopt the following transformation:

Case 2:

g1(ξ) =
√

g0(ξ) + a0, (12)

where a0 is a constant. We substitute Equation (12) into Equation (6) and use Equation (2)
to obtain 

1
4 p0 = p1,

2p1a0 + q1 = 0,
1
4 q0 = p1a0

2 + q1a0.
(13)

By solving them, we can obtain p1 = 1
4 p0, q1 = ±2

√−p0q0, and a0 = ∓
√
− q0

p0
. Then, we

can obtain
g14(ξ) =

√
sinh(ξ) + ε, (p1 =

1
4

, q1 = −1
2

ε, ε2 = −1). (14)

g15(ξ) =
√

cosh(ξ) + ε, (p1 =
1
4

, q1 = −1
2

ε, ε2 = 1). (15)

g16(ξ) =
√

sinh(ξ)± cosh(ξ), (p1 =
1
4

, q1 = 0). (16)
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Next, we introduce the n-order equation of Equation (2), which satisfies the
following relationship:

[gn
′(ξ)]

2
= pngn

2(ξ) + qn, (17)

Moreover, it satisfies the following relations with the (n − 1)-order equation:

Case 1:

gn(ξ) = gn−1
2(ξ) + an−1, (18)

Case 2:

gn(ξ) = gn−1
2(ξ) + an−1, (19)

According to Equations (6)–(8), (12) and (13), we can obtain the following infinite-series
hyperbolic function solutions:

Case 1:

gn(ξ) = gn−1
2(ξ) +

qn−1

2pn−1
, (pn = 4pn−1, qn = − qn−1

2

pn−1
). (20)

Case 2:

gn(ξ) =

√
gn−1(ξ)±

√
− qn−1

pn−1
, (pn =

1
4

pn−1, qn = ∓2
√
−pn−1qn−1). (21)

To simplify the process as much as possible, we choose the following simple Riccati
equation [17,41–43]:

f ′(ξ) = f 2(ξ) + µ. (22)

To find the new infinite-series hyperbolic function solutions, it is assumed that Equation (22)
has the solution in the following transformation:

f (ξ) = k0 + k1
gn
′(ξ)

gn(ξ) + r
, (23)

where r, k0, and k1 are constants to be determined; and n = 0, 1, 2, · · · . By substituting
Equation (23) into Equation (22), using Equation (17), and then setting each coefficient of
gn

i(ξ) (i = 0, 1, 2, · · · ) as zero, the following equations can be obtained:
k0 = 0,

k1
2 pn + µ = 0,

k1 pnr = 2µr,
−k1qn = k1

2qn + µr2;

or


qn = 0,

k0
2 + k1

2 pn ± 2k0k1
√

pn + µ = 0,
k1 pnr = 2k0

2r± 2k0k1r
√

pn + 2µr,
k0

2r2 + µr2 = 0.

(24)

By solving them, we can obtain


k0 = 0,

k1 = − 1
2 ,

µ = − pn
4 ,

r = ±
√
− qn

pn
;

or


qn = 0,

k0 = ± 1
2
√

pn
k1 = −1,
µ = − pn

4 ,
r 6= 0.

. (25)

In Case 1, when qn 6= 0, although g01(ξ) 6= g02(ξ), owing to sinh2(ξ)+ 1
2 = cosh2(ξ)− 1

2 ,
the infinite-series hyperbolic function solutions of g01(ξ) are the same as those of g02(ξ)
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when n > 1. So, in this case, we have new infinite-series hyperbolic function solutions in
the following forms:

f1n(ξ) = − gn−1
′(ξ)

2[gn−1(ξ)+r] ,
(

µ = − pn−1
4 , r = ±

√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(26)

f2n(ξ) = ±
1
2

νn− ενn[sinh(ξ) + ε·cosh(ξ)]νn

[sinh(ξ) + ε·cosh(ξ)]νn + r
,
(

µ = − ν2n2

4
, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , ε2 = 1

)
(27)

In Case 2, the infinite-series hyperbolic function solutions of g03(ξ) are the same as
Equation (27). So, in this case, we have new infinite-series hyperbolic function solutions in
the following forms:

f3n(ξ) = − gn−1
′(ξ)

2[gn−1(ξ)+r] ,
(

µ = − pn−1
4 , r = ±

√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) =

√
gn−1(ξ)±

√
− qn−1

pn−1
,
(

pn = 1
4 pn−1, qn = ∓2

√−pn−1qn−1, n = 1, 2, 3, · · ·
)

.

(28)

Next, we use the following formula transformation to solve Equation (28):

f (ξ) = k0 + k1
gn(ξ)gn

′(ξ)

gn2(ξ) + r
, (29)

where r, k0, and k1 are constants to be determined; and n = 0, 1, 2, · · · . We substitute
Equation (29) into Equation (22) and use Equation (17). The following equations can
be obtained:

k0 = 0,
k1

2 pn + µ = 0,
−k1qn + 2k1 pnr = k1

2qn + 2µr,
k1qnr = µr2;

or


qn = 0,

k0
2 + k1

2 pn ± 2k0k1
√

pn + µ = 0,
2k1 pnr = 2k0

2r± 2k0k1r
√

pn + 2µr,
k0

2r2 + µr2 = 0.

(30)

By solving them, we can obtain


k0 = 0,

k1 = −1,
µ = −pn,
r = qn

pn
;

or


qn = 0,

k0 = ±√pn,
k1 = −2,
µ = −pn,

r 6= 0.

(31)

So, we can obtain the following new infinite-series hyperbolic function solutions:
f4n(ξ) = − gn−1(ξ)gn−1

′(ξ)
gn−1

2(ξ)+r ,
(

µ = −pn−1, r = qn−1
pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(32)

f5n(ξ) = ±νn− 2ενn[sinh(ξ) + ε·cosh(ξ)]2νn

[sinh(ξ) + ε·cosh(ξ)]2νn + r
,
(

µ = −ν2n2, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , ε2 = 1
)

. (33)

In Case 2, because

gn(ξ)gn
′(ξ)

gn2(ξ) + r
=

1
2

gn−1
′(ξ)

gn−1(ξ)±
√
− qn−1

pn−1
+ r

, (34)
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the infinite-series hyperbolic function solutions of g01(ξ) and g02(ξ) are the same as
Equation (28). Moreover, the infinite-series hyperbolic function solutions of g03(ξ) are also
the same as Equation (33).

It is obvious that h(ξ) = a1/ f (ξ) also satisfies Equation (22) when a1 = −µ, µ1 = µ.
Therefore, the following equations are also new infinite-series hyperbolic function solutions
of Equation (22):

f6n(ξ) = − pn−1[gn−1(ξ)+r]
2gn−1

′(ξ) ,
(

µ = − pn−1
4 , r = ±

√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(35)

f7n(ξ) =
νn[sinh(ξ) + ε·cosh(ξ)]νn + νnr

(±2− 4ε)[sinh(ξ) + ε·cosh(ξ)]νn ± 2r
,
(

µ = − ν2n2

4
, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , ε2 = 1

)
. (36)

f8n(ξ) = − pn−1[gn−1(ξ)+r]
2gn−1

′(ξ) ,
(

µ = − pn−1
4 , r = ±

√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) =

√
gn−1(ξ)±

√
− qn−1

pn−1
,
(

pn = 1
4 pn−1, qn = ∓2

√−pn−1qn−1, n = 1, 2, 3, · · ·
)

.

(37)


f9n(ξ) = −

pn−1[gn−1
2(ξ)+r]

gn−1(ξ)gn−1
′(ξ) ,

(
µ = −pn−1, r = qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(38)

f10n(ξ) =
νn[sinh(ξ) + ε·cosh(ξ)]2νn + νnr

(±1− 2ε)[sinh(ξ) + ε·cosh(ξ)]2νn ± r
,
(

µ = −ν2n2, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , ε2 = 1
)

. (39)

Compared with other published literature studies [17,41–43], the solutions of Equation (22)
obtained are novel. In these infinite groups of solutions, except for a few low-n-order solutions
that have been reported in other literature studies, the rest are all our newly discovered solutions.
Compared with Refs. [23,24], the infinite solutions in this paper are also quite different from
those constructed using a Bäcklund transformation in the structure, especially the solutions
obtained by extracting the square root infinitely.

3. Main Steps of the Scheme and Application

A (1 + 1)-dimensional nonlinear equation can be expressed as follows:

N(u, ut,ux,utt,uxt,uxx, · · ·) = 0. (40)

To find the exact solutions, we assume that Equation (40) has the following traveling wave
transformation:

u(x, t) = u(ξ), ξ = kx + ct, (41)

where k and c are pending wave parameters. The following ordinary differential equation
can be obtained by substituting the above formula into Equation (40):

N
(
u, u′, u′′ , · · ·

)
= 0, (42)

where u′ represents du/dξ. We assume that the solution of Equation (42) satisfies the
following form:

u(ξ) = ∑n
i=0 ai f i(ξ), (43)

where ai are constants, f i(ξ) is the solution of Equation (22). and n can be obtained using
the homogeneous balance. In the present method, the predetermined complex formal
solution can be put in the solving process of Riccati Equation (22), because its solving
process is relatively much simpler. Following this procedure is of great benefit. First, it can
greatly simplify the solving process of NLEEs. Second, many complex solutions are actually
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the same group of solutions after simplification. However, the simplification process is
extremely complicated, and we can exclude the same solutions to the maximum extent by
doing so.

In the following, we deal with Equation (1) using of this method. The traveling wave
of Equation (41) is substituted into Equation (1) and integrated once, and the constant
obtained using integration is zero. We can obtain

u + 3ku2 + k3u′′ = 0. (44)

Considering the homogeneous balance, the solutions of Equation (44) can be shown as

u(ξ) = a0 + a1 f (ξ) + a2 f 2(ξ). (45)

Equation (45) is then iterated into Equation (44), and a set of algebraic equations is generated
for a0, a1, a2, k, and c. We collect all terms with the identical power of f (ξ) and set each
coefficient equal to zero. Finally, we can obtain

6a2k3 + 3ka2
2 = 0,

2a1k3 + 6a1a2k = 0,
ca2 + 3k

(
a1

2 + 2a0a2
)
+ 8a2µk3 = 0,

ca1 + 6ka0a1 + 2a1µk3 = 0,
ca0 + 3ka0

2 + 2a2µ2k3 = 0.

(46)

By solving the algebraic equations, a0, a1, a2, k, and c can be shown as follows:

a0 = −
(

4
3 ±

2
3

)
µk2,

a1 = 0,
a2 = −2k2,
c = ±4µk3,

k 6= 0.

. (47)

The parameters given in Equation (47) are consistent with the corresponding solutions
of the KDV equation in Refs. [28,44]. The solutions obtained using the method in this
paper include some existing solutions, and on this basis, they are extended to an infinite
number of solutions in different ways. Thus, the new infinite-series solitary wave solutions
of Equation (44) can be expressed as follows:

u1n(ξ) =
(

1
3 ±

1
6

)
pn−1k2 − k2 pn−1gn−1

2(ξ)+qn−1

2[gn−1(ξ)+r]2
,
(

r = ±
√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(48)

where ξ = kx + ct, c = ∓pn−1k3, k 6= 0. In this set of infinite solutions, owing to
g2(ξ)g0(ξ)=sinh(ξ) = g2(ξ)g0(ξ)=cosh(ξ), these two cases represent the same infinite-series so-
lutions when n ≥ 2. Owing to pn = 4pn−1 and p0 = 1, lim

n→∞
pn → ∞ and lim

n→∞
u1n(ξ)→ ∞ ,

so u1n(ξ) does not converge. In fact, because there are some negative components in the
denominator of u1n(ξ), even if the n-order is not high enough, u1n(ξ) tends to infinity in a
small space–time range. This means that stable solitary wave structures only exist in those
solutions with lower n-order values. Since u1n(ξ) includes so many solutions of the KDV
equation, due to space limitation, we only give examples of solitary wave solutions when
n ≤ 4 and discard the imaginary number solutions. These four groups of solutions are
as follows:

u11(ξ) =

(
1
3
± 1

6

)
k2 − k2 sinh2(ξ)

2[cosh(ξ) + r]2
, (49)
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where ξ = kx + ct, c = ∓k3, k 6= 0, r = ±1. This set of solutions is consistent with one of
solutions in Equation (31) of the KDV equation in Reference [27].

u12(ξ) =

(
4
3
± 2

3

)
k2 − 2k2 sinh2(ξ)cosh2(ξ)[

cosh2(ξ)− 1
2 + r

]2 , (50)

where ξ = kx + ct, c = ∓4k3, k 6= 0, r = ± 1
2 . If r = 1

2 , this set of solutions is consistent
with Equation (29) in Reference [28], while if r = − 1

2 , it is consistent with Equation (31) in
Reference [28].

u13(ξ) =

(
16
3
± 8

3

)
k2 − 2k2 4cosh8(ξ)− 8cosh6(ξ) + 5cosh4(ξ)− cosh2(ξ)[

cosh4(ξ)− cosh2(ξ) + 1
8 + r

]2 , (51)

where ξ = kx + ct, c = ∓16k3, k 6= 0, r = ± 1
8 . This set of solutions is a new one of the

KDV equation that we obtained.

u14(ξ) =

(
64
3
± 32

3

)
k2 − k2

64
[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2
− 1

256

2
[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64 + r
]2 , (52)

where ξ = kx + ct, c = ∓64k3, k 6= 0, r = ± 1
128 . This set of solutions is also a new one of

the KDV equation that we obtained.
These four groups of solutions represent the bright solitary wave of the KDV equation

(see Figure 1). We apply a 3D plot to the image of function u(ξ) changing with time and
space, so that we can obtain the amplitude change of u(ξ) for different space–time positions.
From this, we can know the local wave structure of each solution and its evolution over
time. The increase in n in u1n(ξ) increases the amplitude of the solitary wave and decreases
the bandwidth in space–time. When n = 4, there are two rows of singularities in a very
small space–time region. It can be seen that, in this case, stable solitary wave structures
only exist for n = 1, 2, 3. When n > 3, solitary waves become unstable.

u2n(ξ) =

(
− 1

6
± 1

6

)
ν2n2k2 + 2λk2 ν2n2[sinh(ξ) + ε·cosh(ξ)]νn

[sinh(ξ) + ε·cosh(ξ)]νn + r
− 2k2

{
νn[sinh(ξ) + ε·cosh(ξ)]νn

[sinh(ξ) + ε·cosh(ξ)]νn + r

}2

, (53)

where ξ = kx + ct, c = ∓ν2n2k3, k 6= 0, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , λ2 = 1, ε2 = 1. This
set of solutions contains a large number of integral, fractional, and irrational solitary wave
solutions, which are determined by different values of k, λ, ν, n, ε, and r. If ε =, ν = 1, and n
= 1, this set of solutions is consistent with Equation (24) in Ref. [44]. Under other conditions,
it is the new solution we found for the first time. When n→ ∞ , u2n(ξ)→ ∞ . When n→ 0 ,
u2n(ξ) changes slowly in a large space–time region. If r < 0 or ε = −1, u2n(ξ) can tend to
infinity in a certain space–time range. Therefore, stable solitary wave structures also only
exist in some special solutions with lower n-order values. Figure 2 shows the images of
bright solitary waves changing with n when k = 1, λ = 1, ν = 1, ε = 1, r = 1. Under
these conditions, the amplitude of the bright solitary wave increases with the increase in
n, while the bandwidth in space–time is the opposite. It can be seen that in this case, the
solitary wave structure is relatively stable under low-n conditions, but under very-high-n
conditions, u(ξ) increases sharply in a small space–time range and becomes unstable.
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2 , (f) n = 1
4 , and (g) n = 1

8 .


u3n(ξ) =

(
1
3 ±

1
6

)
pn−1k2 − k2 pn−1gn−1

2(ξ)+qn−1

2[gn−1(ξ)+r]2
,
(

r = ±
√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) =

√
gn−1(ξ)±

√
− qn−1

pn−1
,
(

pn = 1
4 pn−1, qn = ∓2

√−pn−1qn−1, n = 1, 2, 3, · · ·
)

.

(54)

where ξ = kx + ct, c = ∓pn−1k3, k 6= 0. This is a set of infinite-series solutions obtained by
extracting the square root infinitely. Owing to pn = 1

4 pn−1 and p0 = 1, lim
n→∞

pn → 0 and

lim
n→∞

u3n(ξ)→ 0 , so u3n(ξ) with high-n-order values can change slowly in a large space–

time region. Since the solutions corresponding to g0(ξ) = sinh(ξ) belong to the imaginary
number range, we only give the examples corresponding to g0(ξ) = cosh(ξ). The solitary
wave solutions of the four groups of examples are as follows:

u31(ξ) =

(
1
3
± 1

6

)
k2 − k2 sinh2(ξ)

2[cosh(ξ) + r]2
, (55)

where ξ = kx + ct, c = ∓k3, k 6= 0, r = ±1. This set of solutions is the same as Equation (49).

u32(ξ) =

(
1

12
± 1

24

)
k2 − k2

1
4 cosh(ξ)− 7

4

2
[√

cosh(ξ) + 1 + r
]2 , (56)
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where ξ = kx + ct, c = ∓ 1
4 k3, k 6= 0, r = ±

√
2. This set of solutions is a new one of the

KDV equation that we obtained.

u33(ξ) =

(
1

48
± 1

96

)
k2 − k2

1
16

√
cosh(ξ) + 1− 15

16

√
2

2
[√√

cosh(ξ) + 1 + 2
√

2 + r
]2 , (57)

where ξ = kx + ct, c = ∓ 1
16 k3, k 6= 0, r = ±4 4

√
2. This set of solutions is also a new one of

the KDV equation that we obtained.

u34(ξ) =

(
1

192
± 1

384

)
k2 − k2

1
64

√√
cosh(ξ) + 1 + 2

√
2− 7

16
4
√

2

2

[√√√
cosh(ξ) + 1 + 2

√
2 + 4 4

√
2 + r

]2 , (58)

where ξ = kx + ct, c = ∓ 1
64 k3, k 6= 0, r = ±4

√
2 4
√

2. This set of solutions is also a new one
of the KDV equation that we obtained. The solitary wave evolution images corresponding
to these four groups of solutions are shown in Figure 3, which represents the bright solitary
wave solutions of the KDV equation. In this set of infinite-series solutions, it can be seen
that the larger the square root number is, the smaller the amplitude of the corresponding
bright solitary wave is, and the larger the space–time width is. In this case, all the solitary
waves have relatively stable structures.
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u4n(ξ) =

(
4
3 ±

2
3

)
pn−1k2 − 2k2 pn−1

2gn−1
2(ξ)

pn−1gn−1
2(ξ)+qn−1

,
g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(59)

where ξ = kx + ct, c = ∓4pn−1k3, k 6= 0. In this set of infinite-series solutions, although
lim

n→∞
u4n(ξ)→ ∞ , owing to being zero at the denominator for some values, u4n(ξ) has

singularities in some space–time positions. In this case, these four groups of examples are
shown as follows:

u41(ξ) =

(
4
3
± 2

3

)
k2 − 2k2 cosh2(ξ)

sinh2(ξ)
, (60)

where ξ = kx + ct, c = ∓4k3, k 6= 0. This set of solutions is consistent with Equation (31)
in Ref. [28].

u42(ξ) =

(
16
3
± 8

3

)
k2 − 32k2

[
cosh2(ξ)− 1

2

]2

4
[
cosh2(ξ)− 1

2

]2
− 1

, (61)
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where ξ = kx + ct, c = ∓16k3, k 6= 0. This set of solutions is a new one of the KDV equation
that we obtained.

u43(ξ) =

(
64
3
± 32

3

)
k2 − 512k2

[
cosh4(ξ)− cosh2(ξ) + 1

8

]2

16
[
cosh4(ξ)− cosh2(ξ) + 1

8

]2
− 1

4

, (62)

where ξ = kx + ct, c = ∓64k3, k 6= 0. This set of solutions is also a new one of the KDV
equation that we obtained.

u44(ξ) =

(
256
3
± 128

3

)
k2 − 8192k2

[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2

64
[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2
− 1

256

, (63)

where ξ = kx + ct, c = ∓256k3, k 6= 0. This set of solutions is also a new one of the
KDV equation that we obtained. The solitary wave evolution images corresponding to
these four groups of solutions are shown in Figure 4, which represents the dark solitary
wave solutions of the KDV equation. Furthermore, the space–time width of the solitary
wave decreases with the increase in n. However, because pn−1gn−1

2(ξ) + qn−1 = 0 under
certain conditions, this set of infinite solutions has singularities in some specific space–time
positions, which makes the solitary wave structure unstable.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 18 
 

 

𝑢 (𝜉) = 43 ± 23 𝑘 − 2𝑘 𝑐𝑜𝑠ℎ (𝜉)𝑠𝑖𝑛ℎ (𝜉),  (60)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡, 𝑐 = ∓4𝑘 , 𝑘 ≠ 0. This set of solutions is consistent with Equation (31) 
in Ref. [28]. 

𝑢 (𝜉) = 163 ± 83 𝑘 − 32𝑘 [𝑐𝑜𝑠ℎ (𝜉) − 12]4[𝑐𝑜𝑠ℎ (𝜉) − 12] − 1 , (61)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡, 𝑐 = ∓16𝑘 , 𝑘 ≠ 0. This set of solutions is a new one of the KDV equa-
tion that we obtained. 

𝑢 (𝜉) = 643 ± 323 𝑘 − 512𝑘 𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 1816 𝑐𝑜𝑠ℎ (𝜉) − 𝑐𝑜𝑠ℎ (𝜉) + 18 − 14, (62)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡, 𝑐 = ∓64𝑘 , 𝑘 ≠ 0. This set of solutions is also a new one of the KDV 
equation that we obtained. 

𝑢 (𝜉) = 2563 ± 1283 𝑘 − 8192𝑘 𝑐𝑜𝑠ℎ (𝜉) − 2𝑐𝑜𝑠ℎ (𝜉) + 54 𝑐𝑜𝑠ℎ (𝜉) − 14 𝑐𝑜𝑠ℎ (𝜉) − 76464 𝑐𝑜𝑠ℎ (𝜉) − 2𝑐𝑜𝑠ℎ (𝜉) + 54 𝑐𝑜𝑠ℎ (𝜉) − 14 𝑐𝑜𝑠ℎ (𝜉) − 764 − 1256, (63)

where 𝜉 = 𝑘𝑥 + 𝑐𝑡, 𝑐 = ∓256𝑘 , 𝑘 ≠ 0. This set of solutions is also a new one of the KDV 
equation that we obtained. The solitary wave evolution images corresponding to these 
four groups of solutions are shown in Figure 4, which represents the dark solitary wave 
solutions of the KDV equation. Furthermore, the space–time width of the solitary wave 
decreases with the increase in n. However, because 𝑝 𝑔 (𝜉) + 𝑞 = 0 under cer-
tain conditions, this set of infinite solutions has singularities in some specific space–time 
positions, which makes the solitary wave structure unstable. 

 

Figure 4. Evolution of solitary waves with n in 𝑢  when 𝑘 = 1: (a) 𝑛 = 1, (b) 𝑛 = 2, (c) 𝑛 = 3, and 
(d) 𝑛 = 4. 
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u5n(ξ) =

(
− 2

3
± 2

3

)
ν2n2k2 + 8λk2 ν2n2[sinh(ξ) + ε·cosh(ξ)]2νn

[sinh(ξ) + ε·cosh(ξ)]2νn + r
− 8k2

{
νn[sinh(ξ) + ε·cosh(ξ)]2νn

[sinh(ξ) + ε·cosh(ξ)]2νn + r

}2

, (64)

where ξ = kx + ct, c = ∓4ν2n2k3, k 6= 0, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , λ2 = 1, ε2 = 1. This
set of solutions is a new one of the KDV equation that we obtained. It does not converge
when n→ ∞ . However, the different values of r and ε can make u5n(ξ) have singularities
in some space–time positions. This set of solutions represents an anti-kink-type solitary
wave with many singular points when k = 1, λ = −1, ν = 1, ε = −1, r = −1, as shown
in Figure 5. When n increases, the amplitude of the solitary wave increases, while the
bandwidth in space–time decreases. These solutions all have relatively stable solitary wave
structures. When 0 < n < 1, the solitary wave becomes a combined wave of an anti-kink
solitary wave and a dark solitary wave with singularities. Then, the solitary wave becomes
unstable near the singularities.

u6n(ξ) =
(

1
3 ±

1
6

)
pn−1k2 − 1

2 k2 pn−1
2[gn−1(ξ)+r]2

pn−1gn−1
2(ξ)+qn−1

,
(

r = ±
√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1)org0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(65)
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where ξ = kx + ct, c = ∓pn−1k3, k 6= 0. This set of solutions tends to infinity when n→ ∞
because lim

n→∞
pn → ∞ . In this case, these four groups of examples are shown as follows:

u61(ξ) =

(
1
3
± 1

6

)
k2 − 1

2
k2 [cosh(ξ) + r]2

sinh2(ξ)
, (66)Fractal Fract. 2023, 7, x FOR PEER REVIEW 12 of 18 
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Figure 5. Evolution of solitary waves with n in u5n when k = 1, λ = −1, ν = 1, ε = −1, r = −1:
(a) n = 1, (b) n = 2, (c) n = 4, (d) n = 8, (e) n = 1

2 , (f) n = 1
4 , and (g) n = 1

8 .

where ξ = kx + ct, c = ∓k3, k 6= 0, r = ±1. This set of solutions is consistent with
Equation (20) in Reference [27].

u61(ξ) =

(
1
3
± 1

6

)
k2 − 1

2
k2 [cosh(ξ) + r]2

sinh2(ξ)
, (67)

where ξ = kx + ct, c = ∓4k3, k 6= 0, r = ± 1
2 . In this set of solutions, if r = 1

2 , it is consistent
with Equation (35), and it is consistent with Equation (35) in Reference [28], while if r = 1

2 ,
it is consistent with Equation (33) in Reference [28].

u63(ξ) =

(
16
3
± 8

3

)
k2 − 128k2

[
cosh4(ξ)− cosh2(ξ) + 1

8 + r
]2

4cosh8(ξ)− 8cosh6(ξ) + 5cosh4(ξ)− cosh2(ξ)
, (68)

where ξ = kx + ct, c = ∓16k3, k 6= 0, r = ± 1
8 . This set of solutions is a new one of the

KDV equation that we obtained.

u64(ξ) =

(
64
3
± 32

3

)
k2 − 2048k2

[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64 + r
]2

64
[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2
− 1

256

, (69)

where ξ = kx + ct, c = ∓64k3, k 6= 0, r = ± 1
128 . This set of solutions is also a new one of

the KDV equation that we obtained. The solitary wave evolution images corresponding to
these four groups of solutions are shown in Figure 6, which represents the dark solitary
wave solutions of the KDV equation. Owing to the existence of singularities, the solitary
wave structure of each solution is completely unstable.
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Figure 6. Evolution of solitary waves with n in u6n when k = 1: (a) n = 1, (b) n = 2, (c) n = 3, and
(d) n = 4.

u7n(ξ) =

(
1
3
± 1

6

)
ν2n2k2 − 2k2

{
νn[sinh(ξ) + ε·cosh(ξ)]νn + νnr

(2λ + 4ε)[sinh(ξ) + ε·cosh(ξ)]νn + 2λr

}2

, (70)

where ξ = kx + ct, c = ∓ν2n2k3, k 6= 0, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , λ2 = 1, ε2 = 1. This
set of solutions is a new one of the KDV equation that we obtained. In this set of solutions,
u7n(ξ) increases with n until infinity. These solutions represent a kink-type solitary wave
with many singular points when k = 1, λ = −1, ν = 1, ε = −1, r = −1, as shown in
Figure 7. Different values of n can make the amplitude, space–time width, kink direction,
and singularity position of the solitary wave different. In this case, all the solitary waves
have relatively stable structures.
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2 , (f) n = 1
4 , and (g) n = 1

8 .
u8n(ξ) =

(
1
3 ±

1
6

)
pn−1k2 − 1

2 k2 pn−1[gn−1(ξ)+r]2

pn−1gn−1
2(ξ)+qn−1

,
(

r = ±
√
− qn−1

pn−1

)
.

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) =

√
gn−1(ξ)±

√
− qn−1

pn−1
,
(

pn = 1
4 pn−1, qn = ∓2

√−pn−1qn−1, n = 1, 2, 3, · · ·
)

.

(71)

where ξ = kx + ct, c = ∓pn−1k3, k 6= 0. In this set of solutions, although lim
n→∞

u8n(ξ)→ 0 ,

owing to being zero at the denominator for some values, many singularities could exist in
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some space–time positions. The solitary wave solutions of the four groups of examples are
as follows:

u81(ξ) =

(
1
3
± 1

6

)
k2 − 1

2
k2 [cosh(ξ) + r]2

sinh2(ξ)
, (72)

where ξ = kx + ct, c = ∓k3, k 6= 0, r = ±1. This set of solutions is the same as Equation (66).

u82(ξ) =

(
1

12
± 1

24

)
k2 − 1

32
k2

[√
cosh(ξ) + 1 + r

]2

1
4 cosh(ξ)− 7

4
, (73)

where ξ = kx + ct, c = ∓ 1
4 k3, k 6= 0, r = ±

√
2. This set of solutions is a new one of the

KDV equation that we obtained.

u83(ξ) =

(
1

48
± 1

96

)
k2 − 1

512
k2

[√√
cosh(ξ) + 1 + 2

√
2 + r

]2

1
16

√
cosh(ξ) + 1− 15

16

√
2

, (74)

where ξ = kx + ct, c = ∓ 1
16 k3, k 6= 0, r = ±4 4

√
2. This set of solutions is also a new one of

the KDV equation that we obtained.

u84(ξ) =

(
1

192
± 1

384

)
k2 − 1

8192
k2

[√√√
cosh(ξ) + 1 + 2

√
2 + 4 4

√
2 + r

]2

1
64

√√
cosh(ξ) + 1 + 2

√
2− 7

16
4
√

2
, (75)

where ξ = kx + ct, c = ∓ 1
64 k3, k 6= 0, r = ±4

√
2 4
√

2. This set of solutions is also a new
one of the KDV equation that we obtained. The solitary wave evolution images of these
four groups of solutions with n are shown in Figure 8. It can be seen that the value of n
can change the shape of the solitary wave and the space–time position of singular points.
u81(ξ) represents a dark solitary wave. With the increase in n, it gradually evolves into a
traveling wave with two rows of singular points. So, the solitary wave structure becomes
unstable under high-n conditions.
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Figure 8. Evolution of solitary waves with n in u8n when k = 1: (a) n = 1, (b) n = 2, (c) n = 3, and
(d) n = 4.

u9n(ξ) =
(

4
3 ±

2
3

)
pn−1k2 − 2k2 pn−1gn−1

2+qn−1
gn−1

2(ξ)
,

g0(ξ) = sinh(ξ), (p0 = 1, q0 = 1) or g0(ξ) = cosh(ξ), (p0 = 1, q0 = −1).

gn(ξ) = gn−1
2(ξ) + qn−1

2pn−1
,
(

pn = 4pn−1, qn = − qn−1
2

pn−1
, n = 1, 2, 3, · · ·

)
.

(76)

where ξ = kx + ct, c = ∓4pn−1k3, k 6= 0. As can be seen in Equation (76), the value of
u9n(ξ) increases with n until infinity. In this set of solutions, the four groups of examples
are as follows:

u91(ξ) =

(
4
3
± 2

3

)
k2 − 2k2 sinh2(ξ)

cosh2(ξ)
, (77)
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where ξ = kx + ct, c = ∓4k3, k 6= 0. This set of solutions is consistent with Equation (29)
in Reference [28].

u92(ξ) = 4
(

4
3
± 2

3

)
k2 − 2k2

4
[
cosh2(ξ)− 1

2

]2
− 1[

cosh2(ξ)− 1
2

]2 , (78)

where ξ = kx + ct, c = ∓16k3, k 6= 0. This set of solutions is a new one of the KDV
equation that we obtained.

u93(ξ) = 16
(

4
3
± 2

3

)
k2 − 2k2

16
{[

cosh2(ξ)− 1
2

]2
− 1

8

}2
− 1

4{[
cosh2(ξ)− 1

2

]2
− 1

8

}2 , (79)

where ξ = kx + ct, c = ∓64k3, k 6= 0. This set of solutions is also a new one of the KDV
equation that we obtained.

u94(ξ) = 64
(

4
3
± 2

3

)
k2 − 2k2

64
[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2
− 1

256[
cosh8(ξ)− 2cosh6(ξ) + 5

4 cosh4(ξ)− 1
4 cosh2(ξ)− 7

64

]2 , (80)

where ξ = kx + ct, c = ∓256k3, k 6= 0. This set of solutions is also a new one of the KDV
equation that we obtained. The solitary wave evolution images corresponding to these
four groups of solutions are shown in Figure 9. In this case, the increase in n reduces
the space–time width of the solitary wave and changes the space–time position of the
singularity. u91(ξ) represents a bright solitary wave. With the increase in n, it gradually
evolves into a traveling wave with many singular points. In this case, stable solitary wave
structures only exist under low-n conditions, while they become unstable under high-n
conditions.
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Figure 9. Evolution of solitary waves with n in u9n when k = 1: (a) n = 1, (b) n = 2, (c) n = 3, and
(d) n = 4.

u10n(ξ) =

(
4
3
± 2

3

)
ν2n2k2 − 2k2

{
νn[sinh(ξ) + ε·cosh(ξ)]2νn + νnr

(λ− 2ε)[sinh(ξ) + ε·cosh(ξ)]2νn ± r

}2

, (81)

where ξ = kx + ct, c = ∓4ν2n2k3, k 6= 0, r 6= 0, ν 6= 0, n = 1, 2, 3, · · · , λ2 = 1, ε2 = 1.
This set of solutions is also a new one of the KDV equation that we obtained. As shown
in Equation (81), lim

n→∞
u10n(ξ)→ ∞ , so stable solitary wave structures only exist in those

solutions with lower n-order values. This set of solutions represent a mixed type of solitary
wave when k = 1, λ = −1, ν = 1, ε = 1, r = −1, as shown in Figure 10. The change
in n can change the amplitude, space–time width, singularity position, and propagation
direction of the solitary wave. In this case, under low-n conditions, there are very stable
mixed solitary wave structures, while under very-high-n conditions, the wave structures
become unstable.
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4. Conclusions and Discussion

In this paper, we construct ten sets of infinite-series solitary wave solutions of the
standard KDV equation using the Riccati equation. Although the solution of the Riccati
equation has been studied a lot in the past, the solutions obtained by squaring and extracting
the square root infinitely that we constructed have not been reported in other literature
studies. In these infinite series exact solitary wave solutions of the KDV equation, most of
them have not been reported in other documents, most of which have not been reported
in other documents, such as u5n(ξ), u7n(ξ), u10n(ξ), and higher-n-order solutions in other
seven sets of solutions. All the solutions of the KDV equation obtained in this paper
were checked using MATLAB 2014a and MATLB 2021b. Among these solutions, u1n(ξ),
u6n(ξ), and u9n(ξ) tend to infinity when n tends to infinity, which indicates that stable
solitary wave structures only exist in the low-n-order ones of these solutions. u3n(ξ) can
gradually decrease in a large space–time region with the increase in n. The infinite solutions
corresponding to u2n(ξ), u5n(ξ), u7n(ξ), and u10n(ξ) could show different convergence
due to different r, ε, and ν. Because the denominators of the solutions corresponding to
u4n(ξ) and u8n(ξ) are zero in some space–time positions, there are always singular points
in these regions.

To give more intuitive physical images of these solutions, solitary wave images of
some examples are also given. These images show the complex nonlinear phenomena of
the corresponding solutions. Some solutions show stable solitary wave structures, while
others become unstable in some space–time positions due to the existence of singularities.
In these infinite-series solitary wave solutions, there are still abundant new solitary waves
of various forms, which we have not given one by one due to space limitations. Exploring
the solitary wave characteristics of these new solutions not only could significantly improve
the understanding of the solitary wave behavior of the KDV equation, but it could also
provide reference for the Benjamin equation, the Boussinesq equation, the BBM equation,
the (2 + 1)-dimensional KDV equation, the asymmetrical NNV system, etc. In the same
way, the method used in this paper can also be used to deal with other kinds of NLEEs to
obtain new infinite-series exact solutions and new solitary wave structures.
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