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Abstract: In this paper, existence /uniqueness of solutions and approximate controllability concept
for Caputo type stochastic fractional integro-differential equations (SFIDE) in a Hilbert space with a
noninstantaneous impulsive effect are studied. In addition, we study different types of stochastic
iterative learning control for SFIDEs with noninstantaneous impulses in Hilbert spaces. Finally,
examples are given to support the obtained results.
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1. Introduction

Iterative learning control (ILC), an important type of intelligent control methodology,
was introduced by Uchiyama [1] and Arimoto [2,3]. This type of technique has been widely
used in solving tracking problems for different types of control systems such as networked
systems, multiagent systems, various distributed parameter systems, and different types
of fractional-order systems [2-8]. The simplest visualization of ILC can be found in the
area of robotic assembly and mechanical test procedures where a robotic device is used to
complete a specified task such as “pick and place” [9].

The differential equation with impulses has extensive applications in various fields of
science, such as engineering, medicine, economics, and so on. There are two popular types
of pulses in the literature:

* Instantaneous impulses—the duration of these changes is relatively short compared
to the total duration of the entire process. For the differential equations with instanta-
neous impulses, we refer the reader to the monograph [4].

¢ Noninstantaneous impulses—an impulsive action that begins abruptly at a fixed point
and continues on for a finite amount of time. This kind of pulse is observed in lasers,
and when drugs are injected into the bloodstream intravenously, see [5]. Recently,
Hernandez and O’Regan [10] analyzed a kind of differential equation with a new
impulsive effect, a so-called noninstantaneous impulse.

A noninstantaneous action of impulses begins at a certain point in time and remains
active for a finite time interval. It is known that drug intake has a memory impact; thus, a
new class of impulses does not explain completely this type of phenomenon. In this case,
fractional analysis provides a powerful tool to describe this type of phenomenon because
the main feature of fractional differential equations is to describe the memory characteristics
of different events. For more information on the theory of existence and controllability
theory of FDEs with noninstantaneous impulses, we refer the reader to [11-34].

Recently, Huang et al. [14] studied a P-type steady-state ILC scheme for the boundary
control described linear parabolic differential equations in the sense of infinity-norm. Guo
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et al. [15] consider ILC for a class of non-affine-in-input processes with the general plant
operators in a Hilbert space. However, the results of ILC for systems with distributed pa-
rameters are rather limited due to the inherent complexity in processing multidimensional
systems. Liu et al. [16] studied P-type ILC law for impulsive differential equations by using
open-closed loop iterative learning schemes in L?-norm to track the desired discontinuous
output trajectory. Yu et al. [17] study P-type, PI*-type, and D-type ILC for impulsive FDEs
in Banach spaces in the sense of the A-norm. Liu et al. [18] apply ILC updating law and
find a desired control function that sends the error between the output and the reference
trajectories to zero in the so-called A-norm. It should be stressed out that the P-type ILC,
which is employed in this contribution, is a very popular form of ILC because of its simplic-
ity. However, a disadvantage of the P-type ILC approach is its bad learning transients for
many practical applications, cf. [27,28]. To avoid this problem, here, a zero-phase filtered
ILC with phase-lead compensation as presented in [29].

Theorists and control engineers have now provided detailed explanations of ILC for
deterministic control systems. Many significant results have been reported and applied
to real systems. However, the interference and noise are unavoidable during the practical
operations. Therefore, interference rejection is an important issue for ILC studies. Hence,
when considering stochastic ILC, more attention should be paid to working with random
processes. However, this is only the first step towards stochastic ILC, and much more work
can be conducted for this ongoing topic.

To the best of the author’s knowledge, no work has been reported to study the
existence, uniqueness, approximate controllability and ILC results for Caputo type SFIDEs
in a Hilbert space with noninstantaneous impulses. Here are contributions of the paper:

e  Sufficient conditions which guarantee the existence/uniqueness of solutions of a
fractional stochastic integro-differential system with noninstantaneous impulses in a
Hilbert space is presented;

e  Sufficient conditions for the approximate controllability of the fractional stochastic
integro-differential system with noninstantaneous impulses in a Hilbert space are derived
by assuming that the associated deterministic linear system is approximately controllable;

*  P-type, D-type and PI-type stochastic iterative learning control for fractional stochastic
integro-differential equations with noninstantaneous impulses in Hilbert spaces are
investigated. P-type, D-type and Pl-type stochastic iterative learning convergence
conditions are presented. These results are novel for a fractional stochastic integro-
differential system with noninstantaneous impulses, even for a finite-dimensional
fractional stochastic integro-differential systems.

2. Preliminaries

Here are some notations and definitions.

e  (O,F, (8t)t>0, P) is a probability space.
* K,H,Z and U are real separable Hilbert spaces.
e w(t)is a Q-Wiener process on (), §, P)

(w(t),¢) = k“il VArlewe)i(t), e € K, t€ [0,7],

with a linear bounded covariance operator Q : K — Ksuch that trQ < cc. Itis assumed
that there exists a complete orthonormal system {e },~ in Hilbert space K, a bounded
sequence of {A; € R} such that Qe; = Akex, k =1,2,..., and a sequence { By}~ of
independent real valued Brownian motions such that and §; = §%, where ¥ is the
sigma algebra generated by {w(s) : 0 <s < t}, whichis §’ = c{w(s) : 0 <s <t} V
N, where N is the collection of P-null sets of .

e L) isthe space of all Hilbert-Schmidt operators ¢ : Q'/2K — H with the inner product

(9,919 =trlyQg).
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. Lg(O, T;H),p > 2 is the Banach space of all pth power integrable and §;-adapted
processes with values in H.
e (C(0,7;LP(3, H)) be the Banach space of continuous maps ¢ : [0, 7] — LP(§, H) with
the norm sup{EH(p(t)H?I te [O,T]} < oo.
Cz(0,7;LP(F,H)) is the closed subspace of C(0,7;LF(F, H)) of measurable and
§i-adapted H-valued processes ¢ € C(0,7;LP(F,H)) with the norm
1

4

I9llc,= (Os;;g EI(PU)IIZ)
<t

s PCz:= Pég (0,7;L?(3, H)) is the space of all §;-adapted H-valued stochastic pro-
cesses @ such that ¢ is continuous at t # t, ¢(t) = ¢(t; ) and ¢(t;) exists for all
1

3
k=1,.., N endowed with the norm [|¢||pc. = < sup E||q)(t)||%{> .
’ 0<t<t
e A:D(A) C H— H is the infinitesimal generator of a Cy-semigroup S : H — H with
M := supy;<[|S(t)[| () and B € L(U, H).

Define

Salt) :/Omga(e)sa“e)de, Tu(t) :a/oooega(G)S(t“(?)de, £>0,

«
@, (0) = % Y (—1)m_16*mo‘*1w sin(mna), 6 € (0,00),

where ¢, (0) is a probability density defined on (0, c0), which is
Ca(0) >0, 0 € (0,00), A Ca(0)dO = 1.
£):

We use the following properties of S, () and Ty (

e Viixedt>0andV x € X, ||Sa(t)x] < M|x| and | Ta(t)x]| < r](\i)||x||.

o {G(t):t>0}and {Tu(t) : t > 0} are strongly continuous.

o {G(t):t>0} and {4 (t) : t > 0} are compact provided that the generating semi-
group S(t), t > 0, is compact.

In this work, we are concerned with the question of existence, approximate controllabil-
ity and stochastic ILC method for a class of Caputo stochastic fractional integro-differential
equations (SFIDEs) in a Hilbert space with noninstantaneous impulses of the form:

D2 y(t) = Ay(t) + Bu(t) + f(t,y (1) + [, 8(r,y(r)dw(r), sc <t <ty

y(t) =m(ty(t;)), tx<t<sy, k=1,.,N, 1)
v(s)=y(s;), k=12,.,N,

y(O) = Yo,

where D¢ , denotes the Caputo fractional derivative of order a € (%, 1) for y with the lower

limit sg, y(7F) = lim,_,o+ y(T & €) and # and s;. The stochastic integral is understood in
Ito sense; see [26].
For Equation (1), we consider the output equation of the form

zj(t) = Cy;(t) + Du(t), 2

or

t
zj(t) = Cy;(t) + D/o ui(s)ds. 3)
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Moreover, for Equation (1), we take into consideration an open-loop P-type stochastic ILC
updating law with initial state learning

Ay;(0) = L1ej(0), Au;(t) = y1ej(t) = 711(za(t) — (1)) )

and open-loop PI*-type stochastic ILC updating law with initial state learning

Ay;(0) = Loej(0), Au;(t) = vpe;(t) + % /Ot(t —5)"ej(s)ds, (5)

where Ly, L, € L(Z, H) and 71, vp, 71 € L(Z, U) are unknown operators to be determined.
For Equation (1), we take into consideration the following open-loop D-type stochastic
ILC updating law with initial state learning

Ay;(0) = Lae;(0), Auj(t) = 74 ¢j(t), (6)
where L3 € L(Z,H) and y; € L(Z, U) are unknown operators to be determined.

Definition 1. Let u € Lé(O, T; U). We say that a function y € PCg is a mild solution of (1) if y
satisfies the following stochastic integral equations:

yo+fo )T (t—)[Bu(s) + f(s,y(s))]ds

+ [ t—s“ 'St —s) [o g(r,y(r))dw(r), t€[0,4],
) m(ty(ty )), te (tese), k=1,2,. ,N, (7)
’= Gw—sk)hk(sk,y( )+ Jo (E =) T (k= 5)[Bu(s) + f(s,y(s)))ds

+ [y (=) %t—s fsgry (r))dw(r)ds,
t e [Sk/thrl} k— 1,2,...,N.

3. Existence of Solutions

In order to establish the existence and uniqueness result, we will need to impose some
of the following conditions.

(A1) The function f : [0, 7] x H — H satisfies the conditions:

(@  f(-y) : [0,T] — H is measurable for all y € H and f(t,-) : H — H is
continuous for a.e. t € [0, .

(b) I Mg > Osuchthat ||f(t,y)| < Mf(1+[ly|) forae. t € [0, 7], foreveryy € H.

(c) 3 Lf > 0such that [|f(t,y1) — f(t,y2)| < Lfllya — y2| for ae. t € [0, 7], for
every y1,y, € H.

(A2) The function g : [0, 7] x H — L satisfies the conditions:

(@  g(,y) : [0,7] — LY is measurable forally € H and g(t,-) : H — LI is
continuous for a.e. t € [0, T].

(b) 3 Mg > 0 such that Hg(t,y)HLg < My(1+ |ly|l) for a.e. t € [0, 7], for every
y € H.

(c) 3 Lg > 0 such that |g(t,y1) —g(t,yz)HLg < Lglly1 — y2|| for ae. t € [0, 7], for
every y1,Y, € H.

(A3) hg : [0, 7] x H— H are continuous and satisfy the conditions:

(@) Jconstants M, > 0such that ||l (t,y)|| < My, (1+ [|y||) for a.e. t € [0, 7], for
every y € H.

(b) I constants Ly, > 0 such that || (t,y1) — he(t,y2)|| < Ly, |ly1 — y2l| for a.e.
t € [0, 7], for every y1,y2 € H.

For our main consideration of problem (1), a Banach fixed point is used to investigate
the existence and uniqueness of solutions for SFIDEs with noninstantaneous impulses.
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Theorem 1. Assume that conditions (A1)—(A3) are satisfied and
272 272 212 272 g2a—1
L. = max 2Msly + 2Mslghy = L2, 3m3L2 + Msly + SMsLyT) = — s <1 8)
‘ 2(x)  T2(a) J2a—1""M SThe T T2 (a) T2(a) 2a —1

Then, the mild solution of SFIDE (1) exists and is unique.

Proof. Consider a nonlinear operator F : PCz — PCg as follows

B)yo + fo(f — )" Ty (£ —5) f(s,y(s))ds

+f0 ISy (t—s) [ g(r,y(r))dw(r)ds, t€[0,t)],
(Fy)(t) = { h(ty(ty)), te(tk,Sk) k—1,2, . N,

GN(t_Sk)hk(Skz (s ))+f YT, (= 8)f(s,y(s))ds
Jo(t=s)*" 1% t—s) fskg r,y(r))dw(r)ds, t € [sg, i), k=1,2,..., N.

From the assumption, it is easy to see that F is well defined. Now, we only need to show
that F is contractive.

Case 1: For y,z € PCz and 0 < t < t;, we have

E[|(Fy)(t) — (F2)(#)]|?

ot

< 2E|| | (E=9)" 'Ta(t = 5)(f(5,y(s)) — f(5,2(s)))ds

2

+ 26 / Kt -9) [ (s000) 20|
< 21{\55 f/ 528 zds/tEHy(s)—z(s)szs
¥ zﬁ% [ sy as [ Ely(s) — =65) Pas
(5 28).2. 1y o
We take the supremum on [0, f1] to obtain
2712
OzglEH(Fy)(f) — (F)(D]* < (iff;f 2?%?) zillly—ZIvac@ )

Case2: Fory,z € PCzand ty <t < s, k=1,..,N, wehave

E[|(Fy) () — (F2)(1)||* < EHhk(t'y(tk_))

(f 2(5:)|1°
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Case 3: Fory,z € PCzand sy <t <t;yq1,k=1,..,N, we have
E[|(Fy)(1) — (F2)(D)]®
_ _ 2
< BE||Salt = i) (M (s y (5 )) = (s 2 (s ))) |
¢ 2
38 [ (=910 = 95 005D (529
Sk
t a—1 S 2
3 [ (=5 150l =5) [ (5(r,9(00) = lr, 201 o)
Sk Sk
< 3MEL], Iy — 2lpc,
3MZL% i t
f/ 202 / _ 2
+ (a) Sk(t s) ds SkE||y(s) z(s)||*ds
3MZL2t [t t
g 202 _ 2
o) /Sk(t 5) ds/SkEHy(s) 2(s) |[Pds
3M2L2  3M2I27 20-1 _ Qa1
< 2712 S™f v k — 2.
> <3M5Lhk+ FZ(OC) + r2(lx) 20 —1 ||]/ Z”PCE (11)

From (9)—(11), we obtain
2 2
IFy — FZHpcg < Lelly - ZHPC;‘

This implies that F is contractive and therefore has a unique fixed pointy € PCz (0, 7; L¥ (, H)),
which is a mild solution of SFIDE (1). O

The second existence result of this section is based on a Krasnoselskii-Schaefer type
fixed point theorem under non-Lipschitz continuity of nonlinear terms. As we can easily
see, we will weaken the assumption L, < 1in Theorem 1, but at the same time we need
to impose some Caratheodory and Nagumo type of assumptions as well as an additional
smallness hypothesis.

(A4) There is a continuous nondecreasing functions ¢, ¢ : [0,00) — [0,00) and py, pg €
LY([0, 7], [0,0)) such that

IFEDIP < petrer (I917), eI < pe(Owg (Ivl),

fora.e. t € [0, 7] with

Frg1 fet1 o ds
K / s)ds + K / s)ds < _—
o PSR [ ps(As < | T )

where Ky, K1, K, are positive constants.
Theorem 2. Assume that hy(t,0) = 0, and hypotheses (Ala), (A2a) and (A4) hold. If
272 g
Ly = max(M3L}, :k=1,..,N) <1,
then problem (1) possesses at least one mild solution on [0, T].

Proof. Parallel to the proof of Theorem 1, we transform fractional stochastic problem (1)
into the same equivalent fixed point formulation keeping the same operator F. Now, we
split our operator F into two operators in the following way:

GDC(t)yo, te [0, tﬂ,
(Fiy)(t) = he(ty(t)), te (tse), k=1,2,..,N,
Ga(t —Sk)hk(Sk,]/(S]:)), t e [Sk, tk+1]/ k=1,2,..,N,
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and

JEE =) Tt = 5) fls,y(s))ds + [ (= )" Tt = 5) [ g(r,y(r))deo(r)ds, ¢ € [0,t],
(F )(t) 0, te (tk,Sk), k=1,2,..,N,
= t _
2 Jo (8= 8)" T Tu(t = 5) f(5,y(s))ds
Jo(t=9)""1Ta(t =) [1 g(r,y(r))dw(r)ds, t € [s,tisa], k=1,2,..,N,

To use the Krasnoselskii-Schaefer theorem, we will verify that F; is contractive while F; is a
completely continuous operator. For convenience, we divided the proof into several stages.

Step 1: F is contractive.

Case 1: Fory,z € PCzand ty <t < s, k=1,..,N, we have

E||(Fuy)(t) — (Fiz) (1)]* < E|le(ty(t7)) — (6 2(t)) |
Ly Elly(te) —=(t) [ Li lly —Z||%vcg~
Case 2: Fory,z € PCz and sy <t <tryq1,k=1,..,N, we have
E|(Fy)(t) — (Fz)(t)]?

_ - 2
< E|[Sa(t = s¢) (i (s y sy ) = P (s 2(5¢)))
2
< M2L ly — I3,
We take the supremum on [0, 7| and obtain
2 2
|Ey — Fale, < Lilly — 2|,
Thus, F; is a contraction.
Step 2: F, is completely continuous.
The proof is omitted, since it is standard.

Step 3: A priori bound.
Show boundedness of the set

E= {z €PCsziz= AFzz—f—/\Fl(%), for some 0 < A < 1}.

Case 1: Foreach 0 <t < ty,

2(t) = Ga(t) 0+A/ VA, (£ — 5) £ (5,2(s))ds
+A/ )T, (t—s) /Osg(r,z(r))dw(r).
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This integral representation implies that

2 2
Ellz(8)[|* < 3Mlyoll

M? t . t
4ﬁﬁ%540—@22@4;¢@%(magwys

M2t ot a t
+3T27(1X)/0 (=) ds [ pg(s) (EN=()I ) s

5 MZ TZ/X t 5

< Mol + 35y 3 =7 [, PrIr (EI=()I) s

Ko —/—K

MZ 20 t
3ty e (El=(e) ) s

K

Thus, we obtain
2 ' 2
Ell2()]> < Ko+ K1 | py(s)pr(Ell2(s)]*)ds
ot 2
K [ pe(o)g (El2(9)])ds. (12)
Let us denote the RHS of the inequality (12) by v(t). Then, we have
0(0) = Ko, El|z(H)||> < o(t), 0<t<H.

and

o' (1) = Kupy () (EIZ(0)1%) + Kopg (D9 (EN2(1)]?), 0 <t < .

Using the increasing character of ¢y and ¢4, we obtain

V(1) = Kipy (D5 (0(1)) + Kapg (D (0(1), 0 <t < 1.
This equation implies, for each 0 < t < #4,

0 ds

o(t) ds 3l h
/v PR EFENE] < Kl/o pf(s)ds+1<2/0 pg(s)ds < Ko 97(5) + 93 (5)’

©0) Pr(s)+ g

By Bihari inequality,

t t
o(t) < Q71 (K1 /0 1 pf(s)derKz/O l pg(s)ds), 0<t<t,

where

t ds
D= fe 97 T )

Thus,
Ellz(t)|* < o(t) < L,

Case2: Foreacht, <t <si, k=1,..,N,
2(t) = hi(t, (1 ))-

This implies that
N2
Ellz(t)|* < L Ellz(t)[|” < L, lzllpe,-



Fractal Fract. 2023, 7, 87 9 of 22

_1_
.
=17

Case 3: Foreach sy <t <ty 1, k=1,..,,N

It follows that HZ”%Q <

E||(Fz)(t)|?
< BE|| &4 (t — si) (i (s y (5 )) — e (s z(s))) ||

[ =900 =) £ (sw(6)) = £s, ()

2
+3E

2
+3E

[ =95t =) [ s(r,9(0) = sl 200) ()i

Sk

< 3MEL}, |z[3e,

5B o as [ gy (E1)

+ Sﬁ%?’ [l [t (El=t6) )

=Ko+ K [ pr(s)py (EI=)I)ds + Ko [ ps)ay (Elle(9)1) s

S1m1lar to Case 1, there exists Ly, > 0 such that IEIF: pc; < Lt.,- This implies that the set
& is bounded.
To complete the proof, we apply the Krasnoselskii-Schaefer type fixed point theorem.
Thus, F has a fixed point, which is a mild solution of the SFIDE (1). O

4. Approximate Controllability

In this section, we establish the approximate controllability of mild solutions to stochas-
tic integro-differential equations in a Hilbert space with noninstantaneous impulses driven
by Q-Wiener motions:

(t yo+fo (t—s “71%0—5)[3“( )+f(S/y(S))]dS

ot =) T 0t —s) [5 g(r,y(r))dw(r)ds, t € [0,4],
(Fy)(t) = { Mty (e ))/ (fkrsk) k=1, 2 N
Gtx(t_sk)hk(sk/ (t)) +f )" 13a(t—5)[3”( )+ f(s,y(s))]ds
fstk(t —s)" 1S,X t—s fskg r,y(r))dw(r)ds, t € [sg, tre1], k=1,2,..,N,

We define an operator
T

I, = / (T — )" "%, (1 — 5)BB* T, (7 — s)ds : H — H.
SN

It is not difficult to see that the operator I'{  is a bounded linear operator. Indeed,

| T15 xH</ (T —8)" 1| Ta (T — §)BB*To (T — 5)x||ds
SN

Mz 2 t -1
< Bl|“||x / T—5)""'ds

T M?
= B
= o2y VB I

It is known that the approximate controllability on [sy, T] of a linear system associated
with (1) is equivalent to convergence of ¢(el + HSTN)_I —— 0as ¢ — 0" in the strong

operator topology; see [25].
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Definition 2. The SFIDE (1) is said to be approximately controllable on [0, 7] if R(T,y0) = H,
where

R(T,y0) = {y(r,yo,u) . y is a solution of (1), u € L*([0, 7] x ; U)}
Choose any stochastic control 1; € L%(O, sn; U) on the interval [0,sy] and define a

stochastic control us, (t;¥) on [sy, T] as follows:

usy (Ly) = B* T (1 — t)(sI+HSTN)_1pN(y), t € [sn, T,

T
[ (=) (= ) [Bu(s) + fls,y(s)))ds
SN

)

)
—/T(t—s)“l%(t—s) /s (r,y(r))dw(r)ds.

SN JSN

pn(y) =h = Sa(T —sn)hn(sn,y(ty)) —
g\ y

Finally, let us define

2 ul Sk tk+l] ) + usN (t’ y)X[SN,T] (t)’ t 6 [0’ T]/

where x 4 is the characteristic function of the set A.

Theorem 3. Assume that hy(t,0) = 0, and hypotheses (Ala), (A2a) and (A4) hold. Suppose that
f, g are uniformly bounded functions. Then, the SFIDE (1) is approximately controllable on [0, T|

provided that e (el 4+ IT ) 1 0ase — 0T is strong.

Proof. Let y® be a fixed point on F. By the stochastic analogue of the Fubini theorem, it is
easily seen that

Y (T) = Sulr s (on, ¥ (1)) (7 =) Ta(r =) Bt (s79) + F(5,4°(5)) s

A

- 1%t—s)/mg( (7)o (r)ds

= Sa(T — sn)hn (sn, v (ty)) + TIE, (eI + 117 )”PNWS)

e

g, (T —8) f( ds+/ )T, (E—s) /S g(r, ¥ (r))dw(r)ds

=h-— £(£I+HSN) pN(y )

It follows from the assumptions on f and g that there exists a D such that || f (s, y*(s))||* +
llg(s,¥5(s))||> < D. Then, there is a subsequence denoted by {f(s,y(s)),g(s, ¥*(s))}
weakly converging to say {f(s), g(s) }. Now, the compactness of S(t) implies that

Ta(T=9)f(5,¥°(5)) = Tt =) () Talr—5) [ gy ()dwo(r) = Talr—s) [ g(r)dw(r).

SN SN
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E||Ay;(t)

2
I" =<

From the above equation, we have
El|y () — h||? < 5|le(el +TI5,) 12
- . 2
+5E( [ lefer +115,) Sl )5 9) ~ SO
JSN
T 1 2
+5E (/ |e(el + HSTN) Tu(t—5)f(s) ||ds)
SN

T S
+57E /
SN

e(el +115,) ' Su(r =) [ (8" (1)) —g(n)ler
+5TE (/

N
On the other hand, the operator (el + 1T, )

2
ds
L3

— 0 behaves strongly as ¢ — 01 and

e(el +1I5,, ) H/ |Za(T —5)g )||Lodrds>
-1

moreover |[e(el +IT7, ) - || < 1. Thus, by the Lebesgue dominated convergence theorem,
we obtain E||yé(t) — h||*> — 0 as e — 0. This gives the approximate controllability of the
control system (1). O

5. Time Invariant Stochastic ILC

In the present section, we discuss P, PI*, D types of open-loop stochastic ILC methods
in the sense of A-norm. To achieve our third goal, we introduce the repeatedly running
stochastic equations:

Dt (1) = Ay;(t) + Buj(t) + f(ty;(1) + [, 8(ry(r)dw(r), sp <t < tiys,

y](f) = hk(t,yj(tk_)), b <t<si k=1,..,N, (13)
yi(s¢) =vj(sg), k=12,..,N,

zj(t) = Cy;(t) + Duj(t), t€[0,1],

Concerning (13), we consider the following open-loop P-type stochastic ILC updating law
with initial state learning defined by:

Auj(t) = vpej(t), Ay;(0) = L1¢;(0), (14)

where L1, 7, are unknown operators to be determined and v, € L(Z,U), Ly € L(Z, H).
For simplification, we set

201 a2 -1 6M2LE 2 3M?LZ
U= i) 7 2a—112w) " P77 2a—1 2()
p1:=p1/ (1 — 3M? exp(pz + pﬂ)e‘”).

Firstly, we give an estimation of Ay;(t) in terms of an integral of Au;.

Lemma 1. Under the conditions (A1)—(A3), the following estimation holds:

(302 ) + 1= B2 )

x exp((p2 + p3)7), 0<t<th,
L2 El[av; ()11 h<s<s (15)
(M2l 1) 3y 10) P+ n 5 B )

exp((p2 +03) (T — sx)) sp <5 <ty

Proof. We consider the following three cases.
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Case1: 0 <t <t
From the solution of the state equation for (13), for any 0 < ¢t < t1, we have

El|ay; (0] < 3[|&w(t)ay;(0)|

ot 5
+3E (/0 (tfs)“*luga(t —5) [BAuj(s) + f(s,yj41(s)) — f(s,yi(s))] Hds>

t 2
+3E (/0 (t — )21 ds> =L+ L+ (16)

Now, we estimate I, I and I3:

Tu(t —s) /0 (& (ryj1(r) = &(r,y;(r)) )duw(r)

7

1 < 3M7 Ay 0)|*
2 .
< 2 ([ -9 (1Ban ] + 635016 — Py s )

I
2=T2(g
272

6M? 't . 2 6MAL t o
< S p(flo-sr maules) + G B [ ayoas)

6 M2 t - 2 6M2L% i . t 5
< WE(/O (t—s)" 1|\BAuj(s)|\ds> +7f/ (=3 Vds [ E[[ay(s)]ds
6M?2L%

6M2 t . 2
:FZ(ME(/ (t—s) 1HBAu]~(s)Hds> +2 T f/ E|| Ay (s) s )

t21x71 )u,‘_l
ot [ maug(s)| s, 1s)

= 200 —1
Iz < 1?2]\(42) E</0 (t—s)*! ds)2

/OS (8(ryj41(r)) — g(r,yj(r)))dw(r)

3M? t 2
< o )/(t_s s | H/ $(yj1 (1) — g(r,yi(1))) () || ds
$26-1 3M2L3
S 2% 1T //EHA% )|[ards
£2a 3M2L2 )
<t ), Elwolfar 19

Combining (16)—(19), we obtain

) 2a=1 At _ 1 gt 5 20—1 6M?2 5
Ellay ] <My @) + s [ B s + ot [ (o)

2« 3M2L% )
s, Elawio)ar

Applying the Gronwall inequality, we obtain

= tHBAu]-(s)szs>

M and taking the A-norm, we obtain the

) ) 2 e/\t
Elay;(1)[|" < ( 3M*[Ay;(0)[|” + 1
x exp((p2 +p3)t).

Multiplying the above inequality through by e~
desired inequality on [0, f1].
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Case 2:if t; < s <si, k =1,..., N, from the solution of the state equation for (13), we
have

2 _ 2 N2
Ellay;(1)|]” < L Ellyjn () —vi (5 17 = LE E[ Ay; ()|
Case 3: sy <t <t q; k=1,.., N :Inasimilar manner, we obtain

E[|Ay;(8)]|* < 3M2Ly, E|lyje1 (t) — v () |

+1() [ EBauy(s) P+ 0) + ps(6) [ El[awy (o).

It follows that

E||ij(t)||2 < (3M2Lth||yj+1(tk) —yi(t) Hz + 01 /S: EHBAu]-(s)szs> exp((p2 + p3) (T — s¢))-

O

Theorem 4. Assume that the conditions (A1)—-(A3) hold. Under the conditions

2||I-Dyp||” <1,
we have
tim e, =
Proof. For the tracking error, learning law (14), we have
¢j+1(0) = 24(0) = 2j(0) = 2j41(0) +2;(0)
= 6](0) - CA]/](O) - DAMj(O)
=¢j(0) — CAy;(0) — Dype;(0)
= (I = CL — D7p)e;j(0).
It follows (20) that
limlej1(0)||; < lim | (T = CL = D) | llex (O)]] = 0. (21)

Following the learning law (14) and the output equation for (13), for any ¢ € [0, T], we have
eir1(t) = za(t) — zj(t) — zj1(t) +z(t)
= Ej(t) — CA]/](i') — DAu](t)
= e]-(t) - CAy](t) - D'ype](t)
= (I — D'yp)e](t) — CAy](f) (22)

Taking the A-norm for (22), we have
ey < 2011 =Dyl 13 +211CI | Ay 13- (23)

Case1: 0 <t <ty
[8y;(0)| = [[Le; (0)]]- (24)
From (15), it follows that

1—

B B e*)\t
Ee At’|ij(t)||2 < <3M2€ M||Ay]-(0)||2+P1 1 HBAuj||i) exp((p2+p3)’[)
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Taking A-norm on [0, t1], we obtain

sup e*M}EHAy]-(f)H2 < 3M?%exp((p2 + p3)T) sup e*)”EHAy]-(t)H2
0<t<h 0<t<h
1—e M 2
+P1T||BA“]‘H;\ exp((p2 + p3)7)-

Solving the above inequality, we have

sup e ME|Ay;()[F < pa(0)[Br [ exp (o2 + pa) s
>ixh

Combining the expressions (21) and (23), we have

sup ¢ VE|feja (1)][* < 211 = Dy [ I

0<t<t

<2|[I = Dyp||* sup e ME|e;(8)|]” +21ClP0a(A)||Brp||> sup e ME|e(1)]|* exp((o2 + p3)7)
0<t<t 0<t<th

sup e ME|[e;(t)[* +2|[C|1* sup e ME|Ay;(t)
0<t<t OStStl

1

1—

—At
ClICI20a(A)||Byp|* exp((02 +p3)7)| sup e ME|ei(t)]? (25)

= ZHI_ D,YPHZ 2 A 0<t<t
>

For large A and by assumption (20), the coefficient of supy ., e *E||e;(t) ||? is less than 1.
; <t<
I“=0.

Thus, lim; e, supg<<;, € E|lej11(#)
Case 2:if tp < s <si, k=1,...,N,
From Lemma 1, we have
_ N2 N2
El|ay;()|* < L3 Ellyia (8) — v (50 II° = L Ell Ay, (8 ||

Hence,

sup e*)‘tEHejH(t)Hz SZHI—D'ysztsup (f)‘t]:"||e]-(t)||2—|—2||C||2 sup e*)‘tEHAy]-(t)Hz. (26)

te<t<sj R <t<sg Sk_1<t<ty

Case 3: sy <t < fxyq; k=1,..., N : In a similar manner to (15), we obtain

_ _ M1
El a0 < (ML Elyyor () =565 [ + o1 =5 1884} ) expl(p2 + o) (=50
It follows that

sup e_’\tEHij(t)HzgfiMthk sup e‘“EHAy]-(t)Hzexp((pz+p3)(r—sk))

S <t<tpiq Sk—1 <<ty

e/\t -1 2
+ o1 || BAu; [ exp((p2 + p3) (T — 1))

Taking the A-norm on [s, f;, 1], we have

sup e*’”EHeHl(t)Hz§2||I—nyp|]2 sup e*/\tHe]-(t)Hz—5—2||C||2 sup e*/\tEHAy]-(t)Hz. (27)

SkSt<tpiq Sk St<tri1 Sk <t<tpi1

Now, for large A and by assumption (20), the coefficient of sup),, e *E||e;(t) ||2
in (25) is less than 1. Thus,

lim sup e_)‘tI:"HejH(t)H2 =0. (28)

J7®0<ti<ty
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Similarly, using inequalities (26) and (27), one can see that (28) is true on every [t1,s1],
[s1,t2], ..., [EN, SN, [SN, EN+1])- The theorem is proved. [J

Secondly, concerning (13), we consider the following open-loop PI*-type learning law
to meet the require control function and initial state learning law:

ej(s)ds, t€[0,1],

{ ”]'Jrl(t) - ”]( ) ’VPe] (29)

y]—i-l( ) ]/](0) = LZe](O)

Next, we have the theorem related to stochastic ILC problem (13) with (29)
Theorem 5. Assume that the conditions (A1)—(A3) hold. Under the conditions

(- cta - Dy <1,
2|I-Dyp|” <1,

we have

Jim lesf], =0

Proof. It is obvious that

ej+1(t) = za(t) — zj11(t)
=z4(t) — zj(t) + zj(t) — zj11(t)
=¢j(t) +zj(t) — zj41(t)
= ej(t) + [Cy] +D” t) ] [Cy]+1 +D“]+1( )]
= ¢j(t) = Clyj1(t) (8)] = D[ujya(t) — u;(t)]
= e]-(t) - CAy](t) — DAu](t)
= (0) = Cyi (1) = D 1o (1) 4 My |, (090" ()

1 t _
= (I —Dyp)e;(t) — CAy;(t) — D’ylm /0 (t—5)"""e;(s)ds.
For t = 0, we obtain

¢j21(0) = (- D,)ei(0) — CAy;0)
(I —Dyp)e;j(0) — CLye;(0)
(I —CLy — Dyp)ej(0).

Then, we have by our assumption
lim|lej41(0)] < llex(O)ly im || (I~ CLz — D) | = 0.

Now, we consider

1

cpa(t) = (1= D7) 1) = Coy(6) ~ Das [ (690" eyt

It follows that

Y
lejeal, < 1= Dyl + chliagl, + P2 g

Diflly
= (1=l + 2R e, + e,
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and

D|| ||y 2
el < 2( = D1+ LI e - 2ciP

Case1: 0 <t <t:

/\t
EHij(t)H2§ (3M2HAy] H +p1 EHBAuJ H ) (p2+p3)T

Multiplying by e~** both sides of the inequality above

_as 2 2 At 2 1—e™ o(02+03)T
Ee M| ay;(1)[|* < (3M%e | Ay;(0)|[* + pr ——— | Bow; (1)}

Taking A-norm on [0, 1], we obtain

sup Ee_/\tHij(t)Hz
0<t<ty

< S sup BN 0]+ o1 B e

0<t<t
— (1 _3M23(92+Ps)f) sup Ee*“||Ay]-(t)]|2 < pliHBAujHie(pﬁps)r
0<t<t; A
At 2 1-eM 2 (p2+pa)T
— sup Ee|ayy (D) < po o || By et
0<t<t;
where pg = 71_3]\42’;2@ e
From . ;
Aui(t) :'ype]-(t)—f—'ylm/o (t— )" Lej(s)ds,
we obtain
vall|le]]
], < vl + 2200

= (o l+ 20

Using the last inequality in the previous inequality, we have

2
T e eteete

—At 2 1—e ™ o
sup Ee ™|y (1) 2 < ps~ | B]
0<t<t

Using (30), we obtain

2 D[ ||y 2 2 2
lepalf, < 211 = D+ LR ) e 2 2 s

D||||v 2
L e e e e I

1—e M
+20p = 17yl + 1220 e 2

(30)
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(||f o+ 1Pl

A%
T 2)cf? s (| H+”“') eloted) ]EII
P6 Tp €j

2
lejally <

we obtain

D 2
lejaally < 2(}]1 Dy + )'\L'“”)

and clearly we have
lim||e<+1||2 =0
j—c0 ] A

Case 3: s <t < tr1; k=1,..,N : From (1) again, we consider

_1||BAu ®|| > p2+p3) (T—sk)

) ) o oM
Ell a1 < (3M2L 3, (5) | +04

Multiplying by e~** both sides of the inequality above

_ oAt
Ee gy (0] < (3MPLe gy (1) P+ pr T B 0) | ) e ree 0,

Taking A-norm on [sg, tx. 1], we obtain

sup Ee M| Ay; t)||2 < 3MPLy, P2 13750 sup Ee*)‘tHij(t)H2
Sp<t<tgq1 SpSt<tgiq

1-e¥ 2 ppo2p3) (T5¢)

T O

Solving the last inequality

_ ,—At
t) ‘2 < P11TeHBAu]»Hie(PZ‘*‘%)(T_Sk)

= (1 —3M2Lhke(ﬂz+P3>(T—Sk)) sup  Ee M| Ay;(

Sp<t<tryq
_ ,—At
sup Ef_/\tHij(f)Hz < p7176||BAujHig(P2+P3)(T—Sk)
Sk SE<triq
P1

where o7 = 1-3M2L, (P2 te3) (v5k) °
Employing this in (30) shifting the intervals, we gain

sup e_/\tEHejH(t) Hz
Sp<t<tpy1

D 2
<[y + PHD) " sup B
SpSEShe

+2|C|? sup E||ay;(n)]|]

SkSt<trp

D 2
<2l o+ P sup En
Sk<t<tk+1

SlCI 1—e M B ||“/1|| pl02+03) (T=sp) Ao (1
+2|C[pe———IBII* || pH+ sup e ej(t)
SkSESHyq

2
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and therefore

sup e ME||eji]|®
SkSt<tpiq

D||||y 2
< [e(1r- ot + LPL)

2

7

2 1—e ™M o [N/ N y— Y
+ 2| C]l P7?||BH ||’Yp”+7 e sup e ME|le;

SkSt<tri

and, as a result of choosing a sufficiently large A, we obtain

lim sup e*MEHe]-HHi:O.
=% s <t<t

O

Lastly, concerning (13), we consider the following open-loop D-type learning law to
meet the require control function and initial state learning law:

Ay;(0) = Laej(0), Auj(t) = va ¢j(t).
The next theorem is related to stochastic ILC problem (13) with (29) and output Equation (4).
Theorem 6. Assume that the conditions (A1)-(A3) hold. Under the conditions

{ I(I-CLs)[l <1,
[T =Dyl <1,

we have
tim o], = 0.

j—oo
The proof is similar to that of Theorem 5 and omitted.

6. Example

Example 1. Consider the following fractional stochastic partial integro-differential
equations with noninstantaneous impulses of the form

D3, y(t,0) = yao(t,0) + (£, 0) + Ki(t,y(1,0)) + [y Ka(s, y(s,0))dw(s), (£,6) € (s1,t2] x [0,7],
y(t,0) = Hi(ty(t7,0)), 0<O<m t <t<s @31)
y(t,0) =y(t,m)=0,0<t<1,
y(0,0) =yo(0), 0<O<m,
and
z(t,0) = cy(t,0) +du(t,0), c,d R, te€[0,1], 6 € (0,7) (32)
or
z(t6)—c(t6)—|—d/n/tu(s 0)dsdf, te[0,1], 6 € (0,m) (33)
7 - y 7 0 0 7 7 7 7 7

where w(t) denotes a standard real valued Wiener process on (), F,{F:},P) and yy €
L%(0,7); u : [0,1] x (0,7t) — (0,1) is continuous in t; K;,K, : R — R is continuous.
LetZ=H=U=1*01),t=1N=1#tH=0,s =4t =1landa = 3.
Define the operator A : H — H by Ay = %y = Ypg with domain D(A) = {y €
H,y,yp being absolutely continuous ,yg9 € H, y(t,0) = y(t,r) = 0}. Then, A can be
expressed as

Ay:—2n2<y,en>en, y € H.

n=1
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where ¢, (0) = \/g sin(nf),n=1,2,... isa complete orthonormal set of eigenvectors of A.
In addition, — A generates an analytic Cp-semigroup {S(t),t > 0} given by

[e0]

=) et < yoen>en, y € H, with [[S(t)||(pm) < et<1=M

It follows that {S(¢), t > 0} is uniformly bounded. Then, one can write the known operators
Gy () and T, () as

& (1) i= /mg% (0)s(t30)do

AOF / 02:(0)S(t30)do

Then, we readily obtain HG%(t)HL(H,H) <1land H‘Z%(t)HL(HH < %%) fort € [0,1].

Lety(t)(0) = y(t,0) and define the bounded linear operator B : U — H by Bu(t)(6) =
u(t,0), 0 < 6 < 1. Furthermore, define f(t,y(t))(0) = Ky(t,y(t,0)) = n1sin(y(t,0)),
2(Ly(D)(0) = Ka(t,y(t,6)) = nasin(y(t,0)) and ki (£, y(1)(6) = H(Ly(£,0)) = ny(t,6)
where 17;,i = 1,2,3 € R™. Then, with these choices, system (31) can be written in the abstract
form of (1). Thus, the conditions (A1)-(A3) and (8) are satisfied. Hence, by Theorem 1, the
stochastic control integro-differential system (31) is approximately controllable on [0, 1].

Denote z(t)(6) = z(t,0) and take C = cl,, and D = dI,. Then, Equations (32)
and (33) can be rewritten as (2) and (3), respectively. Thus, (1 —c—d)I, € L(Z,Z) and
(1 —d)lzy S L(Z,Z). SetLi =L, =L3=Lyg€ L(Z,H) SV =Y =Y = Yd € L(Z, U)
Ifl >c+d >0andd > % ; then, the statements of Theorem 4 and 5 hold. Thus, the
mentioned theorems guarantee that zj tends to z; as j — oo, or, if 1 > max{c,d} > 0, then
the conditions of Theorem 6 hold. This theorem gives that z; tends to z; as j — oo too.

Example 2. As a second example, consider the following iterated control system of the
fractional stochastic partial integro-differential equations with noninstantaneous impulses
of the form

. ly;(t,0)]
aezy]( 0) + te 29+W, 0<t<060r09<t<05
=0.1 fo cos(z) In(1 + zcos(t — 0.6)|y; (t;,0)|)dz, 06 <t<09, 0<O<1 (34)

y](tl) 0<t<15
yo(0) =0, 0<60<1

and
z]»(t,G) = O.Syj(t,G) + 0.8uj(t,9) 0<t<15 0<0<1.

and
Mj+1(f,9) = u]-(t,Q) +€]‘(f,9) 0<t<15 0<0<1.

Let Z = H = U = L%(0,1). Define the operator A : H — Hby Ay = %y = ypp with
D(A) = {y € H,y,ys are absolutely continuous,ygy € H, y(t,0) = y(t,7t) = 0}. Then, A
can be expressed as

Ay:—2n2<y,en>en, y € H.

n=1

where e, (0) = \/g sin(nf), n =1,2,... is a complete orthonormal set of eigenvectors of A.
In addition, — A generates an analytic Cp-semigroup {S(t),t > 0} given by

Hy=1) et < yoen>en, y € H, with [S(t)||(pm) < et<1=M

n=1
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It follows that {S(¢), t > 0} is uniformly bounded. Then, one can write the known operators
Gq(t) and T, (1) as

Gu(H)y := /0oo Ca(0)S(t%0)do = i Ey (—nzt“) <y,en>ey

n=1
T (t)y = oc/o 02, (0)S(1°0)d0 = Y B (—n21%) <00 >
n=1

Then, we readily obtain [|Ga ()| (p,n) < 1 and |Tu(t)|l(gm) < ﬁ for t € [0,1.5],
then we put Mg = 1, M = ﬁ Define f : [0,1.5] x H — H by f(t,y(t,0)) = 2720 +

y;(£,6) . — . - —
W and B: U — Hby B = 0.25], and Iy : [0,1.5] x H — H by I (t,y;(t;,0)) =
0.1 fol cos(z) In(1 4 zcos(t — 0.6)|y;j(t;,0)|)dz Clearly, ||f(t,y)lly < 0.2(1+ |lylly) and
1f(ty1) = f(by2)llg < 02[lyr —y2fly. Then, we set My = Ly = 02 [Ih(ty)|y <
011+ lylly) and [[m(t,y1) — hi(t,y2) [y < 0[ly1 — 2y and then we take Mj, =
Ly, =0.1,C=05I, D = 0.8]. Then, (A1)-(A3) hold.

If L, is Lc of Theorem 1 with respect to &, L, = 0.0167,L.,, = 0.0144,L.,, =
0.0136 < 1, then the conditions of Theorem 1 hold, so it has a unique solution by Theorem 1.
It is easy to check that ||I — CL; — Dy,|| = [1-05-08| = 03 < 1, 2|[I - Dy,|]* =
2[1-087,° =008 <1,[|I - CLs|| = [1—0.5| =05 < 1, || - D, | = [1— 08/ =02 <
1—hence all conditions of Theorems 4—6.

7. Conclusions

Existence uniqueness of solutions and the approximate controllability concept for
Caputo type SFIDEs in a Hilbert space with a noninstantaneous impulsive effect are
studied. The sufficient conditions for existence uniqueness and approximate controllability
are proved. Moreover, the stochastic ILC problem has been addressed in this paper for
SFIDEs with a noninstantaneous impulsive effect. A different type stochastic ILC such
as P-type, PI*-type and D-type iterative learning schemes are proposed with an initial
state learning mechanism. The sufficient conditions for guaranteeing the asymptotical
convergence are provided and proved.
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