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Abstract: This article investigates the propagation of a deadly human disease, namely leprosy. At
the outset, the mathematical model is transformed into a fractional-order model by introducing the
Caputo differential operator of arbitrary order. A result is established, which ensures the positivity
of the fractional-order epidemic model. The stability of the continuous model at different points
of equilibria is investigated. The basic reproduction number, R0, is obtained for the leprosy model.
It is observed that the leprosy system is locally asymptotically stable at both steady states when
R0 < 1. On the other hand, the fractional-order system is globally asymptotically stable when
R0 > 1. To find the approximate solutions for the continuous epidemic model, a non-standard
numerical scheme is constructed. The main features of the non-standard scheme (such as positivity
and boundedness of the numerical method) are also confirmed by applying some benchmark results.
Simulations and a feasible test example are presented to discern the properties of the numerical
method. Our computational results confirm both the analytical and the numerical properties of the
finite-difference scheme.

Keywords: fractional epidemic model; leprosy infection with memory effects; non-standard finite-
difference scheme; local and stability analyses; numerical simulations
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1. Introduction

Historically, the word leprosy is derived from the Greek word lepra; it is a human
disease that is also known as Hansen’s disease. This infection is caused by mycobacterium
leprae and mycobacterium lepromatosis, and it is a long-term infection which leads to the
damage of the respiratory tract, nerves, eyes, and skin. According to the World Health
Organization (WHO), most of the people affected by leprosy nowadays are found in Africa
and Asia. Moreover, about 100 people affected by this disease are found in the U.S. every
year. It is worth recalling here that there are two major types of leprosy, namely lepromatous
and tuberculoid. Persons affected with the first kind of leprosy usually present a large
amount of bacteria in the organism, while the second type is characterized by a smaller
amount. Lepromatous is the more dangerous type of leprosy. Some of the complications
from this disease are the loss of sensation and anomalies present in the hands, feet, and face.
The kidney, the nose, and the male reproductive organ are also affected by this disease.

In general, leprosy firstly affects the skin, eyes, nose, nerves, and peripheral nerves.
The symptoms for this disease appear approximately 3–5 years after the first contact with
the mycobacterium. Thirty percent of people affected by leprosy experience nerve damage,

Fractal Fract. 2023, 7, 79. https://doi.org/10.3390/fractalfract7010079 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7010079
https://doi.org/10.3390/fractalfract7010079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-1742-585X
https://orcid.org/0000-0002-7580-7533
https://doi.org/10.3390/fractalfract7010079
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7010079?type=check_update&version=1


Fractal Fract. 2023, 7, 79 2 of 14

which may lead to paralysis, numbness, ulceration, and joint deformation. If detected
at the early stages, medication may reduce the risk of leprosy for those who come in
contact with the leprosy patient. From a medical point of view, the prevention of leprosy
hinges on a single dose of rifampicin (SDR). This approach reduces the risk of infection
up to 57 percent in 2 years, and 30 percent after 6 years. The WHO recommended the
Bacillus Calmette-Gurin (BCG) vaccine for protection from leprosy, which is 26–41 percent
effective. Secondary effects include blindness, kidney failure, muscle weakness, hair loss,
and the permanent damage of peripheral nerves. From the bacteriological point of view,
leprosy is caused by mycobacterium leprae or mycobacterium leprometosis, which are both
clinically undistinguished.

From a mathematical point of view, Mazza, Pastore, and De-Souza [1] investigated
some mathematical and computational models in 2019 for the dynamics of the propagation
of leprosy. In the article, the authors presented and analyzed some compartmental epidemic
models that considered transmission in new patients, the spatial dispersion of leprosy in
population, and the planning for disease control strategies. In 2013, Peters et al. studied
the meaning of leprosy and everyday experiences through a particular study case [2]. In
2016, Matos et al. elucidated future preventive interventions for new cases of leprosy in
Pará state, Brazil [3]. The SIMCOLEP, an existing individual-based model, was used to
study the transmission and control of mycobacterium leprae in a human population. The
control of leprosy with the use of chemoprophylaxis and the discontinuation of contact
tracing were investigated. Chivaka and coworkers also investigated the transmission
dynamics of leprosy [4]. More concretely, they studied the non-complying behavior of
patients and the inadequate treatment of this disease. They proposed a deterministic
mathematical model that would encapsulate inadequate treatment and non-compliance
with the precautionary measures.

Mushayabasa et al. [5] worked on the modeling effect of chemotherapy on the trans-
mission of leprosy dynamics in 2012. A mathematical model for leprosy treatment and
its transmission among asymptomatic and symptomatic individuals was developed in
that work. The effect of leprosy relapse and compliance with the therapy of individual
and administrative was considered therein. On the other hand, Abubakar and coworkers
proposed a Markov decision model as a theoretical framework to elucidate the cost of
treatment of leprosy [6]. In 2013, Enagi et al. presented a deterministic model, in which the
disease-free and endemic equilibria were calculated, and the respective stability analyses
were theoretically carried out [7]. Lietman et al. [8] proposed a mathematical model for the
transmission dynamics of tuberculosis and leprosy.

From the perspective of the immunology of the disease, Walker and coworkers showed
that leprosy infection can be cured by MDT, but that it may lead to immunological reactions,
disability, and deformations as a result of neuropathy caused by rapid treatment [9]. In
2015, Egli et al. presented a mathematical model for the prediction of leprosy incidence
and the effect of intervention strategies [10]. Smith et al. studied leprosy dynamics using
a deeper understanding of the biology of the infection [11]. These authors introduced a
compartment-based continuous model that employed approximate Bayesian computations
to determine the rate of detection and the transmission coefficients. In 2013, Hohmann et al.
investigated a hypothesis on the clinical outcomes of the co-infection leprosy-tuberculosis
by means of mathematical modeling [12]. Later on, Meima and coauthors investigated
a simulation model for leprosy and discussed its transmission control in a population
along with its potential applications and limitations [13]. In 2015, Donoghue et al. studied
the historical spread of leprosy in Central Europe and medieval Eastern areas by using a
migration-driven mathematical model [14]. Finally, in 2019, Haroun and coworkers studied
a deep phenotype in India and investigated the clinical characteristics of neuropathic pain
in leprosy and associated somatosensory profiles [15].

The classical derivatives are local in nature, so they can measure the changes at a
specific moment in time, while the fractional-order derivatives are non-local in nature and
involve the memory effect. Therefore, they can clearly depict the system behavior [16].
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Moreover, some researchers observed that the fractional-order epidemic models fit better
with the real data and enhance the stability of the solutions [17].

Huang et al. studied the issues of bifurcations from fractional-order neural network
systems with different types of delays [18,19]. Similarly, Li et al. worked on the sta-
bility property and Hopf bifurcation of fractional-order genetic regulatory networks by
considering the distributed and discrete delays in the system [20].

In the present work, we investigate the transmission dynamics of leprosy in a human
population using a compartmental epidemic model. The model proposed in this work con-
siders the presence of susceptible and asymptomatic individuals. Moreover, we categorize
the sub-populations of infected individuals into multibacillary leprosy and paucibacillary
leprosy. These four disjoint compartments constitute the total population under study, and
memory effects are considered for the sake of generality. Various theoretical results are
established in this work, such as the existence of disease-free and endemic equilibrium
solutions along with their stability properties. The basic reproduction number is derived
to this end using the next-generation matrix approach. To confirm our analytical results,
we propose a non-standard finite-difference method to approximate the solutions of the
model. Some relevant properties on the discretization are established theoretically, such
as the capability of the methodology to preserve the positivity and the boundedness. By
means of a computational implementation, we show that the methodology is capable of
preserving the positivity and boundedness, and that it is able to identify the equilibrium
solutions and their stability properties. In this way, the theoretical results derived in this
work are computationally confirmed.

2. Mathematical Model

In this section, we will introduce a mathematical model that describes the dynamics of
propagation of the leptospirosis disease. To that end, we considered a human population
divided into four disjoint compartments. Let x(t) represent the sub-population size of
susceptible individuals at time t ≥ 0, while y(t) denotes the sub-population size of asymp-
tomatic persons who have been infected by multibacillary or paucibacillary leprosy. Let
us also assume that z(t) represents the the number of individuals infected by multibacil-
lary leprosy and w(t) the number of people infected by paucibacillary leprosy at time t.
Moreover, suppose that n(t) represents the population size at time t.

In this work, assume that f represents the fraction of people who developed multibacil-
lary leprosy, so that 1− f represents the fraction of people who developed paucibacillary
leprosy. Let τ denote a temporal delay, ρ is the annual net growth rate, βρ represents the
effective contact rate for paucibacillary leprosy transmission, βm denotes the active contact-
ing rate for multibacillary leprosy dynamics, θ is the rate of transfer from the no-symptoms
stage to the stage of leprosy, µm is the population death rate of infected individuals with
multibacillary leprosy, and µ represents the natural death rate. We suppose that all of these
parameters are positive and constant throughout time. Under these conventions, we depart
from the following integer-order mathematical model for the spread of leprosy:

dx(t)
dt

= ρ−
(

βmx(t)
z(t− τ)

N
+ βρx(t)

w(t− τ)

N

)
e−µτ − µx(t), ∀t ≥ 0, (1)

dy(t)
dt

=

(
βmx(t)

z(t− τ)

N
+ βρx(t)

w(t− τ)

N

)
e−µτ − θy(t)− µy(t), ∀t ≥ 0, (2)

dz(t)
dt

= f θy(t)− µmz(t), ∀t ≥ 0, (3)

dw(t)
dt

= (1− f )θy(t)− µw(t), ∀t ≥ 0. (4)

Evidently, this is a delayed system of ordinary differential equations that is non-
linearly coupled.

We wish to extend this mathematical model to the fractional-order scenarios. To
that end, it is important to point out beforehand that there are many fractional operators
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reported in the literature. Among those operators, the Caputo fractional derivative has
traditionally been used in order to account for memory effects. More precisely, if ξ is any
positive real number and Φ : [0, ∞)→ R is a sufficiently smooth function, then the Caputo
derivative of Φ of order ξ at time t is defined as follows:

C
0 Dξ

t Φ(t) =
1

Γ(k− ξ)

∫ t

0
(t− τ)k−ξ−1 dk

dtk Φ(τ)dτ, (5)

where k = [ξ] + 1 obviously satisfies the relation k− 1 < ξ ≤ k, and Γ is the usual Gamma
function that extends factorials and is represented by Γ(z) =

∫ ∞
0 e−ttz−1dt. With these

conventions, the fractional-order generalization of the integer-order leprosy model is given
by the following delayed system of ordinary differential equations:

C
0 Dξ

t x(t) = ρξ −
(

β
ξ
mx(t)

z(t− τ)

N
+ β

ξ
ρx(t)

w(t− τ)

N

)
e−µτ − µξ x(t), (6)

C
0 Dξ

t y(t) =
(

β
ξ
mx(t)

z(t− τ)

N
+ β

ξ
ρx(t)

w(t− τ)

N

)
e−µτ − θξ y− µξ y(t), (7)

C
0 Dξ

t z(t) = f ξ θξ y(t)− µ
ξ
mz(t), (8)

C
0 Dξ

t w(t) = (1− f ξ)θξ y(t)− µξ w(t), (9)

for all t ≥ 0. For the sake of completeness, we will impose non-negative initial data of the
form x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0 and w(0) = w0 ≥ 0. Moreover, notice
that we are emphasizing the dependence of the parameters on the differentiation order ξ in
this last system of differential equations.

Theorem 1. The solution of systems (6)–(9) are positive-invariant.

Proof. Notice that the following identities are satisfied for systems (6)–(9):

C
0 Dξ

t x(t)|x=0 = ρξ , ∀t ≥ 0, (10)

C
0 Dξ

t y(t)|y=0 =

(
β

ξ
mx(t)

z(t− τ)

N
+ β

ξ
ρx(t)

w(t− τ)

N

)
e−µτ , ∀t ≥ 0, (11)

C
0 Dξ

t z(t)|z=0 = f ξ θξ y(t), ∀t ≥ 0, (12)
C
0 Dξ

t w(t)|w=0 = (1− f ξ)θξy(t), ∀t ≥ 0. (13)

As a consequence, observe that the vector field points into R4
+ on each hyperplane bound-

ing the non-negative hyper-octant. The positivity of the solutions now readily follows.

Theorem 2. The solutions of systems (6)–(9) are bounded.

Proof. Once we have proved that the system has positive solutions, the result is straight-
forward. Indeed, sum the four equations of the fractional-order epidemic model and cancel
out the term. An inequality bounding C

0 Dξ
t n(t) from above will be obtained, from where

the boundedness will readily follow.

Next, we examine the equilibrium solutions for systems (6)–(9).

Definition 1. Consider a Caputo fractional system of ordinary differential equations of the form
C
0 Dξ

t u(t) = F (t, u(t)). We say that a point u∗ is an equilibrium solution for this system if
F (t, u∗(t)) = 0.
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Following this definition, systems (6)–(9) have two equilibrium solutions, namely the
disease-free equilibrium solution (x0, y0, z0, w0) = ( ρ

µ , 0, 0, 0) and the endemic equilibrium
(x∗, y∗, z∗, w∗), where the components are given by the following equations:

x∗ =
u(θ + u)

βm f θ + βpθ(1− f )
, (14)

y∗ =
[βm f θ + βpθ(1− f )]ρe−µτ − µ2(θ + µ)

(θ + µ)[βm f θ + βpθ(1− f )]e−µτ ]
, (15)

w∗ =
θ(1− f )

u
[βm f θ + βpθ(1− f )]ρe−µτ − µ2(θ + µ)

(θ + µ)[βm f θ + βpθ(1− f )]e−µτ ]
, (16)

z∗ =
f θ

u
[βm f θ + βpθ(1− f )]ρe−µτ − µ2(θ + µ)

(θ + µ)[βm f θ + βpθ(1− f )]e−µτ . (17)

In order to calculate the basic reproductive number, we use the well-known next-
generation matrix approach. To that end, we define the auxiliary matrices as follows:

A =

0 βm
ρ
µ e−µτ βp

ρ
µ e−µτ

0 0 0
0 0 0


and

B =

 θ + µ 0 0
− f θ µ 0

−θ(1− f ) 0 µ


Under these conventions, the basic reproductive number, R0, is the largest eigenvalue

of the matrix AB−1. It is easy to check algebraically that the value of R0 for systems (6)–(9)
is given by the equation below:

R0 =

(
βm f θ + βpθ(1− f )

µ2(θ + µ)

)
ρe−µτ . (18)

3. Analytical Results

The present section provides the local and global stability analyses for the equilib-
rium points derived in the previous section. In this sense, the following definition is of
utmost importance.

Definition 2. An equilibrium point u∗ of the system C
0 Dξ

0u(t) = F (t, u(t)), u(t0) > 0 is locally
asymptotically stable if each of the eigenvalues λ of the Jacobian matrix of the function F evaluated
at the equilibrium point satisfies the inequality | arg λ| > ξπ

2 .

Theorem 3. The disease-free equilibrium solution of the fractional-order leprosy model is locally
asymptotically stable provided that R0 < 1, and unstable when R0 > 1.

Proof. Beforehand, notice that the disease-free equilibrium point D1 = (x0, y0, z0, w0) of
systems (6)–(9) is locally asymptotically stable whenever the eigenvalues λi are negative,
with | arg λi| > ξπ

2 for each i = 1, 2, 3, 4. Notice that the Jacobian matrix J at point D1 is
given by the following equation:

J(D1) =


−µ 0 −βm

ρ
µ e−µτ −βp

ρ
µ e−µτ

0 −θ − µ βm
ρ
µ e−µτ βp

ρ
µ e−µτ

0 f θ −µm 0
0 θ(1− f ) 0 −µ

. (19)
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It is easy to see that one of the eigenvalues is λ1 = −µ < 0. Let us define the following
auxiliary constants:

a1 = θ + µ, (20)

a2 = βm
ρ

µ
e−µτ , (21)

a3 = βp
ρ

µ
e−µτ , (22)

a4 = θ(1− f ). (23)

Then, the remaining eigenvalues satisfy the cubic polynomial

λ3 + A1λ2 + A2λ + A3 = 0, (24)

where

A1 = a1 + 2µ, (25)

A2 = 2a1µ + µ2 − a2 f θ − a3a4, (26)

A3 = a1µ2 − a2 f θµ− a3µa4. (27)

We will now use the Routh–Hurwitz criterion for cubic polynomials after observing
that A2 > 0, A0 > 0, and A2 A0 > A1 whenever R0 < 1. As a consequence, all the
eigenvalues are negative. Hence, the equilibrium point D1 of systems (6)–(9) is locally
asymptotically stable.

Theorem 4. The endemic equilibrium point of the fractional-order leprosy model is locally asymp-
totically stable when R0 > 1, and unstable when R0 < 1.

Proof. Notice that the endemic point E1 = (x∗, y∗, z∗, w∗) is locally asymptotically stable
when every eigenvalue λi of the Jacobian matrix at E1 is negative, and | arg λi| > ξπ

2 for
each i = 1, 2, 3, 4. Firstly, take note that the Jacobian matrix at E1 is given as follows:

J(E1) =


−(βmz∗ + βpw∗)e−µτ − µ 0 βmx∗e−µτ −βpx∗e−µτ

(βmz∗ + βpw∗)e−µτ −θ − µ βmx∗e−µτ βpx∗e−µτ

0 f θ −µm 0
0 θ(1− f ) 0 −µ

.

As a consequence, the characteristic polynomial of this matrix is given by the following
quartic equation:

λ4 + B1λ3 + B2λ2 + B3λ + B4 = 0, (28)

where the coefficients are defined as follows:

B1 = b1 + b4 + 2b6 + µ, (29)

B2 = b3b7 − b1b6 − b6µ− b2
6 − b4b6 + b2b5 − b1b6 − b1b4 − b6µ− b4µ− b4b6, (30)

B3 = b3b6b7 + b3µb7 + b2b6b5 − b1b2
6 − b1b4b6 − µb2

6 − b4b2
6 − b4b6µ + b2b5µ (31)

− b1b4b6 − b4b6µ,

B4 = b3b7b6µ + b2b5b6µ + b1b4b2
6µ, (32)
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and

b1 = (βmz∗ + βpw∗)e−µτ , (33)

b2 = βmx∗e−µτ , (34)

b3 = βpx∗e−µτ , (35)

b4 = θ + µ, (36)

b5 = f θ, (37)

b6 = µ, (38)

b7 = θ(1− f ). (39)

The conclusion now readily follows by using the Routh–Hurwitz criterion for quartic
polynomials.

Next, we examine the global asymptotic stability of the equilibrium solutions.

Theorem 5. For the fractional-order leprosy systems (6)–(9), the disease-free equilibrium exhibits
global asymptotic stability when R0 < 1.

Proof. Following the approach reported in [15,21] and using the fact that S(t) ≤ ρ
µ for each

t ≥ 0, the rate of change of the variables (x, z, w) in systems (6)–(9) satisfies the following:y
z
w

 = (A− B)

y
z
w

−(1− µ

ρ
S
)

A

y
z
w

 ≤ (A− B)

y
z
w

. (40)

Here, A and B are the same matrices used in the calculation of the basic reproductive
number. As a consequence of Theorem 3, it is easy to see now that systems (6)–(9) are stable
whenever R0 < 1. Thus, (y, z, w) → (0, 0, 0) as t → ∞. By the comparison theorem used
in [15,22], it follows that (y, z, w)→ (0, 0, 0) and S→ ρ

µ as t→ ∞. Then, (x, y, z, w)→ D1

as t→ ∞, which means that D1 is globally asymptotically stable if R0 < 1.

Theorem 6. The endemic equilibrium is globally asymptotically stable if R0 > 1.

Proof. We follow the approach described in [23]. To that end, recall that the endemic
equilibrium is the point E1 = (x∗, y∗, z∗, w∗), and consider the following Lyapunov function:

U(t) =
(

x− x∗ − x∗ ln
x∗

x

)
+

(
y− y∗ − y∗ ln

y∗

y

)
+

(
z− z∗ − z∗ ln

z∗

z

)
+

(
w− w∗ − w∗ ln

w∗

w

)
.

(41)
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Bounding from above and using the linearity of the Caputo fractional operator, it is
easy to check that the following inequalities are satisfied:

C
0 Dξ

t U(t) ≤
(

1− x∗

x

)
C
0 Dξ

0 x(t) +
(

1− y∗

y

)
C
0 Dξ

0y(t) +
(

1− z∗

z

)
C
0 Dξ

t z(t)

+

(
1− w∗

w

)
C
0 Dξ

0w(t)

≤ (x− x∗)
[

ρ

x
− βmze−µτ

N
−

βpwe−µτ

N
− ρ

x∗
+

βmz∗e−µτ

N
+

βpw∗e−µτ

N

]
+ (y− y∗)

[
βmxze−µτ

yN
+

βpxwe−µτ

yN
− βmxze−µτ

y∗N
−

βpxwe−µτ

y∗N

]
+ (z− z∗)

[
f θy
z
− f θy

z∗

]
+ (w− w∗)

[
θ(1− f )y

w
− θ(1− f )y

w∗

]
≤ ρ(x− x∗)2

xx∗
− βme−µτ

N
(x− x∗)(z− z∗)−

βpe−µτ

N
(x− x∗)(w− w∗)

− (y− y∗)2

yy∗N
βmxze−µτ − (y− y∗)2

yy∗N
βpxwe−µτ − (z− z∗)2

zz∗
f θy

− (w− w∗)2θ(1− f )y
ww∗

.

(42)

It follows that C
0 Dξ

0U(t) ≤ 0 if R0 > 1, and C
0 Dξ

0 Dr∗ ,θ
t = 0 only in the case when x = x∗,

y = y∗, z = z∗, and w = w∗. By Lasalle’s invariance principle, we conclude that the
endemic equilibrium solution is globally asymptotically stable, as desired.

4. Numerical Results

The purpose of this section is to propose and analyze a hybridized numerical scheme
to approximate the solutions for our fractional-order leprosy model (6)–(9). To that end,
we employ the Grünwald–Letnikov (GL) approximation combined with a non-standard
finite-difference scheme obtained by following Micken’s rules. For further details, we refer
the reader to [24,25]. Therefore, let us consider the fraction leprosy system (6)–(9).

Let κ > 0 be a temporal step size, and let tj = jκ for each j ∈ N∪ {0}. Moreover, let us
agree that xj = x(tj) for each j ∈ N∪ {0}. To start with, let us remember that the GL scheme
is used to approximate fractional derivatives of the Caputo type. More precisely, for the
function x in our mathematical model, the fractional derivative of order ξ is approximated
as follows:

C
0 Dξ

t x(t) =
1

ψ(κ)ξ

(
xj+1 −

j+1

∑
i=1

eixj+1−i − rj+1x0

)
, ∀j ≥ 0. (43)

Here, ψ : R→ R is a suitable function. By applying this formula to the first equation
of the fractional-order system (6)–(9), we obtain the following equation:

xj+1 −
j+1

∑
i=1

eixj+1−i − rj+1x0 = ψ(κ)ξρξ − ψ(κ)ξ

(
β

ξ
m

zn−j

N
+ β

ξ
ρ

wn−j

N

)
xj+1e−µτ

− ψ(κ)ξ µξ xj+1.

(44)

Some calculations and simplifications lead to the following expression:

xj+1 =

j+1

∑
i=1

eixj+1−i + rj+1x0 + ψ(κ)ξρξ

1 + ψ(κ)ξ
(

β
ξ
m

zn−j
N + β

ξ
ρ

wn−j
N

)
e−µτ + ψ(κ)ξ µξ

(45)
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In a similar fashion, we can obtain the following recursive formulas for the other three
equations in the fractional-order system (6)–(9), for each j ∈ N∪ {0}:

yj+1 =
1

1 + ψ(κ)ξ(θξ + µξ)

j+1

∑
i=1

eiyj+1−i + rj+1y0

+ ψ(κ)ξ

(
β

ξ
m

zn−j

N
+ β

ξ
ρ

wn−j

N

)
yje−µτ , (46)

zj+1 =
1

1 + ψ(κ)ξµ
ξ
m

j+1

∑
i=1

eizj+1−i + rj+1z0 + ψ(κ)ξ f ξθξ yj, (47)

wj+1 =
1

1 + ψ(κ)ξµξ

j+1

∑
i=1

eiwj+1−i + rj+1w0 + ψ(κ)ξ(1− f ξ)θξ yj. (48)

By using these last four algebraic equations and by employing mathematical induction,
the proof for the following result is straightforward.

Theorem 7. The discrete systems (45)–(48) preserve the positivity of the initial conditions.

Next, we prove the boundedness of the scheme.

Theorem 8. The finite-difference scheme (45)–(48) preserves the boundedness of the solutions.

Proof. By adding and rearranging (45)–(48), we obtain the following expression:

(xj+1 + yj+1 + zj+1 + wj+1) + ψ(k)ξ

[
µxj+1 +

(
βm

zk
N

+ βρ
wk
N

)
xj+1e−µτ

+ (θ + µ)yj+1 + µmzj+1 + µwj+1

]
=

j+1

∑
i=1

ei(xj+1−i + yj+1−i + zj+1−i + wj+1−i)

+ rj+1(x0 + y0 + z0 + w0) + ψ(k)ξ

[
ρ +

(
βm

zk
N

+ βρ
wk
N

)
yje−µτ

+ ( f θ + (1− f )θ)yj

]
.

(49)

The conclusion of this result is proved by using mathematical induction. Firstly,
consider the case when j = 0 in (49) in order to obtain the following:[

1 + ψ(k)ξ
(

µ +
(

βm
zk
N

+ βρ
wk
N

)
e−µτ

)]
x1 +

(
1 + ψ(k)ξ(θ + µ)

)
y1 +

(
1 + ψ(k)ξ µm

)
z1

+
(

1 + ψ(k)ξ µ
)

w1 = e1
ρ

µ
+ r1

ρ

µ
+ ψ(k)ξ

[
ρ +

(
βm

zk
N

+ βρ
wk
N

)
y0e−µτ + θy0

]
=

(
ξ +

1
Γ(1− ξ)

)
ρ

µ
+ ψ(k)ξ

[
ρ +

(
βm

zk
N

+ βρ
wk
N

)
y0e−µτ + θy0

]
,

(50)
If B1 is the right-hand side of the equation above, then x1 < B1 when

1 + ψ(k)ξ
(

µ +
(

βm
zk
N

+ βρ
wk
N

)
e−µτ

)
> 1. (51)

Similarly, it is easy to check that this constant is such that y1 < B1, z1 < B1 and
w1 < B1. We define B1 as the maximum of those constants. Now, if j = 1 in (49), we can
readily check that
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x2 + y2 + z2 + w2 + ψ(k)ξ
[
µx2 +

(
βm

zk
N

+ βρ
wk
N

)
x2e−µτ + (θ + µ)y2 + µmz2 + µw2

)
= e1(x1 + y1 + z1 + w1) + e2(x0 + y0 + z0 + w0) + r2(x0 + y0 + z0 + w0)

+ ψ(k)ξ
[
ρ +

(
βm

zk
N

+ βρ
wk
N

)
y1e−µτ + θy1

]
< e1

(
N1 +

ρ

µ

)
+

1
Γ(1− ξ)

ρ

µ
+ ψ(k)ξ

[
ρ +

(
βm

zk
N

+ βρ
wk
N

)
y1e−µτ + θy1

]
.

(52)

Here, N1 = 4B1. From the right-hand side, we can see that there is a constant B2 with
the property of x2 < B2, y2 < B2, z2 < B2 and w2 < B2. Proceeding inductively, we arrive
at the conclusion.

Before closing this section, we provide some numerical simulations to confirm the
analytical and numerical results derived in this work. Three sets of simulations are provided.
The first of two are simulations in which the disease-free and endemic scenarios are
considered. In those cases, we use the parameter values summarized in Table 1.

Table 1. Parameters used for simulation purposes.

Parameters Disease-Free Case Endemic Case
ρ 0.5 0.5

βρ 1.3 2.3
βm 1.5 2.5
θ 0.19 0.19
µ 0.5 0.5
f 0.7 0.7
τ 0.5 0.5

Example 1. Let us consider the disease-free case as described by the parameters in Table 1. Compu-
tationally, we will approximate the solution to the continuous epidemic model using the numerical
scheme introduced in the present manuscript. Moreover, as differentiation orders, we will consider
ξ = 0.75, 0.8, 0.85, and 0.9. Figure 1 provides the results of our simulations under these conditions.
More precisely, the graphs depict the dynamics of (a) x vs. t, (b) y vs. t, (c) z vs. t, and (d) w vs. t.
It is worth pointing out that the solutions all tend asymptotically to the disease-free equilibrium as
time increases. This shows graphical proof that the derived disease-free of the analytical model is
correct, and that the numerical model is capable of identifying this point correctly, as demonstrated
by our results. Moreover, the finite-difference scheme is capable of identifying the stability of the
equilibrium solution.

Example 2. We now consider the endemic scenario. To that end, we employ the parameter values
in Table 1. The results of our simulations are presented in Figure 2, for various values of the
differentiation order. Once more, we observe that the solutions for the four compartmental functions
tend to the endemic equilibrium solution, independently of the differentiation order. This provides
computational evidence that the scheme correctly identifies this constant solution of the analytical
model. Moreover, we confirm the accurateness of our analytical derivations. In addition, the stability
of this equilibrium is correctly identified qualitatively by the numerical model, as expected.
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Figure 1. Graphs for the numerical solution of the fractional-order model investigated in this work.
The graphs were obtained using the numerical method introduced in the previous section, and they
provide the dynamics of (a) x vs. t, (b) y vs. t, (c) z vs. t, and (d) w vs. t. The parameters employed to
produce these simulations were those provided in Table 1 for the disease-free case. As indicated by
the legends, various differentiation orders ξ were employed.
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Figure 2. Graphs for the numerical solution of the fractional-order model investigated in this work.
The graphs were obtained using the numerical method introduced in the previous section, and they
provide the dynamics of (a) x vs. t, (b) y vs. t, (c) z vs. t, and (d) w vs. t. The parameters employed to
produce these simulations were those provided in Table 1 for the endemic case. As indicated by the
legends, various differentiation orders ξ were employed.
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Example 3. In our last example, we examine the effect of the delay parameters on the solution of
the function y by assuming the endemic case. In this case, we employed the values of 0.5, 0.8, 1.1,
and 2 for τ, and we observed the behavior of the solutions. The results are provided in Figure 3,
and they show that the solution converges toward the equilibrium in all cases. The equilibria are
dependent on τ, as established by the analytical results, and they are correctly identified by the
numerical model. It is worth pointing out here that we used a differentiation order equal to 0.9, but
that we also carried out more experiments. The results are not shown here to avoid redundancy, but
they establish the validity of our analytical and numerical results.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

0

0.05

0.1

0.15

0.2

0.25

0.3

y(
t)

Effect of 

=0.5
=0.8
=1.1
=2.0

Figure 3. Graph of the effect of τ on y(t) in the endemic case, as considered in Table 1. We used
the delayed values provided in the legend of the graph and set a differentiation order equal to
0.9. To carry out the simulations, we used the numerical model presented in this work in order to
approximate the solutions for the epidemic model under study.

5. Conclusions

A compartmental leprosy infection model was transformed into a fractional-order
system for an alternative perception of the disease dynamics. The Caputo differential oper-
ator of order ξ was considered in order to investigate the different aspects of the infection
propagation and solution variables. The positivity and the boundedness properties of
the underlying model were analytically confirmed. Equilibrium points were derived and
investigated in terms of their local and global stability. The basic reproductive number was
calculated with the help of a new generation matrix technique. In turn, the Routh–Hurwitz
criteria, a Lyapunov-type function, and the basic reproductive number were used to prove
the local and global stability of the model at both steady states. To simulate the dynamics of
this model, a numerical scheme was proposed to approximate the solutions. The proposed
finite-difference scheme is positivity- and boundedness-preserving. It is worth noting
that the scheme employed the Grünwald–Letnikov scheme to approximate the Caputo
derivative, and it was designed using non-standard rules. The simulations presented in
this work show that the numerical scheme assures the positivity and the boundedness of
the solution. Moreover, we confirmed that the scheme converges towards the exact steady
states of the fractional leprosy model, and that it correctly identifies their stability. In the
last of our numerical results, we confirmed the fact that the delay factor could considerably
control the propagation of the infection.
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