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Abstract: The mathematical description of the charging process of time-varying capacitors is reviewed
and a new formulation is proposed. For it, suitable fractional derivatives are described. The case
of fractional capacitors that follow the Curie–von Schweidler law is considered. Through suitable
substitutions, a similar scheme for fractional inductors is obtained. Formulae for voltage/current
input/output are presented. Backward coherence with classic results is established and generalised
to the variable order case. The concept of a tempered fractor is introduced and related to the
Davidson–Cole model.
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1. Introduction

Resistors, capacitors and inductors are the fundamental building blocks of basic
electric circuits. The laws that underlie their physical behaviour are assumed to be well
known. This does not mean that they cannot be called into question when some new result
or theory is introduced. This is the recent case concerning the problem of charge storage in
capacitors, mainly the fractional ones that follow the Curie–von Schweidler law [1,2]. Two
new recently proposed modelling formulae have been subject of some discussion [3–7]. Of
course, the two perspectives are clearly different and irreconcilable. A careful reading of
both approaches leads us to identify some origins of the different visions and search for
an alternative. Firstly, the fractional derivative used in such approaches is not suitable for
solving the problem. In fact, the Caputo derivative has several drawbacks [8,9], but the
main ones are the confusion between the Heaviside unit step and the constant function,
leading to results contradicted by experience [10] and the Caputo derivative of a sinusoid
is not a sinusoid [8,11]. Another problem we encounter is the forgetfulness of the past that
leads to some mistakes in the use of distribution theory. Here, we tackle the problem and
propose a coherent alternative that generalises the classical results.

Traditionally, a formula, deduced from the Maxwell equations, relates the charge,
q(t), t ∈ R, and voltage, v(t), in a capacitor. It reads

q(t) = Cv(t), (1)

where C is the capacitance expressed in Farad (F). This formula, obtained under station-
ary conditions, expresses a static relation between two physical entities. In reality, the
underlying dynamics is not visible. However, it appears in the relationship between q(t)
and the current, i(t), as we will see later. In practice, the above relation expresses an
approximation that is good enough in many situations. We will assume that it characterises
order 1 ideal capacitors. The discussed problem, introduced first by S. Das [3,12], consists
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of a generalisation of the previous relation to the case where the capacitance varies with
time, C = c(t), t ∈ R. It would be expected that we should write

q(t) = c(t)v(t), (2)

but S. Das denied it and proposed

q(t) = c(t) ∗ v(t) =
∫ t

−∞
c(τ)v(t− τ)dτ, (3)

as an alternative [3,4,13]. Recently [5,7], V. Pandey proposed another way of dealing with
the problem that reads

q(t) = c(t) ∗ v′(t) =
∫ t

−∞
c(τ)v′(t− τ)dτ, (4)

where v′(t) = dv(t)
dt is the usual derivative. This has given rise to a discussion that promises

to be interesting and that we intend to continue here. In fact, we believe that these two new
proposals are not the best solution to the problem. It is interesting to note, attending to the
properties of the convolution, that (4) can be rewritten as

d−1q(t)
dt−1 = c(t) ∗ v(t),

highlighting the incompatibility of the three approaches, (2)–(4).
To find an alternative, we will consider (2) as the correct solution, as long as we assume

(1) to properly characterise an ideal integer order time-invariant capacitor. For the ideal
time-variant fractional capacitor, none of the above solutions are appropriate.

We will face the problem with generality. Firstly, we show the correctness of (2) for
order 1 capacitor and, from the dimensional analysis of the involved entities, we introduce
a coherent solution. Our approach will be based on the use of fractional derivatives
of Liouville type [11,14], discarding the most known Riemann–Liouville and Caputo
derivatives. We revise the problem and discuss two different situations corresponding
to which magnitude is considered as input/output: current or voltage. This involves the
capacitance or its inverse. The obtained formulation is transported to the magnetic field
giving rise to an analogous inductor theory. Going on with generalisations, we propose a
framework for variable order capacitors and coils.

A brief analysis of the stability of the fractor leads us to propose the use of the tempered
fractor [15]. This new operator is related with the Davidson–Cole model.

The paper outlines as follows. In Section 2, we present a brief introduction to the
fractors and to the fractional derivatives suitable to our objective: the study of the capacitors
that we perform in Section 3, considering the order 1 and fractional. Profiting the obtained
results, we introduce an analog formulation for the coil modelling (Section 4). The formulae
for the input/output relations are introduced in Section 5. We extend the formulation for
variable order fractors through suitable derivatives in Section 7. In Section 8, the concept of
tempered fractor is proposed. Finally, in Section 9 we present some conclusions.

Remarks

We assume that

• Our working domain is always R.
• We use the bilateral Laplace transform (LT):

L[ f (t)] = F(s) =
∞∫
−∞

f (t)e−stdt, (5)
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where f (t) is any real or complex function defined on R and F(s) is its transform,
provided it has a non-void region of convergence (ROC).

• The Fourier transform is obtained from the LT through the substitution s = jω with
ω ∈ R and j =

√
−1.

• The inverse LT is given by the Bromwich integral

f (t) = L−1[F(s)] =
1

2π j

a+j∞∫
a−j∞

F(s)est ds, t ∈ R, (6)

where a ∈ R is inside the region of convergence of the LT.
• Current properties of the Dirac delta distribution, δ(t), and its derivatives will be used.
• The order of the fractional derivative is assumed to be any real number.
• The multi-valued expression sα is used. To obtain a function we will fix for a branch-cut

line the negative real half axis and select the first Riemann surface.
• It is very common to add the prefix pseudo” to the “fractionalisation” of classic entities,

as is also the case for ”capacitance”, which appears as “pseudo-capacitance”. We do
not find any particular reason to do so [1].

2. Fractional Devices and Derivatives
2.1. The Differintegrator

The elemental system, with transfer function (TF) G(s) = sα, α ∈ R, is called differinte-
grator [11], fractor [16–19], or constant phase element (CPE) [20–25]. It is very important in
modelling real systems [18,22,26–31]. If Re(s) > 0, it will be called forward, otherwise, if
Re(s) < 0, it will be denoted backward. In the following, we will consider the forward case
only, since it is causal.

The impedance of a circuit element involving only a differintegrator is called fractance
and assumes the form

Z(jω) = Kα(jω)α.

For non-integer order, α, it is a complex function. An ideal fractional inductor (α > 0)
has fractance [18,30,31]

ZL = Lα(jω)α

where Lα is the inductance, expressed in
[
H · s1−α

]
. Similarly, an ideal fractional capacitor

has fractance [1,2]

ZC =
1

Cα(jω)α
,

where the capacitance Cα has units
[
F/s1−α

]
. With α = 1, we obtain the classic inductor

and capacitor reactances.
For any real order, the inverse LT of the G(s) is given by [11,32]

L−1sα =
t−α−1

Γ(−α)
ε(t), (7)

where ε(t) denotes the Heaviside unit step. It is important to highlight the positive order
cases which lead to singular distributions. In particular, a given positive integer order, n,
gives [33]:

δ(n)(t) =
t−n−1

(−n− 1)!
ε(t), n ≥ 0. (8)

Remark 1. It is important to note that the parallel or series association of fractors is a fractor only
if they have the same order. If we combine two or more different order fractors, we obtain systems
that are described by more complex models. This is the case of the supercapacitors [20,21,34] or the
electrochemical capacitors [20,27,29].
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2.2. Suitable Fractional Derivatives

The differintegrator is an operator, Dα =
dα

dtα
, such that

L[Dα f (t)] = sαF(s), Re(s) ≥ 0, (9)

where F(s) = L[ f (t)]. For a positive order, we will call it a fractional derivative (FD). The
negative order operator will be called anti-derivative. If Re(s) ≥ 0 [32],

sα = lim
h→0+

h−α
(

1− e−sh
)α

,

where (
1− e−sh

)α
=

+∞

∑
n=0

(−α)n
n!

e−nsh.

The symbol (−α)n is the Pochhamer representation of the raising factorial: (−α)0 = 1,
(−α)n = ∏n−1

k=0 (−α + k). Using the inverse LT, we obtain

Dα f (t) = lim
h→0+

h−α
+∞

∑
n=0

(−α)n
n!

f (t− nh), (10)

that is called Grünwald–Letnikov (GL) derivative, in spite of their first proposal having
been done by Liouville [35]. Relation (9) suggests another way of expressing the FD using
the impulse response of the causal differintegrator. Thus, we define FD as the output of the
differintegrator to a given function, f (t), through the convolution

Dα f (t) =
1

Γ(−α)

∞∫
0

τ−α−1 f (t− τ)dτ. (11)

For negative orders, the relation (11) defines the anti-derivative. However, when
α > 0 (derivative case) the integral kernel, τ−α−1, has a singularity at the origin, requiring
regularising actions. The regularised Liouville derivative is given by [11]

Dα f (t) =
∞∫

0

τ−α−1

Γ(−α)

[
f (t− τ)−

N

∑
m=0

(−1)m f (m)(t)
m!

τm

]
dτ, (12)

where N ∈ Z+
0 is the greatest integer less than or equal to α, so that N ≤ α < N + 1. If

N < 0, the summation is null. For α = n ∈ Z+, we are led to use the relation (8), but we
obtain an almost useless expression. However, we have two alternatives for applying the
convolution, avoiding the singularity. Let α ≤ M ∈ Z+

0 . We can write

sα = sα−MsM = sMsα−M,

which gives us two ways to solve the problem. The first reads [36]

Dα f (t) =
∞∫

0

τM−α−1

Γ(−α + M)
f (M)(t− τ)dτ. (13)

This is called Liouville–Caputo derivative [36,37]. The second decomposition,
sα = sMsα−M, gives

Dα f (t) = DM

 ∞∫
0

τM−α−1

Γ(−α + M)
f (t− τ)dτ

, (14)
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that constitutes a derivative of the Riemann–Liouville type, that is also called Liouville
derivative [38], or Liouville–Weyl [39]. Therefore, from the impulse response of the differin-
tegrator, three different integral formulations were obtained from where current expressions
can be derived, (12), (13), and (14). We will opt for the first [14] and particularise it for the
0 < α < 1 case.

Dα f (t) =
∞∫

0

τ−α−1

Γ(−α)
[ f (t− τ)− f (t)]dτ. (15)

Example 1. Consider the sinusoidal function f (t) = ejωt. Then

Dαejωt =

∞∫
0

τ−α−1

Γ(−α)

[
ejω(t−τ) − ejωt

]
dτ = ejωt 1

Γ(−α)

∞∫
0

[
e−jωτ − 1

]
τ−α−1dτ. (16)

It can be shown that the integral equals (jω)αΓ(−α) [32].

3. On the Capacitor
3.1. Classic: q(t) = c(t)v(t)

The capacitor is a device used to store electrical charge. Traditionally, the main
equation describing the capacitor behaviour is (2) that we rewrite here

q(t) = C0v(t),

where q(t), C0, v(t), (t ∈ R), are the charge, capacitance, and voltage, respectively, and
with SI unities, Coulomb (C), Farad (F), and Volt (V). The electric current is defined as the
time derivative of the charge:

i(t) =
dq(t)

dt
. (17)

The unit of electric current is the ampere (A ≡ Cs−1). Therefore,

q(t) =
∫ t

−∞
i(u)du, (18)

leading to

v(t) =
1

C0

∫ t

−∞
i(u)du. (19)

Consider a capacitor with two metallic plates separated by air. As known, the capaci-
tance of these capacitors is proportional to the inverse of the distance between the plates.
Assume we insert such a capacitor, having a charge q0, in an open circuit. Suppose now,
that the plates are linearly spaced (d) so that the capacity decreases inversely. As the charge
is constant, the voltage increases in the same way:

q0 = C0v0 =
C0

1 + d
v0(1 + d)

If d = at, a > 0, t ≥ 0, v(t) = v0(1 + at).
Now, imagine that we perform the same operation, but close the circuit with a constant

voltage generator. In this situation, the voltage remains constant, but the charge decreases

similarly q(t) =
q0

1 + at
.
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Let us assume that the capacitance is, for t ≥ 0, a piecewise constant function

c(t) =



C0 0 ≤ t < t0

C1 t0 ≤ t < t1

· · · · · ·
Cn tn−1 ≤ t < tn

· · · · · ·

=
∞

∑
n=0

Cn pn(t), (20)

where pn(t) = ε(t− tn−1)− ε(t− tn). Let v(t) be the applied voltage. Therefore, for a given
interval (tn−1 − tn), the charge q(t) is equal to Cn pn(t)v(t). Joining the contributions from
all the intervals, we have:

q(t) =
∞

∑
n=0

[Cn pn(t)v(t)] =
∞

∑
n=0

[Cn pn(t)]v(t)

Therefore, the correct way of expressing relation between charge and voltage is

q(t) = c(t)v(t), (21)

provided that capacitor is not fractional. In this situation, the current is given by

i(t) =
d[c(t)v(t)]

dt
(22)

and the voltage is

v(t) =
1

c(t)

∫ t

−∞
i(u)du. (23)

3.2. Fractional: d1−αq(t)
dt1−α = c(t)v(t)

For orders 0 < α < 1, the (fractional) capacitors are based on the Curie–von Schweidler
law describing by a power law the decay of a depolarising current in a dielectric that is
subjected to a step DC voltage, v(t) = V0ε(t), [1,2,16,20,21]:

i(t) = K0V0 t−αε(t), (24)

where K0 is a constant related to the capacitance. The fractional derivative of the Heaviside
unit step is given by [32]

dαε(t)
dtα

=
t−α

Γ(1− α)
ε(t).

Therefore, in the time invariant case, we can write

i(t) = C0
dαv(t)

dtα
. (25)

C0 is the (fractional) capacitance. Using the LT, we obtain

I(s) = C0sαV(s). (26)

Consequently, the impedance is

Z(s) =
1

C0sα
, (27)

as expected. Attending to (26), we obtain

Q(s) =
I(s)

s
= C0sα−1V(s)
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and
s1−αQ(s) = C0V(s),

which leads to
d1−αq(t)

dt1−α
= C0v(t), (28)

Now, consider the piecewise constant capacitance (20) and note that (28) represents a
linear equation, so the superposition principle is valid. For t in the interval, (tn−1, tn) the
charge, qn(t), is expressed by:

d1−αqn(t)
dt1−α

= Cn pn(t)v(t),

that gives

qn(t) =
∫ t

−∞
Cn pn(τ)v(τ)

(t− τ)−α

Γ(1− α)
dτ.

Defining q(t) by

q(t) =
∞

∑
n=0

qn(t),

we have

q(t) =
∞

∑
n=0

∫ t

−∞
Cn pn(τ)v(τ)

(t− τ)−α

Γ(1− α)
dτ.

Permuting the summation and integral operations, valid because the integral is finite,
we obtain

q(t) =
∫ t

−∞

∞

∑
n=0

Cn pn(τ)v(τ)
(t− τ)−α

Γ(1− α)
dτ,

and

q(t) =
∫ t

−∞
c(τ)v(τ)

(t− τ)−α

Γ(1− α)
dτ.

This relation together with (21) suggest we write

d1−αq(t)
dt1−α

= c(t)v(t), (29)

as a general charge–voltage relation. It is important to note that the existence of the
fractional derivative serves to highlight the causality and memory of the system [2,40].

To verify the coherence of (29), note that the capacitance is expressed in [F/s1−α],
which implies that the right-hand side has a dimension [F/s1−α]V = FV/s1−α = C/s1−α

in agreement with the left-hand side. Relation (29) contradicts the approaches introduced
in [3–5,7]. As we observe, formulae (25)–(29) degenerate in the corresponding classic, as
discussed in Section 3.1, when α = 1. Therefore, we will continue with them.

3.3. A Strange Result

Let two capacitors, with different constant capacitances and orders, be associated in
parallel and submitted to the voltage v(t)—see Figure 1.

From (28), we have:
d1−α1 q1(t)

dt1−α1

1
C1

=
d1−α2 q2(t)

dt1−α2

1
C2

and
d−α1 i1(t)

dt−α1

1
C1

=
d−α2 i2(t)

dt−α2

1
C2
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Assume that α1 < α2, so that we can write

dα2−α1 q1(t)
dtα2−α1

=
C1

C2
q2(t)

and
dα2−α1 i1(t)

dtα2−α1
=

C1

C2
i2(t)

The expected charges and currents are q1(t) =
C1

C2
q2(t) and i1(t) =

C1

C2
i2(t), but with

α1 6= α2, we must have an unexpected current since

dα2−α1 i1(t)
dtα2−α1

− i1(t) 6= 0,

We performed several laboratory experiments without successful results. It is expected
that such a difference is small, because |α2 − α1| is also small.

Figure 1. Two capacitor (pseudo-)symmetric circuit. Is I ≡ 0?

4. On the Fractional Inductor

The relations (17) and (29) that completely define the fractional capacitor can be used
to introduce the fractional inductor [30,31,41] through suitable substitutions. Let ψ(t) be the
magnetic flux (in Wb) and l(t) the inductance (expressed in H.s1−α.) Perform the following
substitutions in the relations (25) to (29)

ψ(t)→ q(t),

l(t)→ c(t),

i(t)→ v(t).

From (17), we obtain

v(t) =
dψ(t)

dt
, (30)

while (29) gives
d1−αψ(t)

dt1−α
= l(t)i(t). (31)

In the time-invariant case, l(t) = L0, we obtain

d1−αψ(t)
dt1−α

= L0i(t), (32)
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that degenerates into the classic relation

ψ(t) = L0i(t), (33)

when α = 1, giving

v(t) = L0
di(t)

dt
. (34)

Remark 2. In the previous two sections, we assumed that the order verifies 0 < α ≤ 1. However,
there is no theoretical reason to assume such a constraint. All the above relations keep their validity
if α > 1, provided we use the derivatives introduced in Section 2.2 [14,19].

5. Responses of Fractional Ideal Capacitor
5.1. Formulation

The relations (25)–(29), introduced above, define what we will call an ideal (fractional)
capacitor. In the following, we will work in this framework. We have two ways of rewriting
(29) according to which function is considered as input:

1. Voltage

i(t) =
dα[c(t)v(t)]

dtα
, (35)

where i(t) is the output.
2. Current

v(t) =
1

c(t)
d−α

dt−α
i(t), (36)

where v(t) is the output.

The Leibniz rule allows us to express the above fractional derivatives in terms of
integer order derivatives and fractional anti-derivatives of the involved factors [11]. We
will use a simplified approach in agreement with the physics of the process. Firstly, consider
the traditional situation where c(t) = C0, a real constant. In this case, the capacitor becomes
a differintegrator with transfer function (impedance), from (36)

H(s) =
V(s)
I(s)

=
1

C0sα
, Re(s) > 0, (37)

where V(s) and I(s) are the Laplace transforms of the voltage and current intensity. The
corresponding impulse response is:

hc(t) =
tα−1

C0Γ(α)
ε(t). (38)

Obviously, the impulse response corresponding to (35) is obtained with the change
−α for α. In such a case, the impulse response is not absolutely integrable. So, the corre-
sponding system is unstable. This means that we must be careful in using Equation (35).

Remark 3. Similarly, considering (30), we are led to the equations corresponding to the responses
of the fractional inductor

v(t) =
dα[l(t)i(t)]

dtα
(39)

and

i(t) =
1

l(t)
d−αv(t)

dt−α
. (40)
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5.2. The Voltage Input Case

Let us consider a capacitor with variable capacitance. Note that the device must have
been assembled some time ago. Therefore, its capacitance will always change in its proper
time θ:

c(θ) = C0 + cv(θ). (41)

where C0 > 0. Cv(θ) > −C0 is a function that expresses the long-term capacitance variation.
We assume that Cv(θ) is slowly variable in time (lowpass function). Let v(t), t ∈ R. We
define the output current intensity through the convolution:

i(t) =
1

Γ(−α)

∫ ∞

0
τ−α−1c(t− τ)[v(t− τ)− v(t)]dτ, t ∈ R. (42)

Remark 4. The framework we described is theoretical. In practice, it is very difficult to connect a
capacitor to an ideal voltage step, because, at the time of the transition, it would be necessary for the
source to supply an infinite current (24). In a practical circuit, there is always some non-zero series
resistance, as the internal resistance of the source and the parasitic series resistance of the capacitor,
which will significantly affect (reduce) the resulting current in the time of transition, even if this
resistance is very small. This also affects the charge time course, and the mathematical relations
presented become imprecise. The RC circuit can serve to model the effect of such resistances. This is
illustrated in Figure 2 where the currents in an RC circuit are depicted.

Figure 2. Normalised current, R.i(t), in an RC circuit.

Example 2. To examplify, assume that the capacitance is constant, c(t) = C0, and v(t) = V0ε(t). Then

i(t) =
C0

Γ(−α)

∫ ∞

0
τ−α−1[ε(t− τ)− ε(τ)]dτ

=− C0

Γ(−α)

∫ ∞

t
τ−α−1dτ =

C0

Γ(−α + 1)
τ−αε(τ).

that expresses the Curie–von Schweidler law [2,5].

Example 3. Consider piecewise constant case:

c(t) =

{
A1 t < t0

A2 t ≥ t0
= A1ε(t) + [A2 − A1]ε(t− t0) (43)
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We obtain

iv(t) =
A1

Γ(−α)

∫ t0

0
τ−α−1[v(t− τ)− v(t)]dτ +

A2

Γ(−α)

∫ ∞

t0

τ−α−1[v(t− τ)− v(t)]dτ

=
A1

Γ(−α)

∫ ∞

0
τ−α−1[v(t− τ)− v(t)]dτ +

A2 − A1

Γ(−α)

∫ ∞

t0

τ−α−1[v(t− τ)− v(t)]dτ

= A1Dαv(t) +
A2 − A1

Γ(−α)

∫ ∞

t0

τ−α−1[v(t− τ)− v(t)]dτ ε(t− t0).

(44)

This expression can be generalised for any set of jumps.

Example 4. Being a lowpass function, we can assume that cv(t) is a sum of exponentials:

cv(θ) =
N

∑
k=1

Ake−λkθε(θ − θ0k), (45)

where Ak, λk, k = 1, 2, · · · , N are positive constants and θ0k reference instants. For simplicity, we
will study the N = 1 case.

Therefore, we can rewrite the second term (41) as

iv(t) =
A

Γ(−α)

∫ ∞

0
τ−α−1e−λτ [u(t− τ)− u(τ)]dτ

=
A

Γ(−α)

∫ ∞

t
τ−α−1e−λτdτ =

At−αe−λt

Γ(−α + 1)
ε(t),

(46)

that is the regularised tempered fractional derivative of v(t), Dα
λv(t) [15].

Remark 5. It is not very difficult to show that a substitution of each exponential by a sinusoid
leads to a similar solution, provided we extend the definition of a tempered derivative accordingly.

Dα
jλ f (t) =

1
Γ(−α)

∫ ∞

0
τ−α−1e−jλτ f (t− τ)dτ. (47)

These results can be generalised for any capacitance with Laplace or Fourier transforms.
In fact, returning to (41), we have

i(t) =
C0

Γ(−α)

∫ ∞

0
τ−α−1[v(t− τ)− v(τ)]dτ +

1
Γ(−α)

∫ ∞

0
τ−α−1cv(t− τ)[v(t− τ)− v(τ)]dτ. (48)

The first term, which we can call static component , is basically the α−order derivative
of v(t):

i0(t) = C0
dαv(t)

dtα
=

C0

Γ(−α)

∫ ∞

0
τ−α−1[v(t− τ)− v(τ)]dτ. (49)

To treat the other, assume that the variable part of the capacitance cv(t) has LT,
Cv(s), Re(s) > a, a ≤ 0. The Bromwich integral allows us to write:

cv(t) =
1

2π j

∫ σ+j∞

σ−j∞
Cv(s)estds, t ∈ R, (50)

where the principal value of the integral is assumed and σ > 0. We can write∫ ∞

0
τ−α−1cv(t− τ)[v(t− τ)− v(τ)]dτ =

1
2π j

∫ σ+j∞

σ−j∞
Cv(s)

∫ ∞

0
τ−α−1es(t−τ)[v(t− τ)− v(τ)]dτds.
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The inner integral is the tempered derivative of v(t) [15], so that

iv(t) =
1

2π j

∫ σ+j∞

σ−j∞
Cv(s)estDα

s v(t)ds, t ∈ R, (51)

with
Dα

s v(t) =
∫ ∞

0
τ−α−1e−sτ [v(t− τ)− v(τ)]dτ, t ∈ R. (52)

These expressions are so general that they lack usefulness. We are going to consider
particular cases for cv(t).

Example 5. An interesting particular case comes in consideration of a linearly increasing capacitance:

cv(t) = Cv0 tε(t)

We obtain:

iv(t) =
Cv0

Γ(−α)

∫ ∞

0
τ−α−1(t− τ)ε(t− τ)[v(t− τ)− v(τ)]dτ

=
Cv0

Γ(−α)

∫ t

0
τ−α−1(t− τ)[v(t− τ)− v(τ)]dτ

= Cv0 tε(t)Dα[v(t)ε(t)]− αCv0Dα−1[v(t)ε(t)]

If v(t) =
tα

Γ(α + 1)
ε(t), then

Dαv(t) = ε(t), Dα−1v(t) = tε(t)

and
iv(t) = (1− α)Cv0 tε(t),

is a curious result that agrees with the considerations we made in Section 3.1. The v(t) = ε(t) case
is readily obtained from the results presented in Section 2.2.

5.3. The Current Input Case

In the above sub-section, we developed a formalism based on relation (35), where we
considered the voltage as input and the current as output. Now, we reverse the situation
by starting from (36). The main differences are

1. The use of the fractional anti-derivative (α < 0) that is defined by a regular integral:

v(t) =
1

Γ(α)c(t)

∫ ∞

0
τα−1i(t− τ)dτ

=
1

Γ(α)c(t)

∫ t

−∞
i(τ)(t− τ)α−1dτ;

t ∈ R. (53)

2. The involvement of the function 1
c(t) does not add complexity to the situation.

Example 6. Considering the constant capacitance case c(t) = C0, we obtain

v(t) =
1

Γ(α)C0

∫ t

−∞
i(τ)(t− τ)α−1dτ (54)

which generalises, for any α, the classic result

v(t) =
1

C0

∫ t

−∞
i(τ)dτ.
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Example 7. Return to the situation defined in (43)

1
c(t)

=

{
1

A1
t < t0

1
A2

t ≥ t0
=

1
A1

ε(t) +
[

1
A2
− 1

A1

]
ε(t− t0).

We obtain

v(t) =
1

Γ(α)A1

∫ t0

−∞
i(τ)(t− τ)α−1dτ +

1
Γ(α)A2

∫ t

t0

i(τ)(t− τ)α−1dτ

=
1

Γ(α)A1

∫ t

−∞
i(τ)(t− τ)α−1dτ +

1
Γ(α)( 1

A2
− 1

A1
)

∫ t

t0

i(τ)(t− τ)α−1dτ.
(55)

The first term corresponds to the constant capacitance case, while the second expresses the
effect in the capacitance jump.

6. Power and Energy

We proceed to study the power and energy flux in a capacitor [42]. For simplicity, we
will consider the time-invariant case. As usual, we define the (instantaneous) power by

p(t) = v(t)i∗(t), (56)

where we have considered the possibility of complex signals. In the following, we will
deal with real signals unless clearly stated. Assume that v(t) and i(t) are signals with finite
energy (energy-type signal) [43], having a Fourier transform, V(iω) and I(iω), respectively.
The energy is given by

E =
∫ ∞

−∞
v(t)i(t)dt. (57)

The Parseval relation allows us to write

E =
1

2π

∫ ∞

−∞
V(jω)I(−jω)dω. (58)

The relation between the voltage and current allows us to obtain

E =
C0

2π

∫ ∞

−∞
(−jω)α|V(jω)|2dω, (59)

since V(−jω) = V(jω)∗. However,

(−jω)α = |ω|αe−jα π
2 sgn(ω),

where sgn(ω) = 2u(ω)− 1 is the signum function, so that

E =
C0 cos(α π

2 )

2π

∫ ∞

−∞
|ω|α|V(jω)|2dω (60)

This result seems to be strange, since, if α = 1, the energy is null, but gives a positive
energy in the other cases. To understand the reason, we must remember that v(t) has
finite energy. This means that it is a pulse-like signal that decreases to zero. Therefore, we
conclude that the order 1 ideal capacitor charges and decharges, without there being any
loss of energy. On the contrary, in the fractional case, there is always some energy lost that
increases with decreasing α.

We continue the energetic study, by considering the case of “power-type” signals. Let
v(t) = ε(t). In this case, the power is

p(t) = i(t) = C0Dαε(t) = C0
t−α

Γ(−α + 1)
ε(t),



Fractal Fract. 2023, 7, 86 14 of 18

and the energy is

E = C0

∫ ∞

0

t−α

Γ(−α + 1)
dt. (61)

We have two different situations

1. α = 1
The integrand degenerates into a δ(t) and the integral gives 1. Thus, the energy is
E = C0.

2. α < 1

E = C0
t1−α

Γ(2− α)

∣∣∣∣∞
0
= ∞, (62)

as expected.

We go on with the study of the steady-state behaviour of the ideal fractional capac-
itor using power-type signals. We consider a sinusoid first and then an almost periodic
signal [43]. Let v(t) = Aejω0t, ω0 > 0, t ∈ R. Then

p(t) = A2C0ejω0t(−jω0)
αe−jω0t = (−jω0)

α A2C0.

If v(t) = A cos(ω0t), then

p(t) = 2|ω0|α cos(α
π

2
)A2C0,

showing that the power is constant. Therefore, the energy is infinite, apart from the α = 1
case. This result may not be interesting. We modify the reasoning. Note that the mean
power supplied to the capacitor is

P = lim
T→∞

1
2T

∫ T

−T
p(t)dt = lim

T→∞

1
2T

∫ T

−T
2|ω0|α cos(α

π

2
)A2C0dt = 2|ω0|α cos(α

π

2
)A2C0.

This result shows that the mean power is also constant. It is important to remark the
strangeness of the integer order case, where both energy and power are null. This happens
because, without losses, the energy spent in one half-period is recovered in the next.
Let v(t) be an almost periodic signal:

v(t) =
∞

∑
m=−∞

Vmejωmt,

where we assume that

• t ∈ R;
• ωm = −ω−m, m ∈ Z;
• V−m = V∗m, m ∈ Z;
• ∑∞

m=−∞ |Vm|2 < ∞.

Under these conditions and using the results in [43], we conclude that the mean power
is

P = C0 cos(α
π

2
)

∞

∑
m=−∞

|ωm|α|Vm|2,

that can be considered as a generalisation of the Parseval relation.

7. Variable Order Capacitors and Inductors

The variable order capacitors were studied, for the first time, in [17], using a Riemann–
Liouville derivative. Here, we consider the above framework. All the above equations
describing the behaviour of both capacitors and inductors remain valid in the variant
order case, provided suitable definitions are used. In fact, it is a simple task to verify this
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statement using the variable order GL or Liouville derivatives [11,44]. The variable order
GL derivative is given by:

Dα(t) f (t) = lim
h→0+

h−α(t)
∞

∑
k=0

(−α(t))k
k!

f (t− kh). (63)

This definition preserves a very important property of the fractional derivatives
previously introduced. Let f (t) = est, s ∈ C,

Dα(t)est = lim
h→0+

h−α(t)
∞

∑
k=0

(−α(t))k
k!

es(t−kh) = sα(t)est, for Re(s) > 0. (64)

The variable order regularised Liouville derivative reads [11,44]

Dα f (t) =
1

Γ(−α(t))

∞∫
0

τ−α(t)−1

[
f (t− τ)− ε(α(t))

N(t)

∑
0

(−1)m f (m)(t)
m!

τm

]
dτ, (65)

where N(t) ≤ α(t)N(t) + 1. This expression includes both the positive and negative values
of α(t). In the negative case, the summation is null. Therefore, we can interpret (65) as a
variable order differintegral. In particular, if 0 < α(t) < 1, then we obtain

Dα f (t) =
1

Γ(−α(t))

∞∫
0

τ−α(t)−1[ f (t− τ)− f (t)]dτ. (66)

With these derivatives, we can obtain variable order impedances, for both capacitors
and inductors:

Zc(s) =
1

C0sα(t)
, Zi(s) = L0sα(t). (67)

The responses of these devices can be obtained from the above introduced theory and
using the results in [44].

8. Tempered Fractors

Return back to (25) and note that the charge corresponding a unit step input is given by:

q(t) = C0
t1−αε(t)
Γ(2− α)

. (68)

As seen, it is an increasing function, which points out that the fractional capacitor is
not a stable system. A permanent increase in the charge is not to be expected [1]. This is a
consequence of the fact that the fractor is an ideal system. Such a situation does not occur
with real capacitors where we have to introduce a non-zero conductance in parallel with
the fractor. This can be achieved through what we call tempered fractor, which is defined by

ZT(s) = C0(s + λ)α, (69)

where λ is a (small) positive number of dimension [s−1].
The LT inverse of ZT(s) is given by [15]

zT(t) = Kαe−λt t−α−1

Γ(−α)
ε(t). (70)
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This function decreases to zero, for any value of α. With it, we define the tempered
fractional derivatives that we can use to substitute the derivatives used in the previous
sections. For example, (53) reads

v(t) =
1

Γ(α)c(t)

∫ ∞

0
e−λττα−1i(t− τ)dτ. (71)

It is interesting to remark that the well-known Davidson–Cole model represents a
tempered fractor [18,45,46]. In fact, the model can be written as [46]

ZDC(jω) =
1

(1 + jωτ)α ,

where τ is a time constant. We can write

ZDC(jω) =
1/τα(

1
τ + jω

)α ,

highlighting the presence of the tempered fractor.
In Figure 3, we illustrate the similarities and differences between the ideal fractor and

its tempered analog by computing the current and charge in both situations, using the
expression obtained in Example 2 and its tempered version:

i(t) =
C0

Γ(−α + 1)
e−λtt−αε(t).

For simplicity (and far from practical reality), we made C0 = 1 F/s1−α. As seen, the
exponential does not introduce a meaningful modification in the current, but forces the
charge to approach a constant. For easy visualisation, we represented the logarithm of the
current and charge on a logarithmic scale.

Figure 3. The behaviour of the tempered fractor for α = [0.9, 0.95, 0.99], from top to bottom.

9. Conclusions

The Liouville fractional calculus was used to review the mathematical description
of the charging process in capacitors. A new formulation was proposed to establish the
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memory effect. For it, suitable, among many, fractional derivatives were described. The
case of fractional capacitors that follow the Curie–von Schweidler law was considered
and studied. Through suitable substitutions a similar scheme for fractional inductors was
obtained. Formulae for voltage/current input/output were presented. Backward coherence
with classic results was established and generalised to the variable order case. The concept
of tempered fractor was introduced and related to the Davidson–Cole model.
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