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Abstract: This research analyzes asymmetric volatility and multifractality in four representative
cryptocurrencies using index-based asymmetric multifractal detrended fluctuation analysis. We
suggest investigating an idiosyncratic risk premium, which can be obtained by removing the market
influence in the cryptocurrency return series. We call the process a capital asset pricing model filter.
The analyses on the original return series showed no significant sign of asymmetric volatility. How-
ever, the filter revealed a distinct asymmetric volatility, distinguishing the uptrend and downtrend
fluctuations. Furthermore, the analyses on the idiosyncratic risk premium detected some cases of
asymmetry in the degree and source of multifractality, whereas that on the original return series
failed to detect the asymmetry. In conclusion, in a highly volatile market, the capital asset pricing
model filter can improve an investigation of the asymmetric multifractality in cryptocurrencies.

Keywords: multifractal detrended fluctuation analysis; capital asset pricing model filter; idiosyncratic
risk premium; asymmetric volatility; asymmetric multifractality

1. Introduction

For decades, the characteristics of financial markets and time series have been widely
studied. In 1970, Eugene F. Fama proposed the efficient market hypothesis (EMH), claiming
that a financial market is efficient when the market price of an asset reflects all available
information [1]. Specifically, all available information includes past prices, public informa-
tion, and inside information. In the weak form of the EMH, all the prices from the past are
reflected in the market price where the Markov property of the asset prices holds. Hence,
the asset price should follow a random walk. However, many studies have discovered that
some events in the financial market are inexplicable with the EMH [2,3]. Such events led
to the advent of the fractal market hypothesis (FMH) based on complex theory [4]. The
FMH claims that the fractal property exists within the price dynamics of an asset. Note
that the fractal property indicates a self-similarity in the financial time series. Especially,
the FMH explains the long-memory property of financial time series that the EMH fails
to account for. Autocorrelation and fractal properties within a financial time series have
been analyzed with the detrended fluctuation analysis (DFA) and multifractal detrended
fluctuation analysis (MF-DFA) [5]. Furthermore, the variants of MF-DFA models have
been developed to analyze the financial time series [6,7], including the stock market [8–13],
market efficiency [14–20], and the commodity market [21–24].

Financial markets can be classified into two trends: bull and bear markets. The work
of [25] stated that each trend should be explained separately. Especially, the asymmetric
volatility and multifractality provide evidence of market efficiency and participants’ be-
havioral aspects toward the positive and negative shocks, which can be utilized to control
the financial market. In this context, a method to explore the asymmetry in volatility and
multifractality is required. From the perspective of Econophysics, the work of [26] pre-
sented the asymmetric DFA (A-DFA), identifying the asymmetric correlation of the time
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series based on DFA, while the work of [9] presented an asymmetric multifractal DFA
(A-MFA) extending the A-DFA. Furthermore, many studies have analyzed asymmetric
multifractality using the multifractal detrended moving average [27–29]. The aforemen-
tioned methods explained the asymmetry in time series with return dynamics. Recently,
the work of [30] proposed an index-based A-MFDFA that uses the cumulative return (a.k.a.
index dynamics) to determine the trend of time series. Using index dynamics, the work
of [30] showed more distinct asymmetric multifractality in the U.S. stock market than the
return-based A-MFDFA.

The cryptocurrency market is a new emerging financial market that has received
considerable attention after the development of Bitcoin in 2008 [31]. Especially, the market
size has been exponentially growing in recent years, and various altcoins have been cre-
ated. Similar to the traditional financial market, the cryptocurrency market shows a cyclic
pattern of bull and bear markets [32,33] with extreme volatility [34] and a fat-tailed return
distribution [35]. Dealing with extreme volatility in the market, many researchers have
explored the multifractality of cryptocurrencies [36–40], but a limited number of studies
have investigated their asymmetric volatility and multifractality. Furthermore, analyses of
the multifractal properties of a cryptocurrency’s return series using the method developed
for the traditional financial asset might be difficult due to particularly extreme volatility
in the market. For instance, the work of [41] showed that the idiosyncratic aspects of the
cryptocurrency returns are hard to distinguish due to high correlation and comovement
with extreme volatility among them.

Therefore, this research analyzes the asymmetric volatility and multifractality in the
cryptocurrency market in recent years using the index-based A-MFDFA. Specifically, we
utilize the idiosyncratic risk premium by removing the linear influence of the market on
cryptocurrency [41,42]. The removal of market influence is expected to filter the noise
from the comovement and reveal the idiosyncratic aspect of each cryptocurrency’s asym-
metric volatility and multifractality. Investigating four representative cryptocurrencies
from 2018 to 2021, we found that the removal of market influence successfully detected
asymmetric volatility. The work of [43] showed the existence of asymmetric volatility in
cryptocurrency from 2013 to 2018, in which the market volatility was much less than in
recent years. Interestingly, the index-based A-MFDFA on a return series failed to detect
distinct asymmetric volatility, while that on an idiosyncratic risk premium detected the
property well. Additionally, the removal of market influence was helpful in analyzing the
degree and source of asymmetric multifractality. Specifically, the return series showed no
asymmetry in the degree and sources, whereas the idiosyncratic risk premium showed
asymmetry in Bitcoin and Cardano.

The rest of this paper is organized as follows: Section 2 explains the capital asset pricing
model filtering and index-based A-MFDFA in detail; Section 3 provides and discusses the
empirical results from the experiment; and Section 4 is the conclusion.

2. Method
2.1. CAPM Filtering

CAPM derives the market equilibrium return of an individual asset under risk in the
equilibrium market. First, the Markowitz model provides an efficient frontier using risky
assets [44]. If a risk-free asset is included in the investment universe, the optimal portfolio
can be obtained by combining a tangent portfolio in an efficient frontier and a risk-free
asset, leading to the formulation of CAPM. Let pi,t be the daily closing price of an asset i at
time t; then, the return, ri,t, is

ri,t =
pi,t

pi,t−1
− 1 (1)

Note that we changed a logarithmic return in [30] to a simple return due to excep-
tionally high volatility in the cryptocurrency market. Then, CAPM can be defined as a
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relationship between the sets of the expected excess returns of the market portfolio and
individual asset such that

E(ri)− r f = βi[E(rm)− r f ] (2)

where E(ri), E(rm), r f , and βi are the expected returns of asset i, the expected returns of the
associated market, a risk-free rate, and the sensitivity of an excess return of asset i to the
market, respectively. Note that E(Rm)− r f indicates an expected excess return on the asset,
representing the market risk premium. For simplicity, we set the risk-free rate to zero.

This study focuses on the asymmetric multifractal properties of an asset’s idiosyncratic
risk premium that is unique to an individual asset. It implies the specific risk information of
a financial asset. In this context, we used a CAPM to filter the market risk from a financial
time series. Considering CAPM as a simple factor model, we can obtain the idiosyncratic
risk premium of an asset i with the ordinary least squares method as follows:

ri = αi + βirm + εi (3)

where ri and rm indicate an expected return of an asset i and the associated market index,
respectively. Note that r f is set to zero. αi and βi are the intercept and the coefficient of the
CAPM filter, respectively. Hence, εi can be considered an idiosyncratic risk premium since
the linear influence of the market return is removed from the original return series. In this
study, we investigate the asymmetric multifractal behavior of ri and εi simultaneously.

2.2. Index-Based A-MFDFA

The A-MFDFA method can be used to investigate an asymmetric multifractal scaling
property in the uptrend and downtrend markets simultaneously. The work of [30] proposed
the index-based A-MFDFA that utilizes the cumulative return as a criterion for market
classification. Suppose that there exists a time series {xt : t = 1, 2, . . . , N}. Then, the index-
based A-MFDFA consists of the following steps:

• Step 1: Determine the profile.

yt =
t

∑
j=1

(xj − x̄), t = 1, 2, ..., N (4)

where x̄ = ∑N
j=1 xj/N.

• Step 2: Divide the time series into nonoverlapping subtime series.
Let It as It = It−1(1 + rt) for t = 1, 2, ...N, where I0 = 1. Note that It is an index-
ing proxy for return series, which can be determined by ri or εi. Then, {I(t) : t =
1, 2, . . . , N} and {yt : t = 1, 2, . . . , N} are divided into nonoverlapping subtime series
of equal length n. The number of resulting subtime series is Nn ≡ N/n, where Nn is
the largest integer less than or equal to N/n. This procedure is repeated from both
ends of It and yt, creating 2Nn subtime series. Suppose Sj = {sj,k}: k = 1, 2, ..., n is the
jth subtime series of It with length n and Uj = {uj,k}; then k = 1, 2, ..., n is the length
n subtime series of yt in the jth time interval. Both Sj and Uj have j = 1, 2, ..., 2Nn.
Finally, the elements of Sj and Uj are

sj,k = I(j−1)n+k (5)

uj,k = y(j−1)n+k (6)

and for j = Nn + 1, ..., 2Nn, we have

sj,k = IN−(j−Nn)n+k (7)

uj,k = yN−(j−Nn)n+k (8)
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• Step 3: Calculate a local trend and construct the fluctuation function.
For each subperiod Sj and Uj, we use the ordinary least squares method to estimate

S̃j(k) = aSj + bSj k (9)

Ũj(k) = aUj + bUj k (10)

Note that bSj divides the trend of Sj, whereas bUj detrends the time series Uj. In this
regard, we define the fluctuation function as follows:

Fj(n) =
1
n

n

∑
k=1

(yj,k − Ũj(k))2 (11)

• Step 4: Identify the trend of subtime series.
The sign of the slope, bSj , determines the trend for each subperiod Sj and Uj. If bSj > 0
(bSj < 0), the subtime series Sj of It is classified as an uptrend (downtrend).

• Step 5: Construct q-order average fluctuation functions.
Assuming that bSj 6= 0 and M+ + M− = 4Nn, we construct the directional q-order
average fluctuation functions for uptrends and downtrends as follows:

F+
q (n) =

(
1

M+

2Nn

∑
j=1

(sign(bSj + 1))

2
[Fj(n)]q/2

)1/q

(12)

F−q (n) =

(
1

M−
2Nn

∑
j=1

(1− sign(bSj))

2
[Fj(n)]q/2

)1/q

(13)

where M+ = ∑2Nn
j=1

sign(bSj
)+1

2 ; M− = ∑2Nn
j=1

1−sign(bSj
)

2 ; and sign(x) is a sign of arbitrary
value x. Note that the average fluctuation function that does not discriminate the trend
of the subtime series can be computed as

Fq(n) =

(
1

2Nn

2Nn

∑
j=1

[Fj(n)]q/2

)1/q

(14)

• Step 6: Calculate the generalized Hurst exponent.
The Hurst exponent is related to the autocorrelation of a time series, claiming the
long-term memory property. Let H(q), H+(q), and H−(q) be the generalized Hurst
exponents of the overall trend, uptrend, and downtrend, respectively. These val-
ues satisfy the following power-law scaling of Fq(n) ∼ nH(q), F+

q (n) ∼ nH+(q),

and F−q (n) ∼ nH−(q), respectively. H(q) of a monofractal time series is a constant
function of q, whereas that of a multifractal time series is a nonconstant function of q.
In addition, a time series is persistent when 0.5 < H < 1, whereas it is antipersistent
when 0 < H < 0.5. Note that a time series follows a random walk when H = 0.5.
Furthermore, an asymmetric behavior in time series can be analyzed by comparing
the values of H+(q) and H−(q). A time series is symmetric when two values are the
same, whereas a time series is asymmetric otherwise.

3. Results and Discussion
3.1. Data

Figure 1 shows the dynamics of the min–max scaled closing price of five representative
cryptocurrencies, including Bitcoin (BTC), Ethereum (ETH), Cardano (ADA), Ripple (XRP),
and the Cryptocurrency LargeCap Index (INDEX). The closing prices of the cryptocurren-
cies were obtained from coinmarketcap.com, whereas that of the INDEX was obtained
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from spglobal.com. The experiment period was from 1 January 2018 to 1 December 2021,
consisting of bearish, sideways, and bull markets in chronological order. The period that
includes various market conditions can produce comprehensive results of asymmetric
multifractal behavior. Cryptocurrencies are traded 24/7, but the market index provided by
the S&P is only traded on business days. Thus, we utilized 1023 daily closing prices limited
to business days. The daily price dynamics of all cryptocurrencies varied with the same
trend. Interestingly, the price of the INDEX represented the weighted average of the prices
of all cryptocurrencies well. The price change in the INDEX appeared to be highly affected
by that of BTC, consistent with the fact that the market capitalization of BTC overwhelmed
that of others.

Figure 1. BTC, ETH, ADA, XRP, and INDEX price dynamics on the same scale.

Figure 2 shows the CAPM filtering of the market returns on the cryptocurrency returns.
The gray circles represent the returns of the market and the individual cryptocurrency
on the x and y axes, respectively. The solid red line represents a fitted regression line.
The slopes of BTC, ETH, ADA, and XRP are 0.838, 0.991, 0.947, and 0.848, respectively,
indicating the effectiveness of filtering the linear influence from the returns of the INDEX
to that of cryptocurrencies. Therefore, as in Equation (3), εi of four cryptocurrencies can
represent an idiosyncratic risk premium.

Figure 3 represents the original return series on the left and the idiosyncratic risk
premium on the right. Since the influence of BTC is critical in the cryptocurrency market
with its massive market capitalization, the idiosyncratic risk premium of BTC showed the
least volatile dynamics with small peaks compared to those of other cryptocurrencies. Still,
the idiosyncratic risk premia of ETH, ADA, and XRP also showed less volatile dynamics
than their original series.
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(a) (b) (c) (d)

Figure 2. CAPM filtering on the returns of cryptocurrencies with INDEX. (a) BTC. (b) ETH.
(c) ADA. (d) XRP.

(a) (b)

(c) (d)

Figure 3. Daily return series and idiosyncratic risk premium of each cryptocurrency. (a) BTC. (b) ETH.
(c) ADA. (d) XRP.

3.2. Asymmetric Volatility

Figure 4 shows a change in log2(F2(n)) with respect to the change in log2(n) using
the index-based A-MFDFA on the original return series and idiosyncratic risk premium
of each cryptocurrency when q = 2. Note that the red, yellow, and blue dots indicate the
uptrend, downtrend, and overall trend, respectively. In the case of the original return series,
the fluctuation of each trend was not clearly distinguished except for XRP. Specifically,
BTC and ETH showed a larger downtrend fluctuation than uptrend fluctuation, whereas
ADA and XRP showed the opposite. Unlike the stock market as in [9,30], the representative
cryptocurrencies showed weak evidence of asymmetric volatility in the original return
series. On the contrary, in the case of the idiosyncratic risk premium, the fluctuation of each
trend was more clearly distinguished than the original return series for all cryptocurrencies.
Specifically, all cryptocurrencies showed a larger uptrend fluctuation than a downtrend
fluctuation. The results of the idiosyncratic risk premium was consistent with the work
of [43], who discovered an increase in the volatility of cryptocurrency after positive shocks
using the asymmetric threshold generalized autoregressive conditional heteroskedasticity
and quantile regression.
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(a) (b)

(c) (d)

Figure 4. Plots of log2(F2(n)) vs. log2(n) with index-based A-MFDFA. (a) BTC. (b) ETH. (c) ADA.
(d) XRP.

The increase in volatility after positive shocks can be explained by the herding behav-
ior of uninformed traders who buy assets because they fear missing out on the extreme
bull market [43]. In this context, it is interesting that the experiment period of [43] was from
28 April 2013 to 8 August 2018, composed of a long bull market with small volatility. In con-
trast, the experiment period of this research dealt with the recent cryptocurrency market
with much greater volatility. For example, the standard deviation of BTC returns in [43]
and this research were 0.044 and 0.2251, respectively. Compared to the financial market,
far more uninformed traders exist in the cryptocurrency market. In particular, since 2018,
numerous traders have entered the market along with the dynamic increase in cryptocur-
rency prices, most of whom can be seen as uninformed noise traders. That is, asymmetric
volatility should have been strengthened after 2018. However, such a phenomenon was
not observed in analyzing the original return series. Interestingly, the aforementioned
phenomenon was discovered in the analysis of the idiosyncratic risk premium from the
CAPM filtering using the INDEX. The work of [41], who applied a similar filtering method
to various cryptocurrencies, showed the difficulty in observing the idiosyncratic aspects
of cryptocurrencies other than BTC due to the dominance of BTC in the cryptocurrency
market. Therefore, we claim that the individual characteristics of each cryptocurrency’s
asymmetric volatility can be analyzed in detail by limiting the influence of the market when
the market volatility is severely high, as in this experiment. This claim coincides with the
results of BTC, which showed a rather undistinguished fluctuation of each trend even after
filtering. Note that the INDEX was highly correlated with BTC.

Figure 5 shows the difference in fluctuations, DF = log2(F+
2 (n)) − log2(F−2 (n)),

of each cryptocurrency. Note that it implies the degree of asymmetry in the fluctua-
tion. The larger the positive value, the larger the uptrend fluctuation is. On the contrary,
the smaller the negative value, the larger the fluctuation of the downtrend. When DF = 0,
there is a symmetry between uptrend and downtrend fluctuations. The result of DF is
consistent with Figure 4, showing that the DF of the original series of cryptocurrencies was
moving around zero except for XRP. In contrast, the DF of the idiosyncratic risk premium
showed positive values for most of n for ETH and ADA. Note that the DFs of BTC and XRP
increased after CAPM filtering. Therefore, we claim that CAPM filtering enables an analysis
of the asymmetric volatility in each cryptocurrency during the highly volatile market.
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(a) (b)

(c) (d)

Figure 5. Plots of DF with index-based A-MFDFA. (a) BTC. (b) ETH. (c) ADA. (d) XRP. Note that the
red dashed horizontal line indicates a symmetry between uptrend and downtrend fluctuations.

3.3. Source of Asymmetric Multifractality

The generalized Hurst exponent varies along q when a time series is multifractal.
The primary sources of multifractality are a long-range correlation and a fat-tailed distri-
bution. A long-range correlation can be detected by comparing the original and shuffled
time series, whereas a fat-tailed distribution can be detected by comparing the original
and surrogate time series. Note that the surrogate time series follows the normal distribu-
tion. The processes of creating a randomly shuffled and surrogate financial time series are
as follows:

• Randomly shuffled series

1. When the length of the entire time series is N, two integers smaller than N are
randomly extracted to produce (x, y) pairs.

2. Swaps the xth value of the original time series with the yth value.
3. Repeat 1 and 2 for 20N times.

• Surrogate series

1. When the total time series has a length of N, we randomly extract {r̃t}N
t=1 from

the Gaussian distribution generated using the mean and variance of the original
time series.

2. Rearrange {r̃t} to have the same rank pattern as {rt}.
The larger the difference between the minimum and maximum of generalized Hurst

exponents, the stronger the multifractality is. According to the work of [45], the degree of
multifractality is measured as ∆H = max(H(q))−min(H(q)). Let ∆H of the original, shuf-
fled, and surrogate series be ∆Horigin, ∆Hshu f f led, and ∆Hsurrogate, respectively. The main
source of multifractality is a fat-tail distribution if ∆Hshu f f led > ∆Hsurrogate, whereas it is a
long-range correlation if ∆Hsurrogate > ∆Hshu f f led.

At first, we investigated the generalized Hurst exponents of the overall trend(H(q)),
uptrend(H+(q)), and downtrend(H−(q)) for q in Figure 6. In the case of the original re-
turn series, H(q), H+(q), and H−(q) all decreased as q increased for all representative
cryptocurrencies, which implies the existence of multifractal behavior. The asymmetric
multifractality can be analyzed using differences between H+(q) and H−(q) along q. BTC
showed an asymmetric multifractality in small fluctuations, but the asymmetry became
subtle as q increased. In contrast, the asymmetry of XRP showed the opposite of BTC. ETH
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showed a subtle asymmetry for all q. ADA showed a strong multifractality in the uptrend
but a relatively weak multifractality in the downtrend. In the case of the idiosyncratic risk
premium, BTC and XRP showed a strong multifractality in an uptrend compared to the
overall trend and downtrend, implying a significant asymmetry. However, ETH and ADA
showed a subtle asymmetric multifractality.

(a) (b)

(c) (d)

Figure 6. Generalized Hurst exponent with index-based A-MFDFA. (a) BTC. (b) ETH. (c) ADA.
(d) XRP.

The degree of asymmetric multifractality can be further investigated in Table 1. The de-
gree of multifractality in the overall trend, uptrend, and downtrend in the original series
explain the asymmetric multifractality in detail. As shown in Figure 6, BTC showed the
highest degree of multifractality for the original return series. BTC showed a compara-
ble degree of multifractality between the uptrend and downtrend, whereas ETH, ADA,
and XRP showed a higher degree of multifractality in an uptrend than in a downtrend
for the original return series. A significantly higher degree of multifractality was revealed
through the CAPM filtering in an uptrend for BTC. A higher degree of multifractality in
the uptrend was maintained for ADA and XRP after filtering. However, ETH showed a
comparable degree of multifractality between the uptrend and downtrend after filtering.

The source of asymmetric multifractality can be analyzed in Table 1. The values in
parentheses refer to the rate of value decrement against the original series for randomly
shuffled, (∆Horigin −∆Hshu f f led)/∆Horigin, and surrogate, (∆Horigin −∆Hsurrogate)/∆Horigin,
time series. Note that ∆Hshu f f led and ∆Hsurrogate are the average of 30 repetitions. In the case
of the return series, each of the four representative cryptocurrencies showed a consistent pat-
tern in the source of multifractality for the overall trend, uptrend, and downtrend, showing
no asymmetry. BTC showed a long-range correlation as the source of multifractality for the
overall trend, uptrend, and downtrend, whereas ETH, ADA, and XRP showed a fat-tailed
distribution as the source. Interestingly, BTC showed significant rates of decrement for the
shuffled and surrogate series for the overall trend, uptrend, and downtrend simultaneously.
Hence, both the long-range correlation and fat-tail distribution are considerable sources in
BTC, consistent with the works of [35,46]. On the contrary, the idiosyncratic risk premium
detected an asymmetry in the sources of multifractality between the uptrend and down-
trend of BTC and ADA. Unlike the return series, the fat-tailed distribution became the main
source in BTC for the overall trend, uptrend, and downtrend. However, the uptrend in BTC
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showed significant rates of decrement for the shuffled and surrogate series simultaneously,
whereas the downtrend showed a significant rate of decrement in the surrogate series only.
ADA also showed comparable rates of decrement for the shuffled and surrogate series in a
downtrend, but only a significant rate of decrement for the surrogate series in an uptrend.

Table 1. ∆H of the original, shuffled, and surrogate series of cryptocurrencies.

Return Series Idiosyncratic Risk Premium

(a) BTC Original Shuffled Surrogate Original Shuffled Surrogate

Overall 0.6297 0.3242 (48.52%) 0.3869 (38.56%) 0.4113 0.3551 (13.67%) 0.1689 (58.93%)
Uptrend 0.5831 0.2775 (52.42%) 0.3690 (36.72%) 0.6218 0.3585 (42.35%) 0.3270 (47.41%)
Downtrend 0.6450 0.3570 (44.66%) 0.3613 (43.99%) 0.3410 0.3440 (−0.87%) 0.1069 (68.65%)

(b) ETH Original Shuffled Surrogate Original Shuffled Surrogate

Overall 0.3773 0.2982 (20.98%) 0.1756 (53.46%) 0.3859 0.3251 (15.75%) 0.1402 (63.66%)
Uptrend 0.3682 0.2887 (21.60%) 0.1631 (55.71%) 0.3452 0.3280 (4.99%) 0.2382 (31.00%)
Downtrend 0.3340 0.3059 (8.43%) 0.1642 (50.94%) 0.3623 0.2788 (23.05%) 0.0680 (81.24%)

(c) ADA Original Shuffled Surrogate Original Shuffled Surrogate

Overall 0.2323 0.2517 (−8.35%) 0.1335 (42.52%) 0.3060 0.3251 (−6.24%) 0.1867 (38.99%)
Uptrend 0.3506 0.2550 (27.29%) 0.1677 (52.18%) 0.3301 0.3385 (−2.53%) 0.1582 (52.08%)
Downtrend 0.1549 0.2611 (−68.60%) 0.1102 (28.88%) 0.3057 0.2514 (17.76%) 0.2276 (25.55%)

(d) XRP Original Shuffled Surrogate Original Shuffled Surrogate

Overall 0.5077 0.4463 (12.10%) 0.2361 (53.49%) 0.4667 0.5245 (−12.38%) 0.2121 (54.57%)
Uptrend 0.5429 0.5035 (7.25%) 0.2719 (49.92%) 0.5220 0.5354 (−2.57%) 0.3697 (29.19%)
Downtrend 0.3965 0.3160 (20.32%) 0.1960 (50.57%) 0.3003 0.4006 (−33.40%) 0.1892 (37.00%)

Note: The bold numbers indicate the stronger source of multifractality.

4. Conclusions

In this study, we used the CAPM filter to investigate asymmetric volatility and multi-
fractality in the cryptocurrency market. The CAPM filter allowed us to compare the original
return series and idiosyncratic risk premium of four representative cryptocurrencies, in-
cluding BTC, ETH, ADA, and XRP. Note that the CAPM filter removed the influence of the
market from the cryptocurrency return series. We utilized the Cryptocurrency LargeCap
Index provided by the S&P as the market index. We mainly focused on the experiment
period from 1 January 2018 to 1 December 2021, which showed significantly higher market
volatility than in the past with extreme bull and bear markets. To the best of our knowledge,
this is the first attempt to analyze the multifractality of the idiosyncratic risk premium.

The first finding is the CAPM filter’s efficacy in analyzing asymmetric volatility in
highly volatile markets. An increase in volatility after positive shocks is a well-known
fact in the cryptocurrency market, caused by the herding behavior of uninformed noise
traders. Since noise traders were abundant during the experiment period, the multifractal
analysis should have identified the asymmetric volatility. However, the original return
series analyses showed no significant sign of asymmetric volatility. On the other hand,
the analyses on the idiosyncratic risk premium showed a distinct asymmetric volatility,
which divides the uptrend and downtrend of ETH, ADA, and XRP. We confirmed the
effectiveness of the CAPM filter with rather undistinguished fluctuation of each trend in
BTC due to the dominance of BTC in the market index.

The second finding is the CAPM filter’s partial efficacy in analyzing asymmetric multi-
fractality and its source. We found limited evidence of asymmetric multifractality in return
series using the generalized Hurst exponent. However, the idiosyncratic risk premium
succeeded in showing a significant asymmetry in BTC and XRP, whose uptrend showed a
strong multifractality. Furthermore, a higher degree of multifractality in an uptrend was
discovered in BTC, ADA, and XRP after the CAPM filtering. In the original return series,
the main source of the multifractality in BTC was the long-range correlation, whereas those
in ETH, ADA, and XRP were the fat-tailed distribution. The source of the multifractality
of four representative cryptocurrencies showed a consistent pattern for the overall trend,
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uptrend, and downtrend, implying no asymmetry. In contrast, in the idiosyncratic risk
premium, the fat-tailed distribution was the main source of the multifractality in all cryp-
tocurrencies. Interestingly, BTC and ADA showed an inconsistent pattern of the sources,
which revealed the asymmetry.

The asymmetric volatility and multifractality can be utilized as crucial evidence to
understand the market participants and efficiency in different market conditions. How-
ever, extreme volatility in the market can blur the individual aspects of cryptocurrencies.
Throughout the experiment, we claimed that the CAPM filter can clarify the asymmetric
volatility and multifractality using the idiosyncratic risk premium. Despite its novelty, our
approach has some limitations that should be addressed in future work. At first, the CAPM
filter only removes a linear market influence. It is well known that asset and market returns
exhibit a nonlinear relationship with a tail dependence. Additionally, the number of assets
in the experiment should be increased, including many small-sized cryptocurrencies. Such
research should use a different market index suitable for small-cap cryptocurrencies. From a
modeling perspective, the MF-DFA has an advantage in analyzing the nonstationary time
series, but its drawback lies in the fact that the periodic trend can affect the Hurst exponent
estimation [47]. Furthermore, MF-DFA only handles the local polynomial trend of constant
order in detrending, such as linear, quadratic, cubic, or higher order [7]. It is well known
that the cryptocurrency market is a nonlinear system with higher complexity than the tra-
ditional financial market [48], which could incur a flaw in detrending. We suggest utilizing
a set of polynomial and trigonometric functions as in [7] to overcome this limitation.
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