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Abstract: Rubella is a viral disease that can lead to severe health complications, especially in pregnant
women and their unborn babies. Understanding the dynamics of the Rubella disease model is crucial
for developing effective strategies to control its spread. This paper introduces a major innovation
by employing a novel piecewise approach that incorporates two different kernels. This innovative
approach significantly enhances the accuracy of modeling Rubella disease dynamics. In the first
interval, the Caputo operator is employed to address initial conditions, while the Atangana–Baleanu
derivative is utilized in the second interval to account for anomalous diffusion processes. A thorough
theoretical analysis of the piecewise derivative for the problem is provided, discussing mathematical
properties, stability, and convergence. To solve the proposed problem effectively, the piecewise
numerical Newton polynomial technique is employed and the numerical scheme for both kernels
is established. Through extensive numerical simulations with various fractional orders, the paper
demonstrates the approach’s effectiveness and flexibility in modeling the spread of the Rubella virus.
Furthermore, to validate the findings, the simulated results are compared with real data obtained
from Rubella outbreaks in Uganda and Tanzania, confirming the practical relevance and accuracy of
this innovative model.

Keywords: Rubella disease; piecewise operator; existence and uniqueness results; Newton polynomial
technique; Caputo derivative; Atangana–Baleanu derivative

1. Introduction

A wide range of infectious diseases exist in human society, some of which have little
effect on our health, while others are fatal. Rubella was originally recorded in the mid-
eighteenth century. Friedrich Hoffmann originally reported rubella in 1740, and it was
later verified by de-Bergen (1752) and Orlow (1758) [1]. Rubella, sometimes called German
measles, is a contagious and potentially life-threatening disease that mostly affects children
and young people. The disease is characterized by the appearance of a rash on the face,
which spreads to the chest and limbs and usually disappears after a period of 3 days. This
rash is the most common sign of rubella infection, according to [2]. People’s lymph nodes
and skin are particularly sensitive to this viral infection. Congenital rubella syndrome (CRS)
and fetal death and are the most common complications in pregnant women. Rubella is a
viral infection, and vaccination is only option to protect oneself (MMR vaccine). Because
the illness is so mild, half of individuals are unaware they are afflicted, according to [3].
Rubella is a common virus in various countries of the globe, with about 100,000 infections
of the CRS documented each year [4]. It spreads through a variety of routes, which includes
direct contact to infected people and airborne droplets of infected persons during sneezing,
coughing, or speaking. It is possible that an individual who comes into contract with it will
be unaware of it for about a week or two. In contrast, the outbreak only lasts 3 to 5 days.

Mathematical models for infections can be useful in understanding how these diseases
behave. Using methods from differential calculus, numerous models have been developed
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to better explain infectious illnesses such as in [5], where Jajarmi et al. investigated a new
fractional mathematical model involving a non-singular derivative operator to discuss
the clinical implications of diabetes and tuberculosis coexistence. A space–time spectral
order sinc-collocation technique is used to investigate the heat model in viscoelasticity [6].
Furthermore, the predictor–corrector compact difference approach for nonliear fractional
differential equations is presented in [7]. The integer order nonlinear HIV/AIDS infection
model is extended to the non- integer nonlinear model [8]. Further, a general formulation
for the SIRV epidemiological model is presented as a system of fractional order derivatives
with respect to time to characterize some infectious diseases alongside the proportion of u1
and u2, which describe of vaccination and treatment, respectively [9]. For the deterministic
modeling of epidemics, which consists of first-order ordinary differential equations with
an autonomous nature, classical (integer-order) derivatives have been utilized [10]. An
example of such a model is the rubella epidemic presented below.

dS
dt

= A− [ν + Q + ω]S(t),

dE
dt

= νS(t)− (ξ + ω)E(t),

dI
dt

= ξE(t)− (ε + ω)I(t),

dR
dt

= εI(t)−ωR(t), (1)

dV
dt

= DV(t)−ωV(t).

With initial conditions

S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, V(0) = V0 ≥ 0.

In the above model, S(t) stands for susceptible, E(t) stands for latent, I(t) shows in-
fected, R(t) shows recovered, and V(t) represents vaccinated individuals. A shows those
individuals that have been immunized with vaccination, and ν stands for force of infection
at the age η at t. Further, ξ and ε stand for latent rate and infection rate, respectively.

Classical models, on the other hand, rely on local differential and integral operators
that lack the ability to preserve the memory of the epidemic under investigation. As a
result, the memory characteristics of the underlying epidemic are ignored in classical calcu-
lus. Nonlocal operators must be utilized to preserve memory effects in the deterministic
epidemic model due to their superiority over classical operators, as demonstrated in a
number of recent research investigations. For example, in [11], Atangana and Qureshi
have modeled attractors of chaotics systems. The applications of fractional calculus to
epidemiology are discussed in [12]. The reaction disffusion model of dengue disease is
studied in [13]. Further, the dengue model with the novel fractional operator is studied
in [14].

Fractional calculus, notably introduced by Riemann–Liouville in 1832, deals with
generalizing the concepts of integer-order derivatives and integrals to non-integer orders.
In 1967, Caputo provided a practical definition of fractional operators, which has found
applications in various fields, describing global phenomena in a wide range of disciplines.
The Caputo indicator, also known as the Caputo derivative, is introduced in research
contexts to capture complex dynamics, enhance modeling accuracy, address real-world
scenarios, and overcome limitations associated with traditional derivatives. This is espe-
cially important when dealing with phenomena that exhibit non-standard, fractional-order
behavior, making the Caputo derivative a valuable tool for more accurately representing
and understanding such complex systems. In 2015, the Caputo–Fabrizio derivative opera-
tor was introduced as an update to the traditional Caputo operator. This new fractional
derivative eliminated singular kernels, leading to more stable and well-behaved calcula-
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tions. Its benefits include improved accuracy and the ability to analyze complex systems
and phenomena more effectively [15]. In 2016, Atangana and Baleanu introduced the ABC
operator [16], providing a valuable tool for solving global problems that require modern
calculus [17]. The Atangana–Baleanu derivative, a key component of the ABC operator,
plays a crucial role in capturing memory effects in various systems by incorporating the
power-law kernel. Memory effects refer to the phenomenon where a system’s current state
depends not only on its immediate past state but also on its past states over an extended
period. Such memory effects can arise in a wide range of physical, biological, and engi-
neering systems. The Atangana–Baleanu derivative enables the modeling of systems with
long-term memory and anomalous diffusion, providing a more accurate description of
complex behaviors that cannot be adequately captured by traditional integer-order calculus.
Several researchers have used different types of operators and applied them to numerous
types of mathematical models such as the finiancial bubble mathematical model [18], the
dicrete time SIR model [19], COVID-19 pandemic [20], energy prices [21], system risks and
spillover networks [22], and the prey–predator model [23]. Additionally, Qurashi [24] used
the fractal-fractional operator to design a mathematical model for the rubella epidemic
while taking care of dimensional consistency among the model equations.

Atangana and Araz [25] recently constructed a novel sorts of operators known as piece-
wise integrals and derivatives. These operators were formulated to address the limitations
of exponential or Mittag–Leffler kernels in specifying the timing of crossover. Their unique
piecewise derivative approach was presented in [25] as a solution to these challenges. Sub-
sequently, researchers explored the crossover behaviors via these operators in a new way,
for instance, Huanglomngbing disease [26], COVID-19 transmission [27], rompurs spread-
ing models [28], the tumor immune interaction model [29], and the Rota virus disease [30].
Inspired by the advantages of these operators, we will apply the piecewise Caputo and
ABC piecewise operators to investigate the model (1) in the following manner:

CABC
0 Dη

t (S(t)) = A− [ν + Q + ω]S(t),
CABC
0 Dη

t (E(t)) = νS(t)− (ξ + ω)E(t),
CABC
0 Dη

t (I(t)) = ξE(t)− (ε + ω)I(t),
CABC
0 Dη

t (R(t)) = εI(t)−ωR(t),
CABC
0 Dη

t (V(t)) = DV(t)−ωV(t),

(2)

where, η ∈ (0, 1], t ∈ [0,T]. A more detailed form of the model (2) is given as:

CABC
0 Dη

t (S(t)) =
{C

0 Dη
t (S(t)) =C Q1(S, t), 0 < t ≤ t1,

ABC
0 Dη

t (S(t)) =ABC Q1(S, t), t1 < t ≤ T,
,

CABC
0 Dη

t (E(t)) =
{C

0 Dη
t (E(t)) =C Q2(E, t), 0 < t ≤ t1,

ABC
0 Dη

t (E(t)) =ABC Q2(E, t), t1 < t ≤ T,
,

CABC
0 Dη

t (I(t)) =
{C

0 Dη
t (I(t)) =C Q3(I, t), 0 < t ≤ t1,

ABC
0 Dη

t (I(t)) =ABC Q3(I, t), t1 < t ≤ T,
,

CABC
0 Dη

t (R(t)) =
{C

0 Dη
t (R(t)) =C Q4(R, t), 0 < t ≤ t1,

ABC
0 Dη

t (R(t)) =ABC Q4(R, t), t1 < t ≤ T,
,

CABC
0 Dη

t (V(t)) =
{C

0 Dη
t (V(t)) =C Q5(V, t), 0 < t ≤ t1,

ABC
0 Dη

t (V(t)) =ABC Q5(V, t), t1 < t ≤ T,
, (3)

where, C
0 Dη

t is the Caputo and ABC
0 Dη

t is the ABC derivative operator.
This article applies the piecewise operator with two different kernels: the ABC and

Caputo fractional operators. The Caputo operator is used for the first interval, while the
ABC derivative is applied for the second interval. The existence and uniqueness of the
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solution are examined within the framework of the piecewise derivative. The dual-kernel
structure of our model requires careful consideration of different intervals, making the
Newton polynomial technique [31] a suitable choice due to its ability to approximate
functions over separate intervals while maintaining smooth transitions. Therefore, the
approximate solution is evaluated using the technique of Newton polynomials, establishing
the solutions for both the ABC and Caputo fractional operators. The numerical simulation
section compares the real data from Uganda and Tanzania.

The paper’s structure unfolds as follows: Section 2 is dedicated to an in-depth exami-
nation of preliminaries, establishing the foundational concepts. Transitioning to Section 3,
we delve into the exploration of existence and uniqueness results, shedding light on the core
theoretical aspects. In Section 4, our attention shifts towards the development and discus-
sion of the numerical scheme, a critical component of our methodology. Finally, Section 5
serves as a concluding reflection, where we provide a concise summary encapsulating the
achievements, insights, and key findings uncovered in this study.

2. Preliminaries

Some fundamental definitions are provided in this section.

Definition 1 ([16]). LetM(t) ∈ H1(0, t), with fractional order 0 < η < 1; then,

ABC
0Dη

t (M(t)) =
ABC(η)

1− η

∫ t

0

d
dς
MςEη

[
−η

1− η

(
t− ς

)η]
dς, (4)

is called ABC derivative of a functionM(t) and the generalization function defined as ABC(η) =
1− η + η

Γ(η) . For the fractional ABC derivative, we have ABC(0) = ABC(1) = 1.

While the integration can be written as:

ABC
0 Iη

tM(t) =
1− η

ABC(η)
M(ς)(t) +

η

Γ(η)ABC(η)

∫ t

0
M(t− ς)η−1dς. (5)

Definition 2 ([16]). ForM(t) ∈ C[0, T], the fractional operator in Caputo sense is

C
0 Dη

tM(t) =
1

Γ(1− η)

∫ t

0

d
dς

Mς(t− ς)n−η−1dς.

Definition 3 ([25]). The piecewise differential operator in the sense of Caputo and ABC for a
piecewise differentiableM(t) is:

PCABC
0 Dη

tM(t) =

{C
0 Dη

tM(t), 0 < t ≤ t1,
ABC
0 Dη

tM(t) t1 < t ≤ T.

Definition 4 ([25]). The corresponding piecewise integral forM(t) is

PCABC
0 ItM(t) =


1

Γ(η)

∫ t

t1

M(ς)(t− ς)η−1d, 0 < t ≤ t1,

1− η

ABC(η)
M(t) +

η

ABCηΓη

∫ t

t1

M(ς)(t− ς)η−1d t1 < t ≤ T,

here, PCABC
0 Iη

t represents the piecewise integral operator.

3. Existence and Uniqueness Results

The existence and uniqueness result of the suggested model (2) in the piecewise notion
are found in this part. In order to do this, the system (3) can be written as follows.
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PCABC
0 Dη

t L(t) = Q(t,L(t)), 0 < η ≤ 1, (6)

is

L(t) =


L0 +

1
Γ(η)

∫ t

0
Q(ς,L(ς))(t− ς)η−1dς, 0 < t ≤ t1

L(t1) +
1− η

ABC(η)
Q(t,L(t)) + η

ABC(η)Γ(η)

∫ t

t1

(t− ς)η−1Q(ς,L(ς))d(ς), t1 < t ≤ T,
(7)

where

L(t) =



S(t)
E(t)
I(t)
R(t)
V(t)

, L0 =



S0

E0

I0

R0

V0

, L(t1)
=



S(t1)

E(t1)

I(t1)

R(t1)

V(t1)

, Q(t,L(t)) =



Q1 =

{CQ1(S, t)
ABCQ1(S, t),

Q2 =

{CQ2(E, t)
ABCQ2(E, t),

Q3 =

{CQ3(I, t)
ABCQ3(I, t),

Q4 =

{CQ4(R, t)
ABCQ4(R, t),

Q5 =

{CQ5(V, t)
ABCQ5(V, t).

(8)

Taking ∞ > t2 ≥ t > t1 > 0 and the Banach space Λ = C[0,T] with

‖L‖ = max
t∈[0,T]

|L(t)|.

Further,

(C1) ∃ LL > 0 such that ∀ L, L̄ ∈ Λ, one may have

|Q(t,L)−Q(t, L̄)| ≤ LL|L − L̄|.

(C2) ∃ CQ > 0 & MQ > 0, one have

|Q(t,L(t))| ≤ CQ|L|+ MQ.

Theorem 1. If Q is piecewise continuous on 0 < t ≤ t1 and t1 < t ≤ t2 on [0,T], also satisfying
(C2), then (6) has at least one solution.

Proof. Consider Θ ⊆ Λ, which is given by

Θ = {L ∈ Λ : ‖L‖ ≤ R1,2, R > 0},

Define H : Θ→ Θ by

H(L) =


L0 +

1
Γ(η)

∫ t1

0
Q(ς,L(ς))(t− ς)η−1dς, 0 < t ≤ t1

L(t1) +
1− η

ABC(η)
Q(t,L(t)) + η

ABC(η)Γ(η)

∫ t

t1

(t− ς)η−1Q(ς,L(ς))d(ς), t1 < t ≤ T,
(9)

for L ∈ Θ, one can obtain
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|H(L)(t)| ≤


|L0|+

1
Γ(η)

∫ t1

0
(t− ς)η−1|Q(ς,L(ς))|dς,

|L(t1)|+
1− η

ABC(η)
|Q(t,L(t))|+ η

ABC(η)Γ(η)

∫ t

t1

(t− ς)η−1|Q(ςL(ς))|d(ς),

≤


|L0|+

1
Γ(η)

∫ t1

0
(t− ς)η−1[CQ|L|+ MQ]dς,

|L(t1)|+
1− η

ABC(η)
[CQ|L|+ MQ] +

η

ABC(η)Γ(η)

∫ t

t1

(t− ς)η−1[CQ|L|+ MQ]d(ς),

≤


|L0|+

Tη

Γ(η + 1)
[CH |U|+ MQ] = R1, 0 < t ≤ t1,

|L(t1)|+
1− η

ABC(η)
[CQ|L|+ MQ] +

η(T − T)η

ABC(η)Γη + 1
[CQ|L|+ MQ]d(ς) = R2, t1 < t ≤ T,

≤
{

R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

Since L ∈ Θ. Hence, H(Θ) ⊂ Θ. So, H is closed and complete. Next, taking ti < tj ∈ [0, t1]
gives

|H(L)(tj)−H(L)(ti)| =

∣∣∣∣ 1
Γ(η)

∫ tj

0
(tj − ς)η−1Q(ς,L(ς))dς

− 1
Γ(η)

∫ ti

0
(ti − ς)η−1Q(ς,L(ς))dς

∣∣∣∣
≤ 1

Γ(η)

∫ ti

0
[(ti − ς)η−1 − (tj − ς)η−1]|Q(ς,L(ς))|dς

+
1

Γ(η)

∫ tj

ti

(tj − ς)η−1|Q(ς,L(ς))|dς

≤ 1
Γ(η)

[ ∫ ti

0
[(ti − ς)η−1 − (tj − ς)η−1]dς

+
∫ tj

ti

(tj − ς)η−1dς

]
(CH |L|+ MQ)

≤
(CQL+ MQ)

Γ(η + 1)
[t

η
j − t

η
i + 2(tj − ti)

η ]. (10)

This implies
|H(L)(tj)−H(L)(ti)| → 0, as ti → tj.

Hence, H is equi continuous in [0, t1]. Now, for ti, tj ∈ [t1,T], one can have

|H(L)(tj)−H(L)(ti)| =

∣∣∣∣ 1− η

ABC(η)
Q(t,L(t)) + η

Γ(η)ABC(η)

∫ tj

t1

(tj − ς)η−1Q(ς,L(ς))dς,

− 1− η

ABC(η)
Q(t,L(t)) + (η)

ABC(η)Γ(η)

∫ ti

t1

(ti − ς)η−1Q(ς,L(ς))dς

∣∣∣∣
≤ η

ABC(η)Γ(η)

∫ ti

t1

[(ti − ς)η−1 − (tj − ς)η−1]|Q(ς,L(ς))|dς

+
η

ABC(η)Γ(η)

∫ tj

ti

(tj − ς)η−1|Q(ς,L(ς))|dς

≤ η

ABC(η)Γ(η)

[ ∫ ti

t1

[(ti − ς)η−1 − (tj − ς)η−1]dς

+
∫ tj

ti

(tj − ς)η−1dς

]
(CQ|L|+ MQ)

≤ η(CQL+ MQ)

ABC(η)Γ(η + 1)
[t

η
j − t

η
i + 2(tj − ti)

η ]. (11)
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As a result, the map H is equi-continuous. The operator H satisfies the properties of being
completely continuous, uniformly continuous, and bounded by the Arzela’-Ascoli result.
Additionally, the piecewise problem (3) has at least one solution within each sub-interval,
by the Schauder result.

Theorem 2. With assumption (C1), and Tη

Γ(η+1) ≤ 1, the considered model has a unique solution.

Proof. Since H : Θ→ Θ is continuous, taking L and L̄ ∈ Θ, for t ∈ [0, t1] one has

‖H(L)−H(L̄)‖ = max
t∈[0,t1]

∣∣∣∣ 1
Γ(η)

∫ t

0
(t− ς)η−1Q(ς,L(ς))dς− 1

Γ(η)

∫ t

0
(t− ς)η−1Q(ς, W̄(ς))dς

∣∣∣∣
≤ Tη

Γ(η + 1)
LQ‖L − L̄‖. (12)

From (12), it follows that

‖H(L)−H(L̄)‖ ≤ Tη

Γ(η + 1)
LQ‖L − L̄‖. (13)

Therefore, from the Banach theorem the solution of the suggested problem is unique in
t ∈ [0, t1]. Now, for t ∈ [t1,T] with the ABC operator, one can obtain

‖H(L)−H(L̄)‖ ≤ 1− η

ABC(η)
LQ‖L − L̄‖+

η(T− Tη)

ABC(η)Γ(η + 1)
LQ‖L − L̄‖, (14)

or

‖H(L)−H(L̄)‖ ≤ LQ

[
1− η

ABC(η)
+

η(T − T)η

ABC(η)Γ(η + 1)

]
‖L − L̄‖. (15)

Hence, from the Banach theorem solution the considered problem is unique. So, from
Equations (13) and (15) the model has a unique solution on considered sub-intervals.

4. Numerical Scheme

Here, the numerical algorithm for the Rubella model (2) in the sense of the Caputo
and ABC piecewise derivatives is presented. The Rubella disease model (2) in the context
of the fractional derivative is studied in [32]; further in [33], this model is analyzed by
the application of the Adam Bashforth scheme in the fractal fractional scenario. Here, by
applying the piece-wise integral, one can obtain

S(t) =

{
S(0) + 1

Γ(η)

∫ t1
0 (t− ς)η−1cQ1(t,S)dς 0 < t ≤ t1,

S(t1) +
1−η

AB(η) Q1(t,S)dς + η
AB(η)Γ(η)

∫ t
t1
(t− ς)η−1Q1(t,S)dς, t1 < t ≤ T,

E(t) =

{
E(0) + 1

Γ(η)

∫ t1
0 (t− ς)η−1cQ2(t,E)dς 0 < t ≤ t1,

E(t1) +
1−η

AB(η) Q2(t,E)dς + η
AB(η)Γ(η)

∫ t
t1
(t− ς)η−1Q2(t,E)dς, t1 < t ≤ T,

I(t) =

{
I(0) + 1

Γ(η)

∫ t1
0 (t− ς)η−1cQ3(t, I)dς 0 < t ≤ t1,

I(t1) +
1−η

AB(η) Q3(t, I)dς + η
AB(η)Γ(η)

∫ t
t1
(t− ς)η−1Q3(t, I)dς, t1 < t ≤ T,

R(t) =

{
R(0) + 1

Γ(η)

∫ t1
0 (t− ς)η−1cQ4(t,R)dς 0 < t ≤ t1,

R(t1) +
1−η

AB(η) Q4(t,R)dς + η
AB(η)Γ(η)

∫ t
t1
(t− ς)η−1Q4(t,R)dς, t1 < t ≤ T,

V(t) =

{
V(0) + 1

Γ(η)

∫ t1
0 (t− ς)η−1cQ5(t,V)dς 0 < t ≤ t1,

V(t1) +
1−η

AB(η) Q5(t,V)dς + η
AB(η)Γ(η)

∫ t
t1
(t− ς)η−1Q5(t,V)dς, t1 < t ≤ T.
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Considering t = tn+1, this gives:

S(t) =

S(0) + 1
Γ(η)

∫ t1
0 (t− ς)η−1cQ1(t,S)dς 0 < t ≤ t1,

S(t1) +
1−η

AB(η)Q1(t,S)dς + η
Γ(η)AB(η)

∫ tn+1
t1

(t− ς)η−1Q1(t,S)dς, t1 < t ≤ T,

E(t) =

E(0) + 1
Γ(η)

∫ t1
0 (t− ς)η−1cQ2(t,E)dς 0 < t ≤ t1,

E(t1) +
1−η

AB(η)Q2(t,E)dς + η
Γ(η)AB(η)

∫ tn+1
t1

(t− ς)η−1Q2(t,E)dς, t1 < t ≤ T,

I(t) =

I(0) + 1
Γ(η)

∫ t1
0 (t− ς)η−1cQ3(t, I)dς 0 < t ≤ t1,

I(t1) +
1−η

AB(η)Q3(t, I)dς + η
Γ(η)AB(η)

∫ tn+1
t1

(t− ς)η−1Q3(t, I)dς, t1 < t ≤ T,

R(t) =

R(0) + 1
Γ(η)

∫ t1
0 (t− ς)η−1cQ4(t,R)dς 0 < t ≤ t1,

R(t1) +
1−η

AB(η)Q4(t,R)dς + η
Γ(η)AB(η)

∫ tn+1
t1

(t− ς)η−1Q4(t,R)dς, t1 < t ≤ T,

V(t) =

V(0) + 1
Γ(η)

∫ t1
0 (t− ς)η−1cQ5(t,V)dς 0 < t ≤ t1,

V(t1) +
1−η

AB(η)Q5(t,V)dς + η
Γ(η)AB(η)

∫ tn+1
t1

(t− ς)η−1Q5(t,V)dς, t1 < t ≤ T.

After applying the Newton interpolation formula, one can obtain

S(tn+1)) =



S0 +



(h)η−1

Γ(η + 1)

i

∑
κ=2

[C

H1(Sκ−2, tκ−2)

]
Π

+
(h)η−1

Γ(η + 2)

i

∑
κ=2

[C

H1(Sκ−1, tκ−1)

−C H1(Sκ−2, tκ−2)

]
f

+
η(h)η−1

2Γ(η + 3)

i

∑
κ=2

[C

H1(Sκ , tκ)− 2C H1(Sκ−1, tκ−1)

+C H1(Sκ−2, tκ−2)

]
ℵ



S(t1) +



1− η

ABC(η)
ABCQ1(Sn, tn)

+
η

ABC(η)
(h)η−1

Γ(η + 1)

n

∑
κ=i+3

[ABC

Q1(Sκ−2, tκ−2)

]
Π

+
η

ABC(η)
(h)η−1

Γ(η + 2)

n

∑
κ=i+3

[ABC

Q1(Sκ−1, tκ−1)

+ABC Q1(Sκ−2, tκ−2)

]
f

+
η

ABC(η)
η(h)η−1

Γ(η + 3)

n

∑
κ=i+3

[ABC

Q1(Sκ , tκ)

− 2ABCQ1(Sκ−1, tκ−1)

+ABC Q1(Sκ−2, tκ−2)

]
∆.



,

(16)
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E(tn+1)) =



E0 +



(h)η−1

Γ(η + 1)

i

∑
κ=2

[C

H2(Eκ−2, tκ−2)

]
Π

+
(h)η−1

Γ(η + 2)

i

∑
κ=2

[C

H2(Eκ−1, tκ−1)

−C H2(Eκ−2, tκ−2)

]
f

+
η(h)η−1

2Γ(η + 3)

i

∑
κ=2

[C

H2(Eκ , tκ)− 2C H2(Eκ−1, tκ−1)

+C H2(Eκ−2, tκ−2)

]
ℵ



E(t1) +



1− η

ABC(η)
ABCQ2(En, tn)

+
η

ABC(η)
(h)η−1

Γ(η + 1)

n

∑
κ=i+3

[ABC

Q2(Eκ−2, tκ−2)

]
Π

+
η

ABC(η)
(h)η−1

Γ(η + 2)

n

∑
κ=i+3

[ABC

Q2(Eκ−1, tκ−1)

+ABC Q2(Eκ−2, tκ−2)

]
f

+
η

ABC(η)
η(h)η−1

Γ(η + 3)

n

∑
κ=i+3

[ABC

Q2(Eκ , tκ)

− 2ABCQ2(Eκ−1, tκ−1)

+ABC Q2(Eκ−2, tκ−2)

]
∆.



,

(17)

I(tn+1)) =



I0 +



(h)η−1

Γ(η + 1)

i

∑
κ=2

[C

H2(Iκ−2, tκ−2)

]
Π

+
(h)η−1

Γ(η + 2)

i

∑
κ=2

[C

H2(Iκ−1, tκ−1)

−C H2(Iκ−2, tκ−2)

]
f

+
η(h)η−1

2Γ(η + 3)

i

∑
κ=2

[C

H2(Iκ , tκ)− 2C H2(Iκ−1, tκ−1)

+C H2(Iκ−2, tκ−2)

]
ℵ



I(t1) +



1− η

ABC(η)
ABCQ3(In, tn)

+
η

ABC(η)
(h)η−1

Γ(η + 1)

n

∑
κ=i+3

[ABC

Q3(Iκ−2, tκ−2)

]
Π

+
η

ABC(η)
(h)η−1

Γ(η + 2)

n

∑
κ=i+3

[ABC

Q3(Iκ−1, tκ−1)

+ABC Q3(Iκ−2, tκ−2)

]
f

+
η

ABC(η)
η(h)η−1

Γ(η + 3)

n

∑
κ=i+3

[ABC

Q3(Iκ , tκ)

− 2ABCQ3(Iκ−1, tκ−1)

+ABC Q3(Iκ−2, tκ−2)

]
∆



,

(18)
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R(tn+1)) =



R0 +



(h)η−1

Γ(η + 1)

i

∑
κ=2

[C

H2(Rκ−2, tκ−2)

]
Π

+
(h)η−1

Γ(η + 2)

i

∑
κ=2

[C

H2(Rκ−1, tκ−1)

−C H2(Rκ−2, tκ−2)

]
f

+
η(h)η−1

2Γ(η + 3)

i

∑
κ=2

[C

H2(Iκ , tκ)− 2C H2(Rκ−1, tκ−1)

+C H2(Rκ−2, tκ−2)

]
ℵ



R(t1) +



1− η

ABC(η)
ABCQ4(In, tn)

+
η

ABC(η)
(h)η−1

Γ(η + 1)

n

∑
κ=i+3

[ABC

Q4(Rκ−2, tκ−2)

]
Π

+
η

ABC(η)
(h)η−1

Γ(η + 2)

n

∑
κ=i+3

[ABC

Q4(Rκ−1, tκ−1)

+ABC Q4(Rκ−2, tκ−2)

]
f

+
η

ABC(η)
η(h)η−1

Γ(η + 3)

n

∑
κ=i+3

[ABC

Q4(Rκ , tκ)

− 2ABCQ4(Rκ−1, tκ−1)

+ABC Q4(Rκ−2, tκ−2)

]
∆



,

(19)

V(tn+1)) =



V0 +



(h)η−1

Γ(η + 1)

i

∑
κ=2

[C

H2(Vκ−2, tκ−2)

]
Π

+
(h)η−1

Γ(η + 2)

i

∑
κ=2

[C

H2(Vκ−1, tκ−1)

−C H2(Vκ−2, tκ−2)

]
f

+
η(h)η−1

2Γ(η + 3)

i

∑
κ=2

[C

H2(Iκ , tκ)− 2C H2(Vκ−1, tκ−1)

+C H2(Vκ−2, tκ−2)

]
ℵ



V(t1) +



1− η

ABC(η)
ABCQ5(In, tn)

+
η

ABC(η)
(h)η−1

Γ(η + 1)

n

∑
κ=i+3

[ABC

Q5(Vκ−2, tκ−2)

]
Π

+
η

ABC(η)
(h)η−1

Γ(η + 2)

n

∑
κ=i+3

[ABC

Q5(Vκ−1, tκ−1)

+ABC Q5(Vκ−2, tκ−2)

]
f

+
η

ABC(η)
η(h)η−1

Γ(η + 3)

n

∑
κ=i+3

[ABC

Q5(Vκ , tκ)

− 2ABCQ5(Vκ−1, tκ−1)

+ABC Q5(Vκ−2, tκ−2)

]
∆



.

(20)

Here,



Fractal Fract. 2023, 7, 746 11 of 17

Π = (1 + n + κ)η

(
2(n− κ)2 + (3η + 10)(n− κ) + 2η2 + 9η + 12

)
−(n− κ)

(
2(n− κ)2 + (5η + 10)(n− κ) + 6η2 + 18η + 12

)
,

f = (1 + κ + n)η

(
3 + 2η + n− κ

)
− (−κ + n)

(
n− κ + 3η + 3

)
,

ℵ = (1 + κ + n)η − (−κ + n)η ,

and

CQ1(t,S) = ABCQ1(t,S) = A− [ν(ξ, t) + Q + ω]S(t),
CQ2(t,E) = ABCQ2(t,E) = νS(t)− (ξ + ω)E(t),
CQ3(t, I) = ABCQ3(t, I) = ξE(t)− (ε + ω)I(t)
CQ4(t,R) = ABCQ4(t,R) = εI(t)−ω(xi)R(t),
CQ5(t,V) = ABCQ5(t,V) = DV(t)−ωV(t).

5. Graphical Analysis

In this section, we present a graphical exploration of the system (2) using MATLAB-
2020 for simulation. We conducted simulations using two distinct sets of parameters:
set 1, with parameter values as detailed in Table 1, and set 2, characterized by [A = 0.2,
ν = 0.5, Q = 0.3, ω = 0.4, ξ = 0.2, ε = 0.4,D = 0.1]. The initial values were set to
[S0,E0, I0,R0,V0] = [200, 0, 0, 0, 0].

For simulations with the parameter values from set 1, we showcase the results in
Figure 1a–e. In contrast, simulations for set 2 parameters are presented in Figure 2a–e. To
facilitate simulations, we divided the time interval into two sub-intervals: (0, t1] = (0, 5]
and (t1,T] = (5, 20]. We applied the ABC operator in the second half of the interval
after initially utilizing the Caputo derivative in the first half. During simulations, we
employed a step size of dt = 0.01. Consequently, the curves in the second half of the
interval demonstrate the behavior of the suggested problem with varying orders in the
ABC sense, while the first half of the interval depicts the dynamics of the proposed model (2)
under the Caputo operator.

In Figure 1a–e, the values of η are represented using different colors and values:
(blue, 0.99), (green, 0.96), (magenta, 0.95), (black, 0.94), and (red, 0.93). The plots were
generated using MATLAB-2020.

Table 1. Parameters and their values of model (2).

Parameter Description Value

A Transmission rate 0.8
ν Rate of infection 0.4
Q Immunized with vaccines 0.3
ω Natural death-rate 0.1
ξ Rate of recovery 0.4
ε Rate of exposure to disease 0.4
D Rate of the second dose of vaccine 0.1

Figure 1a, depicts the dynamics of susceptible people. Figure 1b,c show the evolution
of latent and infected populations, respectively. Similarly, Figure 1d,e are projected to
see the graphs of recovered and vaccinated individuals. In Figure 1a, one may notice
a continuous decrease in the susceptible population S over time. Notably, a significant
rapid decline occurs as we progress towards the second interval where the ABC operator
is applied. Similarly, as depicted in Figure 1b, the latent population E displays an initial
increase followed by a gradual decline. This behavior indicates a crossover at t = t1 and
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stabilizes after 8 days at a fractional order of 0.96. On the top of that, in Figure 1c,d one
sees the epidemic’s infected individuals I and recovered individuals R reach their highest
values around t = 4. After this peak, both populations decrease quickly and stabilize in
the second sub-interval. Finally, it is observed that Figure 1e shows that at the start more
individuals are vaccinated and that after 7 to 10 days there is no disease so that the number
of vaccinations also becomes stable.

Fractal Fract. 2022, 1, 0 15 of 20

0 5 10 15 20

T

0

50

100

150

200

S

0.99

0.98

0.97

0.96

(a)

0 5 10 15 20

T

0

20

40

60

80

E

0.99

0.98

0.97

0.96

(b)

0 5 10 15 20

T

0

2

4

6

8

10

I

0.99

0.98

0.97

0.96

(c)

0 5 10 15 20

T

0

1

2

3

4

5

6

7

R

0.99

0.98

0.97

0.96

(d)

0 5 10 15 20

T

0

5

10

15

20

25

V

0.99

0.98

0.97

0.96

(e)

Figure 1. Graphs of the system (2) with t1 = 5, where T is considered in days.Figure 1. Graphs of the system (2) with t1 = 5, where T is considered in days.

Next, in Figure 2a the dynamics in susceptible population are presented. Similarly,
Figure 2b,c demonstrate the behavior of latent and infected populations, respectively.
Further, Figure 2d,e are presented to see the dynamics in the recovered and vaccinated
population of the considered epidemic model (2). Here, one can observe that at the start
the susceptible population is high, which decreases with time and becomes stable after
t = 18. Further, in Figure 2b,c the latent and infected populous shows that in these two
classes the number of individuals gradually increases, which shows a rapid decrease as
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the system advances from the first to the second sub-interval where the ABC operator
is applied and these two classes becomes stable, which shows that the disease dies out.
Moreover, Figure 2d,e depict that the recovered population and those who are vaccinated
show decreased and rapid stability at a lower fractional order after t = 15. This shows that
the recovery rate increases and the rate of infection decreases as the rate of vaccinations
increases.
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Figure 2. Graphs of the system (2) with t1 = 5, where T is considered in days.Figure 2. Graphs of the system (2) with t1 = 15, where T is considered in days.

To ensure the effectiveness of our proposed method, it is crucial to compare the
theoretical results with real data in biological models. Thus, we present the comparisons
between our simulated results and actual data in Figure 3a–c [34,35].
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Figure 3. The comparison between the simulated and real data of infected individuals in model (2)
with t1 = 15, where T is considered in days.

6. Conclusion

In this study, the behavior of the Rubella disease model is analyzed using a piece-
wise operator approach. Specifically, this manuscript investigated the Caputo and ABC
operators in relation to the model. The study examines the existence and uniqueness of a
solution with a piecewise derivative for this particular illness model.The piecewise Newton
polynomial approach is utilized to obtain a rough estimate of the suggested problem’s solu-
tion. Additionally, simulations are conducted for the Rubella model considering different
fractional orders.
Throughout the simulations, a decrease in the susceptible individuals (S) over time has
been notices, with a notable rapid decrease as the model progresses into the second interval
where the ABC operator is used. It is also noticed that the dynamics of the recovered
individuals and vaccinated individuals show a decrease and rapid stabilization at lower
fractional orders. Furthermore, by comparing the last three figures, we conclude that the
fractional piecewise operator accurately captures the dynamics of the considered disease.
This is evident from the simulation results of the infected class, which closely match the
real data on Rubella infections in Uganda and Tanzania, considering the fractional order
dynamics.
Possible future work includes conducting sensitivity analysis to assess the robustness of the
Rubella disease model, validating the model using additional real-world data, exploring
different intervention strategies, comparing the proposed piecewise operator approach
with alternative models, and developing parameter estimation methods to improve model
accuracy and data fit. These avenues of research would contribute to a deeper under-
standing of Rubella dynamics and aid in the development of effective control strategies for
infectious diseases. Nowadays, neural network [42,43], and integer and fractional order
delay differential [44? –47] have been used for investigation of different mathematical
models in applied sciences. One can use these concept to study the considered model in
future.

Figure 3. The comparison between the simulated and real data of infected individuals in model (2)
with t1 = 15, where T is considered in days.

In Figure 3a, we demonstrate the comparison between real data from Uganda and
our simulated data using the parameter values of A = 1.16, ν = 0.28, Q = 0.5, ω = 0.395,
ξ = 0.2, ε = 0.4, and D = 0.1. Moving on to Figure 3b, we estimate the parameter values
to be A = 1.16, ν = 0.28, Q = 0.5, ω = 0.4, ξ = 0.2, ε = 0.4, and D = 0.1, and we
compare the simulated results with data from Tanzania. In this case, we consider fractional
orders of (blue, 0.985), (cyan, 0.980), (black, 0.975), (green, 0.970), and (magenta, 0.960),
highlighting the best-fitted dynamics.

Similarly, in Figure 3c we compare our simulated data with real data from Ethiopia
using estimated parameter values of A = 1.16, ν = 0.28, Q = 0.5, ω = 0.384, ξ = 0.26,
ε = 0.4, and D = 0.1.

Through these comparisons, we observe that our proposed technique is highly effective
for studying biological models as it accurately captures the best-fitted dynamics when
compared to real data. This showcases the proficiency of our approach in understanding
and analyzing these models. Overall, the medical importance of comparing simulated data
with real data lies in its potential to improve disease modeling, treatment optimization,
drug development, and public health planning. These applications have far-reaching
implications, ultimately leading to better healthcare outcomes and advancements in medical
research and practice.

The comparisons between the simulated results and real data have significant impli-
cations for disease prevention, vaccination campaigns, and policy-making decisions. By
accurately capturing the dynamics of disease models and validating them against real data,
we gain valuable insights that can contribute to various aspects of public health. These com-
parisons enable the assessment of intervention strategies, such as vaccination campaigns,
by analyzing the alignment between simulated results and real data. Policymakers can
make informed decisions regarding the implementation and optimization of vaccination
programs based on this information. Additionally, the simulations provide insights into
disease spread and transmission dynamics, allowing for the identification of critical periods
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or regions of high transmission. This knowledge enables the prioritization of targeted
interventions, resource allocation, and the early detection of outbreaks, which are crucial
for effective public health efforts.

Furthermore, the comparisons between simulated and real data contribute to the
optimization of treatment strategies. By understanding the dynamics of disease models
and their alignment with real-world outcomes, healthcare professionals can refine and tailor
treatment protocols. This optimization of treatment strategies leads to improved patient
outcomes and reduced disease burden. Moreover, the insights gained from the simulations
can inform policy-making decisions in public health planning and response. Policymakers
can assess the effectiveness of various control measures, such as quarantine measures or
social distancing policies, based on the accurate representation of disease dynamics. This
information guides the development of evidence-based policies aimed at mitigating the
impact of diseases on populations, ultimately improving public health outcomes.

6. Conclusions

In this study, the behavior of the Rubella disease model is analyzed using a piecewise
operator approach. Specifically, this manuscript investigated the Caputo and ABC operators
in relation to the model. The study examines the existence and uniqueness of a solution
with a piecewise derivative for this particular illness model. The piecewise Newton
polynomial approach is utilized to obtain a rough estimate of the suggested problem’s
solution. Additionally, simulations are conducted for the Rubella model considering
different fractional orders.

Throughout the simulations, a decrease in the susceptible individuals (S) over time has
been notices, with a notable rapid decrease as the model progresses into the second interval
where the ABC operator is used. It is also noticed that the dynamics of the recovered
individuals and vaccinated individuals show a decrease and rapid stabilization at lower
fractional orders. Furthermore, by comparing the last three figures, we conclude that the
fractional piecewise operator accurately captures the dynamics of the considered disease.
This is evident from the simulation results of the infected class, which closely match
the real data on Rubella infections in Uganda and Tanzania, considering the fractional
order dynamics.

Possible future work includes conducting a sensitivity analysis to assess the robustness
of the Rubella disease model, validating the model using additional real-world data, explor-
ing different intervention strategies, comparing the proposed piecewise operator approach
with alternative models, and developing parameter estimation methods to improve model
accuracy and data fit. These avenues of research would contribute to a deeper under-
standing of Rubella dynamics and aid in the development of effective control strategies
for infectious diseases. Nowadays, the neural network [36–42] and integer and fractional
order delay differential [43–46] are being used for investigation of different mathematical
models in applied sciences. One can use these concepts to study the considered model
in the future.
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41. Atangana, A.; Araz, S.İ. Nonlinear equations with global differential and integral operators: Existence, uniqueness with
application to epidemiology. Results Phys. 2021, 20, 103593. [CrossRef]

42. Kabunga, S.K.; Goufo, E.F. Analysis and simulation of a mathematical model of tuberculosis transmission in Democratic Republic
of the Congo. Adv. Differ. Equ. 2020, 1, 642. [CrossRef]

43. Xu, C.; Mu, D.; Pan, Y.; Aouiti, C.; Yao, L. Exploring Bifurcation in a Fractional-Order Predator-Prey System with Mixed Delays. J.
Appl. Anal. Comput. 2023, 13, 1119–1136. [CrossRef]

44. Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Aouiti, C.; Tunc, O.; Ahmad, S.; Zeb, A. Bifurcation dy-namics and control mechanism of a
fractional–order delayed Brusselator chemical reaction model. Match 2023, 89, 1. [CrossRef]

45. Xu, C.; Cui, X.; Li, P.; Yan, J.; Yao, L. Exploration on dynamics in a discrete predator–prey competitive model involving feedback
controls. J. Biol. Dyn. 2023, 17, 2220349. [CrossRef] [PubMed]

46. Li, P.; Lu, Y.; Xu, C.; Ren, J. Insight into Hopf Bifurcation and Control Methods in Fractional Order BAM Neural Networks
Incorporating Symmetric Structure and Delay. Cogn. Comput. 2023, 1–43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/vaccines10081188
http://www.ncbi.nlm.nih.gov/pubmed/35893837
http://dx.doi.org/10.1186/s12879-020-4928-9
http://www.ncbi.nlm.nih.gov/pubmed/32164592
http://dx.doi.org/10.46793/match.90-3.609X
http://dx.doi.org/10.3846/13926292.2016.1145607
http://dx.doi.org/10.1515/fca-2015-0034
http://dx.doi.org/10.1016/j.rinp.2020.103515
http://dx.doi.org/10.1016/j.rinp.2020.103593
http://dx.doi.org/10.1186/s13662-020-03091-0
http://dx.doi.org/10.11948/20210313
http://dx.doi.org/10.46793/match.89-1.073X
http://dx.doi.org/10.1080/17513758.2023.2220349
http://www.ncbi.nlm.nih.gov/pubmed/37272309
http://dx.doi.org/10.1007/s12559-023-10155-2

	Introduction
	Preliminaries
	Existence and Uniqueness Results
	Numerical Scheme
	Graphical Analysis
	Conclusions
	References

