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Abstract: In this paper, we first use the quantum Fourier transform (QFT) and quantum phase
estimation (QPE) to realize the quantum fractional Fourier transform (QFrFT). As diverse definitions
of the discrete fractional Fourier transform (DFrFT) exist, the relationship between the QFrFT and a
classical algorithm is then established; that is, we determine the classical algorithm corresponding
to the QFrFT. Second, we observe that many definitions of the multi-fractional Fourier transform
(mFrFT) are flawed: when we attempt to propose a design scheme for the quantum mFrFT, we find
that there are many invalid weighting terms in the definition of the mFrFT. This flaw may have very
significant impacts on relevant algorithms for signal processing and image encryption. Finally, we
analyze the circuit of the QFrFT and the reasons for the observed defects.

Keywords: quantum fractional Fourier transform; quantum Fourier transform; quantum phase
estimation; quantum computing

1. Introduction

In recent years, research into and the application of quantum information
technology—represented by quantum computing, quantum communication, and quantum
measurement—have accelerated globally, with many countries increasing investments
and broadening project layouts. Quantum computing is expected to fundamentally im-
prove the speed of information processing, quantum communication will greatly improve
communication security, and quantum precision measurement and sensing technology
will have extensive applications in the future digital age and the era of the Internet of
Things. Quantum computing is a novel computation mode that follows the laws of quan-
tum mechanics to regulate the calculation of quantum information units, utilizing the
characteristics of quantum mechanics [1] (e.g., superposition and entangled states) for the
storage, processing, and transmission of information. Since Feynman proposed the concept
of quantum computing [2], researchers have shown great interest in the high parallelism
and speed provided by such an approach. The discovery of Shor’s efficient decomposition
algorithm [3] aroused interest in the quantum implementation of modular arithmetic opera-
tions, which are the basis of quantum decomposition circuits. The core of Shor’s algorithm
is the quantum Fourier transform (QFT) [4]. In the field of quantum computing, involving
topics such as quantum information processing [5], quantum machine learning [6], quan-
tum neural networks [7], and so on, a series of significant theoretical improvements and
encouraging experimental results have recently been achieved, in which the QFT plays
an important role. Quantum image processing plays an important role in satisfying the
demands of machine vision, and quantum image representation is the basis of quantum
image processing. The representation of quantum images has been developed from the
initial Qubit Lattice [8], Real Ket [9], and Entangled image [10] to the common representa-
tion forms FRQI [11] and NEQR [12]. Based on these characterizations, various methods
for quantum image processing have also been proposed [13], such as local feature point

Fractal Fract. 2023, 7, 743. https://doi.org/10.3390/fractalfract7100743 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7100743
https://doi.org/10.3390/fractalfract7100743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-6199-1907
https://doi.org/10.3390/fractalfract7100743
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7100743?type=check_update&version=2


Fractal Fract. 2023, 7, 743 2 of 15

extraction of quantum images [14], weighted filtering of quantum images in the spatial
domain [15], and restoration of quantum image noise removal [16]. Among them, the QFT
plays an important role in frequency domain filtering [17,18], and the quantum arithmetic
operations associated with the QFT are equally important to consider [19]. It is clear that
the QFT plays an important role in quantum algorithm design and information processing.

As an extended definition of the Fourier transform (FT), the fractional Fourier trans-
form (FrFT) has become one of the most actively researched subjects in signal processing and
has been widely used in optics, image and signal processing, and communication [20–24].
However, at present, there are few studies on the quantum fractional Fourier transform
(QFrFT) [25–28]. The only existing studies have also been conducted from the perspective
of quantum mechanics, in order to study the theory underlying the QFrFT, and have not
presented circuits for realization of the QFrFT. In this paper, the QFrFT is designed by
means of the QFT and quantum phase estimation (QPE) [1]. The idea is to retain the
eigenvector of the QFT, realize the fractional power of the eigenvalue by introducing two
phase gates, and finally obtain the QFrFT by combining the eigenvalue of the fractional
power with the eigenvector.

The remainder of this paper is organized as follows. The QFrFT is proposed in
Section 2. Section 3 explains the correspondence between the QFrFT and a classical algo-
rithm. The flaws of the mFrFT are detailed in Section 4. In Section 5, circuits for the QFrFT
and mFrFT are discussed. Finally, the conclusions are presented in Section 6.

2. Quantum Fractional Fourier Transform

At present, some related studies on the QFrFT have been proposed [25–28], but these
studies have not presented specific quantum circuits. Parasa et al. have even stated that the
QFrFT is impossible to achieve [25]. In this section, we use the QFT and QPE to design the
QFrFT.

For a unitary matrix U, assuming that it has an eigenvector |u〉 and the corresponding
eigenvalue e2πiϕ, then U|u〉 = e2πiϕ|u〉 is satisfied. Therefore, we can calculate ϕ through
the QPE. The circuit is shown in Figure 1. It is not difficult to find that the QFT is the key of
phase estimation, and phase estimation is the key of many quantum algorithms.
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Figure 1. Circuit for quantum phase estimation.

We know the relationship between the eigenvalues and eigenvectors of the discrete
Fourier transform (DFT), as shown in Equation (1):

F|u〉 = D|u〉, (1)

where F denotes the Fourier transform, D is the eigenvalue, and |u〉 is the eigenvector. The
discrete fractional Fourier transform (DFrFT) has the same eigenvector |u〉 as the DFT, and
the correspondence between the eigenvalue and eigenvector is shown in Equation (2):

Fα|u〉 = Dα|u〉, (2)

where Fα denotes the FrFT, and Dα is the eigenvalue. Thus, we can determine the eigenvalue
of the QFrFT by means of the QPE, as depicted in Figure 2.
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The process is as follows:

|ψ1〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ |u〉

= 1
2 (|00〉+ |01〉+ |10〉+ |11〉)⊗ |u〉

. (3)

Thus, we can obtain

|ψ2〉 =
1
2

(
|00〉I|u〉+ |01〉F|u〉+ |10〉F2|u〉+ |11〉F3|u〉

)
. (4)

Here, |u〉 is the eigenvector of the FT. From Equation (1), we can obtain

|ψ2〉 =
1
2

(
|00〉D0|u〉+ |01〉D1|u〉+ |10〉D2|u〉+ |11〉D3|u〉

)
. (5)

The eigenvalue D can be expressed as:

D =


λ0 0

λ1
. . .

0 λn−1

, (6)

where λj ∈ {1, i,−1,−i}; j = 0, 1, · · · , n− 1. The 2-qubit inverse quantum Fourier trans-
form (IQFT) is used in the control register, and its matrix can be expressed as:

IQFT =
1√
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

. (7)

After 2-qubit IQFT, we obtain

|ψ3〉 =
1
4
(Q|00〉+ W|01〉+ E|10〉+ R|11〉)⊗ |u〉 (8)

where 
Q = D0 + D1 + D2 + D3

W = D0 + iD1 − D2 − iD3

E = D0 − D1 + D2 − D3

R = D0 − iD1 − D2 + iD3

. (9)

Moreover, from Equations (6) and (9), we have
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Q = D0 + D1 + D2 + D3

=


λ0

0 + λ1
0 + λ2

0 + λ3
0

λ0
1 + λ1

1 + λ2
1 + λ3

1
. . .

λ0
n−1 + λ1

n−1 + λ2
n−1 + λ3

n−1

 , (10)

W = D0 + iD1 − D2 − iD3

=


λ0

0 + iλ1
0 − λ2

0 − iλ3
0

λ0
1 + iλ1

1 − λ2
1 − iλ3

1
. . .

λ0
n−1 + iλ1

n−1 − λ2
n−1 − iλ3

n−1

 , (11)

E = D0 − D1 + D2 − D3

=


λ0

0 − λ1
0 + λ2

0 − λ3
0

λ0
1 − λ1

1 + λ2
1 − λ3

1
. . .

λ0
n−1 − λ1

n−1 + λ2
n−1 − λ3

n−1

 , (12)

and

R = D0 − iD1 − D2 + iD3

=


λ0

0 − iλ1
0 − λ2

0 + iλ3
0

λ0
1 − iλ1

1 − λ2
1 + iλ3

1
. . .

λ0
n−1 − iλ1

n−1 − λ2
n−1 + iλ3

n−1

 . (13)

Here, the eigenvalues are λj ∈ {1, i,−1,−i}; j = 0, 1, · · · , n − 1. Thus,
Equations (10)–(13) can be written as:

Q =

{
λ0

j + λ1
j + λ2

j + λ3
j = 4 i f λj = 1

λ0
j + λ1

j + λ2
j + λ3

j = 0 i f λj = i,−1,−i
, (14)

W =

{
λ0

j + iλ1
j − λ2

j − iλ3
j = 4 i f λj = −i

λ0
j + iλ1

j − λ2
j − iλ3

j = 0 i f λj = 1, i,−1
, (15)

E =

{
λ0

j − λ1
j + λ2

j − λ3
j = 4 i f λj = −1

λ0
j − λ1

j + λ2
j − λ3

j = 0 i f λj = 1, i,−i
, (16)

and

R =

{
λ0

j − iλ1
j − λ2

j + iλ3
j = 4 i f λj = i

λ0
j − iλ1

j − λ2
j + iλ3

j = 0 i f λj = 1,−1,−i
. (17)

Then, the eigenvalues of the FT are preserved in the quantum state, as shown in
Equation (18): 

λj = 1→ |00〉
λj = −i→ |01〉
λj = −1→ |10〉
λj = i→ |11〉

. (18)

We know that the eigenvector |u〉 can be written in standard orthogonal basis form, as
shown in Equation (19):

|u〉 = ∑
j

bj
∣∣uj
〉
, (19)
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where bj is the projection length. Thus, Equation (8) can also be written as:

|ψ3〉 = ∑
j

∣∣φj
〉
bj
∣∣uj
〉
, (20)

where
∣∣φj
〉
∈ {|00〉, |01〉, |10〉, |11〉}; j = 0, 1, · · · , n− 1. Next, the phase gates RZ(−πα)

and RZ(−πα/2) are expressed as:

RZ(−πα) =

(
1 0
0 e−πiα

)
(21)

and

RZ(−πα/2) =
(

1 0
0 e−πiα/2

)
. (22)

We can obtain the quantum state |ψ4〉 by

|ψ4〉 = ∑
j

e−πiαφj/2∣∣φj
〉
⊗ bj

∣∣uj
〉
. (23)

The 2-qubit QFT can be expressed as:

QFT =
1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

. (24)

After the QFT of
∣∣φj
〉
, the eigenvalues are restored:

|ψ5〉 = 1
2

(
∑
j

e−πiαφj/2λ0
j bj
∣∣uj
〉
|00〉+ ∑

j
e−πiαφj/2λ1

j bj
∣∣uj
〉
|01〉+ ∑

j
e−πiαφj/2λ2

j bj
∣∣uj
〉
|10〉+ ∑

j
e−πiαφj/2λ3

j bj
∣∣uj
〉
|11〉

)

= 1
2

(
∑
j

e−πiαφj/2bj
∣∣uj
〉
|00〉+ ∑

j
e−πiαφj/2Fbj

∣∣uj
〉
|01〉+ ∑

j
e−πiαφj/2F2bj

∣∣uj
〉
|10〉+ ∑

j
e−πiαφj/2F3bj

∣∣uj
〉
|11〉

) , (25)

where φj ∈ {0, 1, 2, 3}. Then,

|ψ6〉 = 1
2

(
∑
j

e−πiαφj/2λ0
j bj
∣∣uj
〉
|00〉+ ∑

j
e−πiαφj/2 IFFbj

∣∣uj
〉
|01〉+ ∑

j
e−πiαφj/2 IF2F2bj

∣∣uj
〉
|10〉+ ∑

j
e−πiαφj/2 IF3F3bj

∣∣uj
〉
|11〉

)

= 1
2

(
∑
j

e−πiαφj/2bj
∣∣uj
〉
|00〉+ ∑

j
e−πiαφj/2bj

∣∣uj
〉
|01〉+ ∑

j
e−πiαφj/2bj

∣∣uj
〉
|10〉+ ∑

j
e−πiαφj/2bj

∣∣uj
〉
|11〉

)
= ∑

j
e−πiαφj/2bj

∣∣uj
〉 1√

2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉)

, (26)

where IF denotes the inverse Fourier transform. Finally, through the H gate, we obtain |ψ7〉:

|ψ7〉 = |0〉|0〉∑
j

e−πiαφj/2bj
∣∣uj
〉
. (27)

From Equations (1) and (2), we know that

∑
j

e−πiφj/2bj
∣∣uj
〉
= F|u〉, (28)

∑
j

e−πiαφj/2bj
∣∣uj
〉
= Fα|u〉. (29)

Then, Equation (27) can be expressed as:

|ψ7〉 = |0〉|0〉Fα|u〉. (30)

Therefore, the QFrFT is obtained.
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In Figure 2, the upper half is the control register, and the lower half is the target register.
As the eigenvalues of QFT are only 4, the scale of the QFT and IQFT in the control register
is 2-qubit, while the scale of the QFT and IQFT in the target register can be arbitrary. The
QFrFT uses two additional auxiliary qubits (i.e., control registers) in space. In time, when
the target register is large, only the quantum gate complexity is considered. The complexity
of the QFT is O

(
n2), where n is the number of qubits of the target register [1].

3. Classical Algorithm Corresponding to the QFrFT

There exist diverse definitions for the DFrFT [29]. This section analyses the correspon-
dence between the proposed QFrFT and classical algorithms. The design idea underlying
the proposed QFrFT is the fractional power of the eigenvalues. We know that the DFT can
be expressed as eigenvalues and eigenvectors, as shown in Equation (31):

F = VDVT , (31)

where D is the eigenvalue matrix and V = [v0|v1|· · · vN−2|vN−1 ] is the eigenvector. Thus,
the DFrFT can be expressed as:

Fα = VDαVT . (32)

The eigenvalues of the FT are 1, i, −1, and −i. Therefore, Equations (31) and (32) can
be further expressed as:

F = ∑
k∈E1

(1)vkvT
k + ∑

k∈E2

(−i)vkvT
k + ∑

k∈E3

(−1)vkvT
k + ∑

k∈E4

(i)vkvT
k (33)

and
Fα = ∑

k∈E1

(1)αvkvT
k + ∑

k∈E2

(−i)αvkvT
k + ∑

k∈E3

(−1)αvkvT
k + ∑

k∈E4

(i)αvkvT
k , (34)

where E1, E2, E3, and E4 represent the set of subscripts corresponding to the respective
eigenvalues and eigenvectors. For the QFrFT in Figure 2, the important calculation steps are

IQFT
(

I|00〉+ F|01〉+ F2|10〉+ F3|11〉
)

= IQFT


I
F
F2

F3


= 1√

4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




I
F
F2

F3


. (35)

Let 
Y0 = I + F + F2 + F3

Y1 = I + iF− F2 − iF3

Y2 = I − F + F2 − F3

Y3 = I − iF− F2 + iF3

. (36)

At this point, we can obtain
Y0|u〉 =

(
D0 + D1 + D2 + D3)|u〉

Y1|u〉 =
(

D0 + iD1 − D2 − iD3)|u〉
Y2|u〉 =

(
D0 − D1 + D2 − D3)|u〉

Y3|u〉 =
(

D0 − iD1 − D2 + iD3)|u〉
. (37)
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Then, 
Y0|u〉 = Q|u〉
Y1|u〉 = W|u〉
Y2|u〉 = E|u〉
Y3|u〉 = R|u〉

. (38)

From the above results in Equations (14)–(17) for Q, W, E, and R, Equation (36) can be
expressed as: 

Y0 = ∑
k∈E1

vkvT
k

Y1 = ∑
k∈E2

vkvT
k

Y2 = ∑
k∈E3

vkvT
k

Y3 = ∑
k∈E4

vkvT
k

. (39)

From the phase gates shown in Figure 2, we can obtain

(
1 0
0 e−πiα

)
⊗
(

1 0
0 e−πiα/2

)
=


1 0

e−πiα/2

e−2πiα/2

0 e−3πiα/2

 =


(1)α 0

(−i)α

(−1)α

0 (i)α

. (40)

Thus, Equation (34) can be obtained by combining Equations (39) and (40). Thus, the
mathematical principle of the QFrFT is explained.

Considering the many definitions of the DFrFT [29], we found that Shih’s FrFT is
consistent with the proposed QFrFT. In 1995, Shih proposed the FrFT using the weighted
combination of four functions [30]. Its definition can be expressed as:

(Fα f )(t) =
3

∑
l=0

Aα
l fl(t), (41)

where fl(t) = Fl [ f (t)]; l = 0, 1, 2, 3. The weighting coefficient Aα
l can be further written as:

Aα
l = cos

(
(α−l)π

4

)
cos
(

2(α−l)π
4

)
exp

(
− 3(α−l)iπ

4

)
= 1

2 ×
[
exp

(
(α−l)πi

4

)
+ exp

(
−(α−l)πi

4

)]
× 1

2 ×
[
exp

(
2(α−l)πi

4

)
+ exp

(
−2(α−l)πi

4

)]
× exp

(
− 3(α−l)iπ

4

)
= 1

4

(
1 + exp

(
− 2(α−l)πi

4

)
+ exp

(
− 4(α−l)πi

4

)
+ exp

(
− 6(α−l)πi

4

))
= 1

4

3
∑

k=0
exp

(
− 2πi

4 (α− l)k
)

= 1
4

3
∑

k=0
exp

(
− 2πiαk

4

)
exp

(
2πikl

4

)
. (42)

Therefore, the weighting coefficient Aα
l can be written in matrix form

Aα
0

Aα
1

Aα
2

Aα
3

 =
1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




Bα
0

Bα
1

Bα
2

Bα
3

, (43)
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where Bα
k = exp

(
− 2πikα

4

)
; k = 0, 1, 2, 3. Thus, Shih’s FrFT can be expressed as:

Fα[ f (t)] =
(

I, F, F2, F3)


Aα
0

Aα
1

Aα
2

Aα
3

 f (t)

= 1
4
(

I, F, F2, F3)


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




Bα
0

Bα
1

Bα
2

Bα
3

 f (t)

. (44)

From Equation (36), Shih’s FrFT can be further expressed as:

Fα[ f (t)] =
1
4
(Y0, Y1, Y2, Y3)


Bα

0
Bα

1
Bα

2
Bα

3

 f (t), (45)

where Bα
k = exp

(
− 2πikα

4

)
; k = 0, 1, 2, 3 and


Bα

0
Bα

1
Bα

2
Bα

3

 =


(1)α

(−i)α

(−1)α

(i)α

. (46)

Thus, we obtain Equation (34). Therefore, Shih’s FrFT coincides with the proposed QFrFT.

4. Implementation of Quantum Multi-Fractional Fourier Transform

Shih’s FrFT has many extended definitions [31–34], which are collectively referred to
as the multi-fractional Fourier transform (mFrFT). Next, we focus on the design of quantum
algorithms for the mFrFT. The implementation of its quantum algorithm will be of great
help in the fields of quantum computing and quantum information security. In 2000, Zhu
et al. proposed the definition of the mFrFT and applied it to image encryption [31]. This
definition can be expressed as:

Fα
M[ f (t)] =

M−1

∑
l=0

Aα
l fl(t), (47)

where the basic functions are fl(t) = F4l/M[ f (t)]; l = 0, 1, · · · , M − 1. The weighting
coefficient Aα

l can be expressed as:

Aα
l = 1

M

M−1
∑

k=0
exp

[
− 2πik(α−l)

M

]
= 1

M

M−1
∑

k=0
exp

(
2πikl

M

)
exp

(
− 2πiαk

M

)
= IDFT

[
e(−2πiαk/M)

]
k=0,1,2,······ ,M−1

. (48)

where IDFT is the inverse discrete Fourier transform. Furthermore, the weighting coeffi-
cients Aα

l can be expressed in matrix form as:
Aα

0
Aα

1
...

Aα
M−1

 =
1
M


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

, (49)
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where w = exp(2πi/M) and Bα
k = exp

(
− 2πikα

M

)
, k = 0, 1, · · · , M − 1. Therefore,

Equation (47) can be expressed as:

Fα
M[ f (t)] = Aα

0 f0(t) + Aα
1 f1(t) + · · ·+ Aα

M−1 fM−1(t)

= Aα
0 F

0
M [ f (t)] + Aα

1 F
4
M [ f (t)] + · · ·+ Aα

M−1F
4(M−1)

M [ f (t)]

=

(
I, F

4
M , · · · , F

4(M−1)
M

)
Aα

0
Aα

1
...

Aα
M−1

 f (t)
, (50)

Further, we can obtain

Fα
M[ f (t)] =

1
M

(
I, F

4
M , · · · , F

4(M−1)
M

)
w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

 f (t). (51)

Here, let

Y0 = w0×0 I + w1×0F
4
M + · · ·+ w(M−1)×0F

4(M−1)
M

Y1 = w0×1 I + w1×1F
4
M + · · ·+ w(M−1)×1F

4(M−1)
M

Y2 = w0×2 I + w1×2F
4
M + · · ·+ w(M−1)×2F

4(M−1)
M

...

YM−1 = w0×(M−1) I + w1×(M−1)F
4
M + · · ·+ w(M−1)×(M−1)F

4(M−1)
M

. (52)

In this way, the mFrFT can also be expressed as Equation (53):

Fα
M[ f (t)] = 1

M (Y0, Y1, · · · , YM−1)


Bα

0
Bα

1
...

Bα
M−1

 f (t)

= 1
M

M−1
∑

k=0
YkBα

k f (t)

, (53)

where Bα
k = exp

(
− 2πikα

M

)
; k = 0, 1, · · · , M− 1. Next, analyzing the results of Equation (52),

from Equation (37), we obtain

Y0|u〉 =
(

w0×0D0 + w1×0D
4
M + · · ·+ w(M−1)×0D

4(M−1)
M

)
|u〉

Y1|u〉 =
(

w0×1D0 + w1×1D
4
M + · · ·+ w(M−1)×1D

4(M−1)
M

)
|u〉

Y2|u〉 =
(

w0×2D0 + w1×2D
4
M + · · ·+ w(M−1)×2D

4(M−1)
M

)
|u〉

...

YM−1|u〉 =
(

w0×(M−1)D0 + w1×(M−1)D
4
M + · · ·+ w(M−1)×(M−1)D

4(M−1)
M

)
|u〉

. (54)
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Let

Q0 = w0×0D0 + w1×0D
4
M + · · ·+ w(M−1)×0D

4(M−1)
M

Q1 = w0×1D0 + w1×1D
4
M + · · ·+ w(M−1)×1D

4(M−1)
M

Q2 = w0×2D0 + w1×2D
4
M + · · ·+ w(M−1)×2D

4(M−1)
M

...

QM−1 = w0×(M−1)D0 + w1×(M−1)D
4
M + · · ·+ w(M−1)×(M−1)D

4(M−1)
M

. (55)

Then,

Q0 = w0×0λ0
j + w1×0λ

4
M
j + · · ·+ w(M−1)×0λ

4(M−1)
M

j = λ0
j + λ

4
M
j + · · ·+ λ

4(M−1)
M

j , (56)

where λj ∈ (1, i,−1,−i). For proof, we set λj ∈
(

eπi0/2, eπi1/2, eπi2/2, eπi3/2
)

.
When λj = 1,

λ0
j + λ

4
M
j + · · ·+ λ

4(M−1)
M

j = M. (57)

When λj = i,

λ0
j + λ

4
M
j + · · ·+ λ

4(M−1)
M

j = 1 + e2πi1/M + e2πi2/M + · · ·+ e2πi(M−1)/M

=
1−(e2πi/M)

M

1−e2πi/M

= 1−1
1−e2πi/M

= 0

. (58)

When λj = −1,

λ0
j + λ

4
M
j + · · ·+ λ

4(M−1)
M

j = 1 + e4πi1/M + e4πi2/M + · · ·+ e4πi(M−1)/M

=
1−(e4πi/M)

M

1−e2πi/M

= 1−1
1−e2πi/M

= 0

. (59)

When λj = −1,

λ0
j + λ

4
M
j + · · ·+ λ

4(M−1)
M

j = 1 + e6πi1/M + e6πi2/M + · · ·+ e6πi(M−1)/M

=
1−(e6πi/M)

M

1−e2πi/M

= 1−1
1−e2πi/M

= 0

. (60)

So, we can obtain

Q0 =

{
M, λj = 1
0, λj = i,−1,−i

. (61)

Next, we calculate Q1 as

Q1 = w0×1D0 + w1×1D
4
M + · · ·+ w(M−1)×1D

4(M−1)
M =

M−1

∑
k=0

e2πik/Mλ4k/M
j , (62)

when λj ∈
(

eπi0/2, eπi1/2, eπi2/2, eπi3/2
)

, we have Q1 = 0. Moreover, our calculation shows
that, for Equation (55), Q2 = Q3 = · · · = QM−4 = 0.

So, we calculate QM−3 as
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QM−3 = w0×(M−3)D0 + w1×(M−3)D
4
M + · · ·+ w(M−1)×(M−3)D

4(M−1)
M =

M−1

∑
k=0

e2πik(M−3)/Mλ4k/M
j , (63)

where λj ∈
(

eπi0/2, eπi1/2, eπi2/2, eπi3/2
)

. Then, we obtain

Q3 =
M−1

∑
k=0

e2πik(M−3)/Mλ4k/M
j =

M−1

∑
k=0

e(2πikM−6πik+2πikh)/M, (64)

where h = 0, 1, 2, 3. For Equation (64), when h = 3, the result is non-zero and the eigenvalue
is eπi3/2 = −i,

QM−3 =

{
M λ = −i
0 λ = 1, i,−1

. (65)

For QM−2,

QM−2 = w0×(M−2)D0 + w1×(M−2)D
4
M + · · ·+ w(M−1)×(M−2)D

4(M−1)
M

=
M−1
∑

k=0
e2πik(M−2)/Mλ4k/M

j

=
M−1
∑

k=0
e(2πikM−4πik+2πikh)/M

. (66)

For Equation (66), when h = 2, the result is non-zero and the eigenvalue is eπi2/2 = −1,

QM−2 =

{
M λ = −1
0 λ = 1, i,−i

. (67)

For QM−1,

QM−1 = w0×(M−1)D0 + w1×(M−1)D
4
M + · · ·+ w(M−1)×(M−1)D

4(M−1)
M

=
M−1
∑

k=0
e2πik(M−1)/Mλ4k/M

j

=
M−1
∑

k=0
e(2πikM−2πik+2πikh)/M

. (68)

For Equation (68), when h = 1, the result is non-zero and the eigenvalue is eπi/2 = i,

QM−1 =

{
M λ = i
0 λ = 1,−1,−i

. (69)

Therefore, for Equation (52), only Y0, YM−3, YM−2, and YM−1 are non-zero, while
the other terms are zero. If the eigenvalue λj ∈

(
e−πi0/2, e−πi1/2, e−πi2/2, e−πi3/2

)
, in

Equation (55), only Q0, Q1, Q2, and Q3 are non-zero, while the other results are zero. For
Equation (53), there are only four effective weighting terms for the mFrFT.

However, for Equation (53), when Bα
k takes different values, we obtain different

definitions [35]. For example, Bα
k = exp

(
− 2πikα

4

)
; k = 0, 1, 2, 3 gives Shih’s FrFT [30];

Bα
k = exp

(
− 2πikα

M

)
; k = 0, 1, · · · , M − 1 gives the mFrFT of Zhu et al. [31];

Bα
k = exp

[
− 2πi(mk M+1)α(nk M+k)

M

]
; k = 0, 1, · · · , M − 1 gives the multi-parameter frac-

tional Fourier transform of Tao et al. [32]; Bα
k = exp

[
− 2πiα(rk M+l)

M

]
; k = 0, 1, · · · , M − 1

gives the modified multi-parameter fractional Fourier transform of Ran et al. [33]; and
Bα

k = exp
[
− 2πiαl(rl M+l)

M

]
; k = 0, 1, · · · , M − 1 gives the vector power multi-parameter

fractional Fourier transform of Ran et al. [34].
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Obviously, all of these extended definitions also have only four effective weighting
terms, which has a great impact on the application of these algorithms in signal processing
and image encryption.

5. Discussion
5.1. Phase Gates

For the QFrFT shown in Figure 2, we select the phase gates RZ(−πα) and RZ(−πα/2).
If the phase gates RZ(πα) and RZ(πα/2) are selected, the QFrFT circuit is as shown in
Figure 3.
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From Figure 3, we can see that the phase gates have changed, and the order of the
QFT and the IQFT regarding the 2-qubits in the control register has also changed. This is to
ensure that the eigenvalues correspond to the eigenvectors. The correspondence between
the eigenvalues of the control register is:

λj = 1→ |00〉
λj = i→ |01〉
λj = −1→ |10〉
λj = −i→ |11〉

. (70)

From the phase gates RZ(πα) and RZ(πα/2), we obtain

(
1 0
0 eπiα

)
⊗
(

1 0
0 eπiα/2

)
=


1 0

eπiα/2

e2πiα/2

0 e3πiα/2

 =


(1)α 0

(i)α

(−1)α

0 (−i)α

. (71)

This ensures the correspondence between eigenvalues and eigenvectors. Thus, we
have

F = ∑
k∈E1

(1)vkvT
k + ∑

k∈E2

(i)vkvT
k + ∑

k∈E3

(−1)vkvT
k + ∑

k∈E4

(−i)vkvT
k (72)

and
Fα = ∑

k∈E1

(1)αvkvT
k + ∑

k∈E2

(i)αvkvT
k + ∑

k∈E3

(−1)αvkvT
k + ∑

k∈E4

(−i)αvkvT
k . (73)

The QFrFT and Shih’s FrFT are the same. To ensure that the eigenvalues correspond
to the eigenvectors, when the eigenvalues become fractional powers, they also correspond
to the eigenvectors. Therefore, the key idea of the algorithm’s design is to retain the
eigenvector of the FT, such that the eigenvalue takes a fractional power.

Considering Figure 2, if we only change the phase gates, the result is shown in
Figure 4. The relevant correspondence between the eigenvalues and eigenvectors is shown
in Equations (33) and (73). In this way, the obtained results do not correspond to the feature
vector of the FT and, so, the design scheme shown in Figure 4 is not feasible.
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5.2. Flaws of the mFrFT

From the design of the quantum mFrFT, we find that there are many invalid weighting
terms in the definition of classical mFrFT. The reason for this problem is due to the eigen-
values of the algorithm. We know that the eigenvalues of the FT are 1, i, −1 and −i, and
the time–frequency spatial distribution is shown in Figure 5. For Equation (54), the sum of
eigenvalues can be expressed as a change in angle in Figure 5.
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Figure 5. Time–frequency distribution of eigenvalues.

For angle θ, we set
w = eiθ , (74)

where θ = 2π/M. We can obtain

1 + w + w2 + · · ·+ wM−1 = 0. (75)

Furthermore, we have

1 + wh + w2h + · · ·+ w(M−1)h =

{
M h = 0
0 h 6= 0

. (76)

Thus, Equation (64) can be expressed as

M−1

∑
k=0

e(2πikM−6πik+2πikh)/M =
M−1

∑
k=0

e2πike
2πik

M (h−3). (77)
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Here, e2πik = 1. Therefore, the result of Equation (77) is non-zero only when h = 3.
The other results are also confirmed.

Since 2000, Zhu’s mFrFT [31] and previous results [36], as well as some extended
definitions, have been shown to have flaws [32–34], which we discussed in terms of the
eigenvalues of the QFT. In the extended definition, the number of effective weighting terms
depends on the period of the matrix; for example, the period of the FT matrix is 4, so its
effective weighting is 4, while the period of the Hadamard transform is 2, so the effective
weighting term is defined as 2 accordingly.

6. Conclusions

In this paper, we used the QFT and QPE to design the QFrFT. We retained the eigenvec-
tors of the QFT and forced its eigenvalues to take fractional powers. As diverse definitions
for the DFrFT exist, we determined the correspondence between the proposed QFrFT and
classical algorithms, which lays the foundation for future application of the QFrFT to solve
practical problems. Regarding the design of the quantum mFrFT, we observed a flaw
in the definition of classical algorithms—namely, there are only four effective weighting
terms in a series of mFrFT definitions—which has a significant impact on the applicability
of the algorithms. Finally, we discussed the correspondence between eigenvalues and
eigenvectors in the QFrFT circuit and analyzed the definition of the algorithm in depth.
Furthermore, the defects of the mFrFT were mathematically explained.
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