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Abstract: In this paper, we present a class of finite difference methods for numerically solving
fractional differential equations. Such numerical schemes are developed based on the change in
variable and piecewise interpolations. Error analysis of the numerical schemes is obtained by using a
Grönwall-type inequality. Numerical examples are given to confirm the theoretical results.
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1. Introduction

We aim to develop a family of effective numerical methods for solving the following
nonlinear time-fractional differential equations:

Dα
∗y = f (t, y(t)), y(0) = y0, t ∈ (0, T], (1)

where 0 < α < 1, Dα
∗ is the the differential operator in sense of Caputo, given by

Dα
∗y =

1
Γ(1− α)

∫ t

0
(t− r)−αy′(r)dr.

The fractional differential equations provide a powerful tool to describe many natural
phenomena in the fields of physics [1–3], economics [4] and biology [5].

Developing and analyzing highly effective numerical methods for fractional differen-
tial equations has been one of the hot topics. The widely used numerical methods are the L1
schemes [6–13] and L2-schemes [14–16]. Such schemes are developed by using piecewise
interpolations. The optimal convergence results of L1-type schemes for time-dependent
partial equations can be obtained by using the fractional Grönwall type inequalities [17–19].
Moreover, L1-type schemes can be accelerated by using sum-of-exponentials approxi-
mations [20–22]. Other widely used schemes are the so-called backward differentiation
formula (BDF) convolution quadrature (CQ) methods. The CQ methods were originally
proposed in [23,24] and further investigated in [25–27]. That aside, some transformed finite
difference methods were constructed based on some change in variables [28–30]. More
numerical schemes as well as their numerical analysis can be found in an incomplete list of
references [31–33].

It is widely accepted that Equation (1) is equivalent to the following Volterra integral
equation [34]:

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− r)α−1 f (r, y(r))dr. (2)

Here and below, we always assume that the function f is Lipschitz continuous with
respect to the second argument on a suitable set G and the Lipschitz constant is L. Moreover,
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suppose f ∈ C3(G). Then, there exists a function ψ ∈ C2[0, T] and some c1, c2, · · · , cJ ∈
R and d1, d2, · · · , d Ĵ ∈ R such that the solution to Equation (1) can be given by (see,
e.g., [35–38])

y(t) = ψ(t) +
J

∑
j=1

cjtjα +
Ĵ

∑
j=1

djt1+jα, (3)

where J := d2/αe − 1. Clearly, the typical solution to the problem in Equation (1) has
an initial layer at the beginning, and yt blows up as t → 0+. In this paper, we aim to
present effective numerical schemes to solve the fractional problems, taking the initial layer
into account.

The new numerical schemes are developed based on the following changes in variables:

t = sη/α, η ∈ N+, (4)

Equations (1) or (2) is equivalent to the following integral equation:

y(sη/α) = y0 +
1

Γ(α)

∫ sη/α

0
(sη/α − r)α−1 f (r, y(r))dr

= y0 +
1

Γ(α)

∫ s

0
(sη/α − uη/α)α−1 f (uη/α, y(uη/α))

η

α
uη/α−1du

= y0 +
η

Γ(1+α)

∫ s

0
(sη/α−rη/α)α−1rη/α−1 f (rη/α, y(rη/α))dr, (5)

Furthermore, let
z(s) = y(sη/α), (6)

Equation (5) becomes

z(s)= y0 +
η

Γ(1+α)

∫ s

0
(sη/α−rη/α)α−1rη/α−1 f (rη/α, z(r))dr, 0≤ s≤Tα/η . (7)

Then, the solution to Equation (7) has the form

z(s) = ψ(sη/α) +
J

∑
j=1

cjsjη +
Ĵ

∑
j=1

s
η(1+jα)

α , (8)

where ψ ∈ C2[0, T]. Clearly, by the changes in variables, the initial layer will vanish, and
the exact solution will become smoother. Then, the idea of developing effective numerical
methods for solving Equation (1) is as follows:

• Apply the change in Equation (4) with a suitable parameter η to obtain Equation (7)
and its regularity of the solution.

• Develop numerical methods based on the smoothness of the solution to Equation (7).
• Recover the numerical solution by using the simple inverse change y(s) = z(sα/η).

The rest of the paper is organized as follows. In Section 2, we present a family of
new numerical schemes and investigate the numerical schemes’ convergence results. In
Section 3, we present some numerical results to confirm the theoretical findings. Finally,
our conclusions are presented in Section 4.

2. Construction of the Numerical Methods

In this section, we develop some numerical methods and present the numerical results

based on the change in variable. Here and below, we always set the step size h =
Tα/η

N
,

with N being a given integer and si = ih, i = 0, 1, 2, · · · , N. In what follows, we will
present two numerical methods for solving Equation (7).
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2.1. First-Order Accurate Methods

In this subsection, we present a numerical method based on the following change
in variable:

t = s1/α

With Equations (7) and (8), one can check that its solution z(s) ∈ C[0, T] with the
change in variable. Therefore, we propose a first-order accurate method based on the
product rectangle rule for every interval; in other words, we propose∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1f (r1/α, z(r))dr≈ f (s1/α

m , z(sm))
∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1dr.

Then, it follows from Equation (7) that

z(si) = z0 +
1

Γ(1+α)

i

∑
m=1

∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1 f (r1/α, z(r))dr

= z0 +
1

Γ(1+α)

i

∑
m=1

f (s1/α
m , z(sm))

∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1dr + Ri

1 (9)

= z0 +
1

Γ(1+α)

i

∑
m=1

ai
m f (s1/α

m , z(sm)) + Ri
1,

where z0 = y0 and the truncation error is

Ri
1 =

1
Γ(1+α)

i

∑
m=1

∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1

(
f (r1/α, z(r))− ( f (s1/α

m , z(sm))
)

dr = O(h),

while the coefficients are

ai
m =

∫ sm

sm−1

(s1/α
i −r1/α)α−1r1/α−1dr. (10)

Let zi be a numerical approximation to z(si). By replacing z(si) with zi and omitting
the truncation error Ri, we have the following numerical scheme:

Scheme I: zi = z0 +
1

Γ(1+α)

i

∑
m=1

ai
m f (s1/α

m , zm). (11)

Scheme I is an implicit method. At each step, iterative processes are required to solve
the nonlinear equations. In order to reduce the computational cost, a linearized scheme can
be developed as follows:

Scheme II: zi = z0 +
1

Γ(1+α)

i

∑
m=1

ai
m f (s1/α

m , zm−1). (12)

The convergence results of the proposed schemes rely heavily on the following
lemmas:

Lemma 1 ([39]). Let xi, 0 ≤ i ≤ N be a sequence of non-negative real numbers. If

xi ≤ ψi + Mhσ+1−αβ
i−1

∑
j=0

jσxj

(iβ − jβ)α
, 0 ≤ i ≤ N,
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where 0 < α < 1, 1 ≤ β ≤ σ + 1, σ ≥ 0, M is a positive constant, and ψi, 0 ≤ i ≤ N, is a
monotonic increasing sequence of non-negative real numbers, then

xi ≤ ψi

∞

∑
n=0

(
M(ih)σ+1−αβ

β
)n B̂n(α, β, σ), 0 ≤ i ≤ N.

B̂n(α, β, σ) =


1, n = 0,

Πn
l=1B(

l
β
(σ + 1− αβ) + α, (1− α)), n ≥ 1,

where B is the Beta function.
When σ + 1− β = 0, the following is true:

xi ≤ ψiE1−α(
MΓ(1− α)

β
(ih)β(1−α)), 0 ≤ i ≤ N,

where Eα(z) = ∑∞
k=0

zk

Γ(1+kα)
is the Mittag-Leffler function.

Now, we have the following convergence results:

Theorem 1. Suppose f ∈ C3(G). Then, the schemes in Equations (11) and (12) are first-order
accurate.

Proof. Let ei = z(si)− zi. Subtracting Equation (11) from Equation (9) gives

|ei| =
∣∣∣e0 +

1
Γ(1+α)

i

∑
m=1

ai
m( f (s1/α

m , z(sm))− f (s1/α
m , zm)) + Ri

1

∣∣∣ (13)

≤ |e0|+
L

Γ(1+α)

i

∑
m=1

ai
m|ei|+ |Ri

1|.

It follows from Equation (10) that, for 1 ≤ m ≤ i− 1, we have

ai
m =

∫ sm

sm−1

r
1
α−1

(s
1
α
i − r

1
α )1−α

= h
ζ

1
α−1

(s
1
α
i − ζ

1
α )1−α

(14)

≤ h
s

1
α−1
m

(s
1
α
i − s

1
α
m)1−α

= h
m

1
α−1

(i
1
α −m

1
α )α−1

, (15)

where ζ belongs to the interval [sm−1, sm] and the mean value theorem of the integral is
used. Noting that

ai
i = (s1/α

i − s1/α
i−1)

α = ξ1/α−1h, (ξ ∈ (si−1, si)). (16)

then ai
i|ei| can be absorbed by the left-hand side of the inequality when h is sufficiently

small. By combining Equations (14) and (15) with the truncation error Ri
1, we can obtain

|ei| ≤ |e0|+
C0L

Γ(1 + α)

i−1

∑
m=1

h
m

1
α−1

(i
1
α −m

1
α )1−α

+
L

Γ(1 + α)
ξ

1
α−1h + C2h

≤ C3h +
C0L

Γ(1 + α)

i−1

∑
m=1

h
m

1
α−1

(i
1
α −m

1
α )1−α

,
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where C2 and C3 are two constants independent on h. When applying Lemma 1, the above
inequality yields that

ei ≤ C3hE1−α(
αC0Γ(1− α)

Γ(1 + α)
(ih)

1−α
α ).

Now, we conclude that Scheme I is first-order accurate. The convergence of Scheme II
can be obtained in a similar fashion.

2.2. Second-Order Accurate Methods

In this subsection, we present the numerical methods based on the following change
in variable:

t = s2/α.

Again, through Equations (7) and (8), one can check that its solution z(s) ∈ C2[0, T]
with the change in variable. Therefore, we propose a second-order accurate method based
on the product trapezoidal quadrature rule; in other words, we have∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1f (r2/α, z(r))dr

≈
∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1
( sm+1 − r

h
f (s2/α

m , z(sm)) +
r− sm

h
f (s2/α

m+1, z(sm+1))
)

dr.

Then, it follows from Equation (7) again that

z(si) = z0 +
2

Γ(1+α)

i−1

∑
m=0

∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1 f (r2/α, z(r))dr

= z0 +
2

Γ(1+α)

i−1

∑
m=0

∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1
( sm+1 − r

h
f (s2/α

m , z(sm)) + (17)

r− sm

h
f (s2/α

m+1, z(sm+1))
)

dr + Ri
2

= z0 +
2

Γ(1+α)

i

∑
m=0

bi
m f (s2/α

m , z(sm)) + Ri
2,

where the truncation error is

Ri
2 =

2
Γ(1+α)

i−1

∑
m=0

∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1
(

f (r2/α, z(r))− sm+1−r
h

f (s2/α
m , z(sm))−

r− sm

h
f (s2/α

m+1, z(sm+1))
)

dr = O(h2),

and the coefficient is

bi
0 =

∫ s1

s0

(s2/α
i −r2/α)α−1r2/α−1s1−r

h
dr=

1
2

s2
i −

1
2
(s2/α

i −s2/α
1 )α− 1

h

∫ s1

s0

(s2/α
i −r2/α)α−1r2/αdr

=
1
2

s2
i −

1
2
(s2/α

i − s2/α
1 )α − α

2h

∫ s2/α
1

s2/α
0

(s2/α
i − u)α−1uα/2du

=
1
2

s2
i −

1
2
(s2/α

i − s2/α
1 )α −

αs2+1
i

2h

∫ (s1/si)
2/α

0
(1− r)α−1rα/2dr

=
1
2

s2
i −

1
2
(s2/α

i − s2/α
1 )α −

αs2+1
i

2h
B(i−2/α, α/2 + 1, α),
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where B(i−2/α, α/2 + 1, α) is the product of an incomplete beta function and beta function.
For 1 ≤ m ≤ i− 1, we have

bi
m =

∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1
( sm+1 − r

h

)
dr +

∫ sm

sm−1

(s2/α
i −r2/α)α−1r2/α−1

( r−sm−1

h

)
dr

=
m + 1

2

(
(s2/α

i −s2/α
m )α−(s2/α

i −s2/α
m+1)

α
)
−m−1

2

(
(s2/α

i −s2/α
m−1)

α−(s2/α
i −s2/α

m )α
)

−
αs2+1

i
2h

∫ (sm+1/si)
2/α

(sm/si)2/α
(1− r)α−1rα/2dr +

αs2+1
i

2h

∫ (sm/si)
2/α

(sm−1/si)2/α
(1− r)α−1rα/2dr

=
m + 1

2

(
(s2/α

i −s2/α
m )α−(s2/α

i −s2/α
m+1)

α
)
−m−1

2

(
(s2/α

i −s2/α
m−1)

α−(s2/α
i −s2/α

m )α
)

−
αs2+1

i
2h

B((m + 1/i)2/α, α/2 + 1, α) + 2
αs2+1

i
2h

B((m/i)2/α, α/2 + 1, α)

−
αs2+1

i
2h

B(((m− 1)/i)2/α, α/2 + 1, α).

In addition, we have

bi
i =

∫ si

si−1

(s2/α
i −r2/α)α−1r2/α−1r− si−1

h
dr

=
αs2+1

i
2h

B(1,
α

2
+1, α)−

αs2+1
i

2h
B(((i− 1)/i)2/α,

α

2
+1, α)− i− 1

2
(s2/α

i −s2/α
i−1)

α.

Again, by replacing z(si) with zi and omitting the truncation error Ri in Equation (9),
we have the following numerical scheme:

Scheme III: zi = z0 +
2

Γ(1+α)

i

∑
m=0

bi
m f (s2/α

m , zm). (18)

By applying the Newton linearized method to approximate the nonlinear term, we
have the following linearized scheme:

Scheme IV: zi = z0+
2

Γ(1+α)

i−1

∑
m=0

bi
m f (s2/α

m , zm)+
2

Γ(1+α)
bi

i

(
f (s2/α

i , zi−1)+ f2(s2/α
i , zi−1)(zi−zi−1)

)
. (19)

where f2(s2/α
i , zi−1) =

∂
∂y f (s, y)

∣∣∣
s=s2/α

i , y=zi−1
.

By applying the extrapolation to approximate the nonlinear term, we obtain the
following linearized scheme:

Scheme V: z0 = z0,

z1 = z0 +
2

Γ(1 + α)
b1

0 f (s2/α
0 , z0) +

2
Γ(1+α)

b1
1

(
f (s2/α

1 , z0)+ f2(s2/α
1 , z0)(z1 − z0)

)
, (20)

zi = z0+
2

Γ(1+α)

i−1

∑
m=0

bi
m f (s2/α

m , zm)+
2

Γ(1+α)
bi

i f (s2/α
i , 2zi−1 − zi−2), i ≥ 2.

Next, we have the following convergence results:

Theorem 2. Suppose f ∈ C3(G). Then, the schemes in Equations (18)–(20) are second-order
accurate.
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Proof. Let ei = z(si)− zi. Subtracting Equation (11) from Equation (9) gives

|ei| =
∣∣∣e0 +

1
Γ(1+α)

i

∑
m=1

bi
m( f (s1/α

m , zm)− f (s1/α
m , zm)) + Ri

2

∣∣∣ (21)

≤ |e0|+
L

Γ(1+α)

i

∑
m=1

bi
m|ei|+ |Ri

2|.

Now, we present some estimates for the coefficients bi
m. First, it holds that

bi
0 =

∫ s1

s0

(s2/α
i −r2/α)α−1r2/α−1s1−r

h
dr=

1
2

s2
i −

1
2
(s2/α

i −s2/α
1 )α ≤ C1h2

For 1 ≤ m ≤ i− 1, it holds that

bi
m =

∫ sm+1

sm
(s2/α

i −r2/α)α−1r2/α−1
( sm+1 − r

h

)
dr +

∫ sm

sm−1

(s2/α
i −r2/α)α−1r2/α−1

( r−sm−1

h

)
dr

= (s2/α
i −ξ2/α

m )α−1ξ2/α−1
m (sm+1 − ξm) + (s2/α

i −ξ̃2/α
m )α−1ξ̃2/α−1

m (ξ̃m−sm−1)

≤ C2h2(i2/α −m2/α)α−1m2/α−1,

where C2 is a constant independent of h, ξm ∈ (sm, sm+1), and ξm ∈ (sm−1, sm). Noting that

bi
i =

∫ si

si−1

(s2/α
i −r2/α)α−1r2/α−1r− si−1

h
dr ≤ h(s2/α

i −s2/α
i−1)

α−1s2/α−1
i

then bi
i |ei| can be absorbed by the left-hand side of the inequality when h is sufficiently

small.
Now, together with the estimates for bi

m and Lemma 1, we conclude that Scheme III is
second-order accurate. The rest of the results can be obtained in a similar manner.

3. Applications

In this section, several numerical examples are given to illustrate the convergence
results, and the L∞ norm of the error is computed with different α. All numerical examples
are calculated by using the software MATLAB, and T = 1.

Example 1. We consider the nonlinear time fractional ODEs as follows:

Dα
∗u− (u2 − u) = g, t ∈ (0, T], (22)

where g(t) satisfies the exact solution u = t + tα, 0 < α < 1.

We solve Equation (22) by using Schemes I–V. To verify the numerical errors and
convergence orders, we use the temporal step sizes ds = 1/1000, 1/2000, 1/3000, 1/4000
with different α in the first-order scheme. The results presented in Tables 1 and 2 indicate
that the convergence order was one, which coincided with our theoretical results. In
Tables 3–5, we give the maximum error and the convergence orders for the Newton iterative
and Newton linearized methods and the extrapolation skills, respectively. In all these cases,
the time steps chosen were ds = 1/100, 1/200, 1/400, 1/800, and we can see from Table 3
that the convergence order was two, which is consistent with the theoretical findings. The
results illustrated in Tables 4 and 5 indicate that the numerical experiment performed better
than the theoretical conclusions. Here, we also compared our methods with some classical
ones, and the results in Table 6 indicate that these methods’ orders were α. Moreover, we
present the evolution of the maximum norm of the error, and the results found in Figure 1
indicate that our method performed well at the beginning.
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Table 1. Errors and orders in temporal direction for Scheme I (Example 1).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

1000 3.4639× 10−1 ∗ 6.7655× 10−3 ∗ 2.2863× 10−3 ∗
2000 1.3343× 10−1 1.3763 3.3359× 10−3 1.0201 1.8669× 10−3 1.0731
3000 8.3082× 10−2 1.1685 2.2133× 10−3 1.012 7.0564× 10−4 1.0649
4000 6.0391× 10−2 1.1088 1.6559× 10−3 1.0086 5.2011× 10−4 1.0643

Table 2. Errors and orders in temporal direction for Scheme II (Example 1).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

1000 4.3014× 10−1 ∗ 2.7604×
10−2 ∗ 7.1714×

10−3 ∗

2000 2.7749× 10−1 0.6324 1.4006× 10−2 0.9788 3.5936× 10−3 0.9968
3000 2.0582× 10−1 0.7368 9.3831× 10−3 0.9879 2.3972× 10−3 0.9985
4000 1.6379× 10−1 0.7941 1.6559× 10−3 1.0086 1.7983× 10−3 0.9991

Table 3. Errors and orders in temporal direction for Scheme III (Example 1).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

100 1.8761× 10−2 ∗ 7.2753× 10−5 ∗ 2.6841× 10−5 ∗
200 3.7660× 10−3 2.3167 1.8112× 10−5 2.0060 6.6615× 10−6 2.0105
400 9.0495× 10−4 2.0571 4.5335× 10−6 1.9983 1.6600× 10−6 2.0046
800 2.2606× 10−4 2.0012 1.1354× 10−6 1.9974 4.1439× 10−6 2.0021

Table 4. Errors and orders in temporal direction for Scheme IV (Example 1).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

100 1.5948× 10−1 ∗ 2.2079× 10−3 ∗ 2.4690× 10−4 ∗
200 3.1524× 10−2 2.3388 3.6106× 10−4 2.6123 3.8513× 10−5 2.6805
400 5.7871× 10−3 2.4455 5.8291× 10−5 2.6309 6.2528× 10−6 2.6228
800 1.0401× 10−3 2.4761 9.2534× 10−6 2.6552 1.0753× 10−6 2.5998

Table 5. Errors and orders in temporal direction for Scheme V (Example 1).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

100 8.7281× 10−2 ∗ 1.9757× 10−3 ∗ 2.0034× 10−4 ∗
200 2.7388× 10−2 1.6721 3.2896× 10−4 2.5864 3.1694× 10−5 2.6602
400 6.2592× 10−3 2.1295 5.3119× 10−5 2.6302 5.2614× 10−6 2.5907
800 1.2079× 10−3 2.3735 8.3960× 10−6 2.6615 9.3199× 10−7 2.4971
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Table 6. Errors and orders in temporal direction.

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

Euler 1000 5.8753× 10−3 ∗ 2.5839× 10−3 ∗ 5.9704× 10−4 ∗
2000 4.9689× 10−3 0.2418 1.7779× 10−3 0.5394 3.5089× 10−4 0.7668
4000 4.0802× 10−3 0.2843 1.2407× 10−3 0.5614 2.0410× 10−4 0.7817
8000 3.2811× 10−3 0.3145 8.0860× 10−4 0.5752 1.1806× 10−4 0.7898

L1 1000 8.3161× 10−3 ∗ 2.8395× 10−3 ∗ 6.2471× 10−4 ∗
2000 6.4074× 10−3 0.3762 1.8880× 10−3 0.5888 3.5977× 10−4 0.7961
4000 4.9231× 10−3 0.3802 1.2522× 10−3 0.5924 2.0696× 10−4 0.7977
8000 3.7727× 10−3 0.3840 8.2909× 10−4 0.5949 1.1897× 10−4 0.7987

CQBDF1 10 6.6267× 10−3 ∗ 1.5370× 10−3 ∗ 1.8332× 10−4 ∗
20 5.1092× 10−3 0.3752 1.0393× 10−3 0.5646 1.1208× 10−4 0.7099
40 3.9323× 10−3 0.3810 6.9808× 10−4 0.5741 6.7741× 10−4 0.7264
80 3.0031× 10−3 0.3856 4.6667× 10−4 0.5810 4.0584× 10−5 0.7391
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Figure 1. Evolution of maximum errors for different methods.

Example 2. We consider the nonlinear time fractional Allen–Cahn equation

Dα
∗u− uxx − (u− u3) = g, (x, t) ∈ Ω× (0, T], (23)

where Ω = [0, π] and g(x, t) satisfies the exact solution is u(x, t) = (t + tα) sin x.

Similarly, we solve the time-fractional Allen–Cahn equation by using Scheme III based
on a variable transform. We take M = 1000 with N = 8, 16, 32, 64 to find the maximum of
the errors and orders in the temporal direction. Moreover, we consider different spatial step
sizes dx = π

M , where M = 8, 16, 32, 64 with N = 1000 for different α. The numerical errors
are shown in Tables 7 and 8, respectively, where it can clearly be seen that the convergence
orders in the temporal and spatial directions are both two.

Table 7. Errors and orders in temporal direction for Scheme III (Example 2).

α = 0.4 α = 0.6 α = 0.8

N Errors Orders Errors Orders Errors Orders

8 1.5343× 10−3 ∗ 3.4241× 10−4 ∗ 7.3544× 10−4 ∗
16 4.3389× 10−4 1.8222 8.7884× 10−5 1.9459 1.6378× 10−4 2.1669
32 1.1709× 10−4 1.8897 2.2818× 10−5 1.9616 3.8450× 10−5 2.0907
64 3.0965× 10−5 1.9189 5.8943× 10−6 1.9527 9.2644× 10−6 2.0532
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Table 8. Numerical spatial accuracy of Scheme III for different α (Example 2).

α = 0.4 α = 0.6 α = 0.8

M Errors Orders Errors Orders Errors Orders

8 3.4258× 10−3 ∗ 3.3368× 10−3 ∗ 3.2843× 10−3 ∗
16 8.6220× 10−4 1.9903 8.4019× 10−4 1.9897 8.2728× 10−4 1.9891
32 2.1600× 10−4 1.9970 2.1043× 10−4 1.9974 2.0720× 10−4 1.9974
64 5.4114× 10−5 1.9969 5.2643× 10−5 1.9990 5.1812× 10−5 1.9997

4. Conclusions

In this paper, we presented a family of transformed finite difference methods for
numerically solving fractional differential equations while taking the initial singularities of
the solutions into account. The convergence results were obtained by using a fractional
Grönwall-type inequality. The numerical results were given to illustrate the theoretical
results.
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