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Abstract: This paper investigates the distributed optimization problem (DOP) for fractional high-
order nonstrict-feedback multiagent systems (MASs) where each agent is multiple-input–multiple-
output (MIMO) dynamic and contains uncertain dynamics. Based on the penalty-function method,
the consensus constraint is eliminated and the global objective function is reconstructed. Different
from the existing literatures, where the DOPs are addressed for linear MASs, this paper deals
with the DOP through using radial basis function neural networks (RBFNNs) to approximate the
unknown nonlinear functions for high-order MASs. To reduce transmitting and computational costs,
event-triggered scheme and quantized control technology are combined to propose an adaptive
backstepping neural network (NN) control protocol. By applying the Lyapunov stability theory,
the optimal consensus error is proved to be bounded and all signals remain semi-global uniformly
ultimately bounded. Simulation shows that all agents reach consensus and errors between agents’
outputs and the optimal solution is close to zero with low computational costs.

Keywords: distributed optimization problem; adaptive control; event-triggered mechanism; input
quantization; fractional order multiagent systems

1. Introduction

Recently, distributed optimization problem (DOP) of MASs has attracted much interest
since its wide range applications including robotic systems [1,2], sensor networks [3],
marine surface vehicles [4], smart grids [5,6], fractional order MASs [7] and multiple
one-link manipulators system [8]. Given a DOP, each agent acquires a local objective
function and the MASs have a global objective function obtained by making the sum of
local objective functions. Through minimizing the global objective function, agents in
MASs follow an optimal trajectory while reaching consensus.

A key objective for the DOP is to provide appropriate distributed control algorithms
which ensure that all agents in MASs collaborate in seeking the optimal solution of the
global objective function. Ref. [9] designs a discrete algorithm for multi-robot system to
deal with the cooperative transportation by minimizing the total energy consumption.
In [10], a class of online DOP considering coupled inequality constraints is investigated
and an online primal-dual algorithm is developed. Noting that the above papers focus on
the development of discrete-time algorithm for DOP, which means these algorithms are
not suitable for the continuous-time dynamics. Recently, a growing number of researchers
are developing continuous-time algorithms for DOP due to its potential applications in
MASs [11–15]. In [16], a distributed algorithm is developed to deal with the resource
allocation problem by designing a dynamic event-triggered mechanism. On the basis of
proportional integral technique, Ref. [17] proposes an adaptive neurodynamic algorithm
to address the DOP and the proposed algorithm ensures that agents in MASs achieve
consensus first in a finite-time and then converge to the optimal trajectory in a fixed-time.
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To avoid solving high-dimensional subproblems, Ref. [18] proposes a novel projection-free
dynamics for solving constrained DOP using the Frank–Wolfe method. An adaptive fault-
tolerant controller is designed in [19] to deal with the DOP for nonlinear MASs through
building exosystem state observers. In these research works, algorithms are developed for
DOPs in first-order MASs, which means that in second-order MASs, these methods are
hardly to work well. With this reason in mind, many methods are constructed for second-
order MASs due to the widely use in practice [20–23]. In [24], a decentralized optimization
control protocol with fixed-time flocking is developed for second-order MASs where
the networks are time-varying. Ref. [25] develops a dynamic event-trigger based control
protocol for the optimal consensus problem in second-order MASs where communication
edges are affected by both cyber attacks and disturbances simultaneously. The generic
optimal formation control problems with various formation constraints is investigated
in [26] for second-order MASs. In many engineering practices, such as generators, robots,
and satellites, the dynamics of physical systems can be depicted by high-order systems.
Thus, investigating the DOP in high-order MASs is meaningful and important. However,
due to the inaccuracy of modeling, many MASs contains nonlinear uncertainties objectively
and the aforementioned algorithms may be ineffective.

To address this issue, many adaptive methods, such as RBFNNs and fuzzy logic
systems (FLSs), are adopted to compensate for the unknown nonlinear function and design
an adaptive control protocol to achieve the control goal. Through ultilizing RBFNNs or
FLSs, a wide range of adaptive control protocols are developed [27–30]. In [31], an adaptive
control protocol is proposed based on FLSs technique to address the switched nonlinear
functions in the MIMO system and the unknown gain direction of the controller is solved
by the Nussbaum gain function. To reduce computation, a RBFNNs-based prescribed- time
controller is developed in [32] via event-trigger mechanism for robotic manipulators with
nonlinear uncertainties and state constraints. In [33], based on the projection operator-based
compensation mechanism, a FLSs-based adaptive controller is proposed to deal with the
consensus problem in nonlinear MASs under deception attacks. Upon reviewing the above
literature, it should be noted that there is currently no study on developing the adaptive
intelligent control protocol for the high-order uncertain nonstrict-feedback MASs with
MIMO agents. Besides, as a special case of consensus problems, DOP needs all agents to
achieve both consensus and the optimal solution, which means that the aforementioned
algorithms may not work to realize the control objective.

Furthermore, the above studies are restricted to integer-order MASs only. In reality,
fractional-order MASs (FOMASs) have multiple potential applications due to its ability
to accurately model the system [34,35]. Recently, the consensus problem for FOMASs
has attracted considerable attention and has emerged as another research priority [36–39].
Ref. [40] introduces an adaptive algorithm using an event-triggered strategy for FOMASs
with partial state constraints and input saturation. Ref. [41] develop a novel distributed
algorithm with fixed time delay to address containment control problem for nonlinear
FOMASs. However, to the best of our knowledge, the DOP for uncertain nonlinear FOMASs
where each agent is described by MIMO dynamics has not been studied in the existing
works. This motivates us to undertake the research in this paper.

Motivated by the above discussion, this paper proposes an event-trigger based adap-
tive backstepping algorithm to address the DOP using input quantization technique for the
nonstrict-feedback MIMO MASs. The main contributions in this paper are as follow.

(1) Unlike [27,33], where algorithms are developed for the consensus problem in MASs,
this paper introduces an adaptive control protocol for the DOP. Agents in the MASs
not only reach consensus, but also achieve the optimal solution of the global objective
function. Besides, each agent in the FOMASs is described by nonstrict-feedback
MIMO dynamics, which is more general and complex to design the control protocol.

(2) Different from [16–26], where the DOPs are investigated for first-order or second-
order MASs, this paper dedicates to solve the fractional high-order DOP, which means
that MASs and the DOP in this paper are close to the engineering systems. Besides,
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the MASs in this paper includes nonlinear uncertain terms in each order. Thus,
RBFNNs technique is adopted to approximate and compensate for the unknown
dynamics. In addition, to reduce the transmitting and computational costs, this paper
combines the event-trigger mechanism and input quantization technique together to
deal with the high-order DOP for the first time.

(3) In contrast to the algorithms in aforementioned works which are only effective
in integer order MASs, this paper investigates the high-order DOP in uncertain
nonlinear FOMASs with MIMO agents and an adaptive NNs based algorithm is
developed. To avoid the ‘computation complexity’, this paper utilizes the fractional
order DSC (FODSC) method and the fractional derivatives for virtual controllers are
obtained in the meantime.

2. Preliminaries

Define the Caputo fractional derivative [42] as

C
0 Dω

t f (t) =
1

Γ(δ−ω)

∫ t

0

f (δ)(τ)

(t− τ)1+ω−δ
dτ

where δ ∈ ∆ and δ− 1 < ω ≤ δ, Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function. In this paper,
we set C

0 Dω
t f (t) = Dω f (t) to simplify the notation. For a two-parameter function of the

Mittag-Leffler type

Eω,γ(ς) =
∞

∑
n=0

ςn

Γ(ωn + γ)
, (ω > 0), (γ > 0)

we have the following lemmas.

Lemma 1 ([43]). For real numbers γ, ω and φ satisfying ω ∈ (0, 1), τ > 0, one has

τω

2
< φ < τω (1)

and for integers n ≥ 1, one obtains

Eω,γ(ς) = −
n

∑
j=1

ς−j

Γ(γ−ωj)
+ o

(
1

|ς|n+1

)
(2)

when |ς| → ∞, φ ≤ |arg(ς)| ≤ τ.

Lemma 2 ([43]). If φ satisfies the condition of Lemma 1, one holds

|Eω,γ(ς)| ≤
µ

1 + |ς|

where ω ∈ (0, 2) and γ is an arbitrary real number, µ > 0, φ ≤ |arg(ς)| ≤ τ.

Lemma 3 ([44]). For κ ∈ R and ζ > 0, the following inequality holds

0 ≤ |κ| − κ2√
κ2 + ζ2

≤ ζ

Lemma 4 ([42]). Suppose that the Lyapunov function V(t, x) satisfies DωV(t, x) ≤ −ΘV(t, x)+
Λ. Let 0 < ω < 1, Θ > 0 and Λ ≥ 0, the following inequality holds

V(t, x) ≤ V(0)Eω(−Θtω) +
Λµ
Θ , t ≥ 0
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Then, V(t, x) is bounded on [0, t] and fractional order systems are stable, where µ is
defined in Lemma 2.

Notations: In this paper, 0m = [0, . . . , 0]T ∈ Rm, 1m = [1, . . . , 1]T ∈ Rm. Denote ∇ f (·)
as the gradient of function f (·) and ⊗ as Kronecker product.

Remark 1. In this paper, the fractional order is considered within the interval [0, 1].

3. Problem Formulation
3.1. Hysteresis Quantizer

This paper uses the hysteresis quantizer to reduce chattering. According to [45], the
quantizer υi(vi(t)) is

υi(vi(t))=


viksign(vi),
vik(1 + d)sign(vi),
0,

vik
1+d < |vi| ≤ vik

1−d
vik < |vi| ≤

vik(1+d)
1−d

0 ≤ |vi| < vmin

(3)

where vik = n1−kvmin(k = 1, 2, . . . ) with parameters vmin > 0 and 0 < $ < 1, d = 1−$
1+$ .

Meanwhile, υi(vi(t)) is in the set U = [0,±vik,±vik(1 + d)], k = 1, 2, . . . . vmin determines
the magnitude of the dead-zone for υi(vi(t)).

Lemma 5 ([46]). The system inputs υi(vi(t)) can be described as

υi(vi(t))=Ξ(vi)vi(t) + Ψi(t) (4)

where 1− d ≤ Ξ(vi) ≤ 1 + d, |Ψi(t)| ≤ vmin.

3.2. Graph Theory

Denote an undirected graph Q = (U ,J , Ā), where U = {1, . . . , N} is a node set. De-
fine J ⊂ U × U as the edge set with no self-loop and Ā =

{
aij
}
∈ RN×N as the adjacency

matrix. An edge (i, j) ∈ J , if and only if aij = 1. Denote Ni = {j|(i, j) ∈ J } as the neighbor

set of node i and the matrix D = diag
{

∑N
j=1 a1j, . . . , ∑N

j=1 aNj

}
as the degree matrix. Define

the Laplacian matrix as L = D− Ā. If there is an undirected path between each node pair,
graph Q is a connected graph.

Lemma 6 ([47]). For a connected undirected graph Q, it has a positive semi-definite Laplacian
matrix which has a simple eigenvalue 0 and the associated eigenvector 1N .

3.3. Multi-Agent Systems

Consider the FOMASs with N agents and each agent is described by the MIMO system
with m subsystems. The dynamic for agent i is:

Dαxi,l(t) = xi,l+1 + hi,l(Xi,n)

Dαxi,n(t) = ui(t) + hi,n(Xi,n)

yi = xi,1

(5)

where i = 1, . . . , N, l = 1, . . . , n− 1, α ∈ (0, 1), xi,1, . . . , xi,l ∈ Rm are system states, ui(t) ∈ Rm

is the control input, yi = [yi,1, . . . , yi,m]
T ∈ Rm is the system output, Xi,n = [xT

i,1, . . . , xT
i,n]

T

∈ Rmn is the state vector, hi,l(Xi,n) = [hi,l,1(Xi,n), . . . , hi,l,m(Xi,n)]
T ∈ Rm is the vector of

unknown nonlinear functions. Specifically, the kth subsystem is described as
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Dαxi,l,k(t) = xi,l+1,k + hi,l,k(Xi,n)

Dαxi,n,k(t) = ui,k(t) + hi,n,k(Xi,n)

yi,k = xi,1,k

(6)

where xi,l,k is the system state, yi,k is the system output, ui,k(t) is the control input, hi,l,k(Xi,n)
is an unknown nonlinear function.

3.4. Distributed Optimization Problem

This paper investigates the quadratic DOP for the FOMASs. For agent i, define the
local objective function fi(·) : Rm → R as

fi(yi) = yT
i ai(t)yi + bT

i (t)yi + ci(t) (7)

where ai(t) ∈ Rm×m, bi(t) ∈ Rm, ci(t) ∈ Rm, ‖ai(t)‖ ≤ a0, ‖bi(t)‖ ≤ b0, ‖ci(t)‖ ≤ c0 and
a0, b0, c0 are known constants. The global objective function f (·) : RmN → R is defined as

f (y) =
N

∑
i=1

fi(yi)

s.t.(L⊗ Im)y = 0mN

(8)

where y = [yT
1 , . . . , yT

N ]
T . According to Lemma 6, given a bounded continuous function

α(t), if y = α(t) · 1mN , one has (L⊗ Im)y = 0. Thus, based on the penalty-function method,
design the penalty term 1

2 µyT(L ⊗ Im)y where µ is a positive designed parameter. The
global objective function can be rewritten as

F(y) =
N

∑
i=1

fi(yi) +
1
2

µyT(L⊗ Im)y (9)

Define the optimal solution of F(y) as y∗ = [yT
1∗, . . . , yT

N∗]
T ∈ RmN and

y∗ = arg min
(y1,...,yN)

F(y), where yi∗ = [yi,1∗, . . . , yi,m∗]
T . From (9), we know that when the

FOMASs achieve the optimal solution y∗, all agents reach consensus and converge to the
optimal trajectory simultaneously.

Control objectives: This paper aims at developing an adaptive NNs-based control
protocol using FODSC technology, event-trigger mechanism and input quantization, so that
all agents’ signals remain bounded and converge to the optimal trajectory while keeping
consensus with sufficiently small errors.

4. Main Results
4.1. Neural Networks Approximation

As an effective tool for approximating continuous functions, RBFNNs in this paper
are utilized to compensate for the nonlinear functions h(Xi,n) : Rn → R. The RBFNNs are
described as follow

h(Xi,n) = ϑT ϕ(Xi,n) (10)

where Xi,n ∈ Rmn is the input vector, ϑ ∈ Rp is the weight vector and ϕ(Xi,n) = [ϕ1(Xi,n), . . . ,
ϕp(Xi,n)]

T ∈ Rp is the radial basis function vector and p represents the NN nodes where
ϕq(Xi,n) is a typical basis Gaussian function as
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ϕq(Xi,n) = exp

[
−(Xi,n − cq)T(Xi,n − cq)

b2
q

]
, q = 1, . . . , p (11)

with cq ∈ Rn being the centers and bq ∈ R being the width of Gaussian functions.

Lemma 7 ([36]). Given a continuous unknown function h(x) defined on the compact set Ωx, there
exist the NN ϑ∗T ϕ(x) and the arbitrary accuracy ε(x) such that

h(x) = ϑ∗T ϕ(x) + ε(x) (12)

where ϑ∗ is the ideal weight vector defined by ϑ∗ = arg minϑ∈Ωϑ
[supx∈Ωx

|h(x) − ϑT ϕ(x)]
defined by ϑ and ε(x) denotes the minimum approximation error.

Define the parameter estimation error ϑ̃ and the optimal approximation error ε as

ϑ̃ = ϑ∗ − ϑ, l = 1, 2, . . . , n. (13)

ε = h(Xi,n)− h(Xi,n|ϑ∗) (14)

where h(Xi,n|ϑ∗) is the arrpoximation value of RBFNNs with the optimal parameter.

Assumption 1. The optimal approximation errors remain bounded and the arbitrary accuracy
satisfies ε(x) ≤ ε0, ε0 > 0.

4.2. Controller Design

Theorem 1. For the nonlinear FOMASs under Assumption 1, we construct an event-trigger
adaptive NN-based dynamic surface quantized controller (70), virtual controllers (29), (41) and (55),
adaptive laws (30), (42), (56) and (67) such that all signals in the closed-loop system remain semi-
global uniformly ultimately bounded and errors between outputs and the optimal trajectory are
sufficiently small.

Proof. Define the errors for agent i, subsystem k as follow

zi,1,k = xi,1,k − y∗i,k
zi,l,k = xi,l,k − ri,l,k

wi,l,k = ri,l,k − x∗i,l,k
l = 2, · · · , n k = 1, · · · , m

(15)

where zi,1,k is the tracking error, ri,l,k is the output of the FODSC, and wi,l,k is the FODSC
error between ri,l,k and x∗i,l,k.

Step 1. According to (7) and (9), the gradient of newly constructed global objective
function F(y) is

∇F(y) =
∂ ∑N

i=1 fi(yi(t))
∂y

+ µ(L⊗ Im)y. (16)

Since the global objective function F(y) is convex, the optimal solution y∗ satisfies
∇F(y∗) = 0. Thus, for agent i, we obtain

2ai(t)yi∗ + bi(t) + µ ∑
j∈Ni

aij(yi∗ − yj∗) = 0m. (17)
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Define the vector zi,1 = [zi,1,1, . . . , zi,1,m]
T . From (13) and (15), one has

∂F(y)
∂yi

=
∂ fi(yi(t))

∂yi
+ µ ∑

j∈Ni

aij(yi − yj)

=2ai(t)yi + bi(t) + µ ∑
j∈Ni

aij(yi − yj)

=2ai(t)yi + bi(t) + µ ∑
j∈Ni

aij(yi − yj)− 2ai(t)yi∗ − bi(t)− µ ∑
j∈Ni

aij(yi∗ − yj∗)

=2ai(t)zi,1 + µ ∑
j∈Ni

aij(zi,1 − zj,1).

(18)

Let z1 = [zT
1,1, . . . , zT

N,1]
T . Through (16) and (18), one obtains

∂F(y)
∂y

= Hz1 (19)

where H = A + µ(L⊗ Im) and A = 2diag{ai(t)}. Construct the Lyapunov function for
FOMASs as:

V1 =
1
2

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
+

N

∑
i=1

m

∑
k=1

1
2γi,1,k

ϑ̃T
i,1,kϑ̃i,1,k

=
1
2

zT
1 Hz1 +

N

∑
i=1

m

∑
k=1

1
2γi,1,k

ϑ̃T
i,1,kϑ̃i,1,k

(20)

where γi,1,k is a positive designed parameter. From the definition of z1 and H, we have

DαV1 =zT
1 H(Dαy1 − Dαy∗) +

N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑ̃i,1,k

=
N

∑
i=1

[
µ ∑

j∈Ni

aij(zi,1 − zj,1) + 2ai(t)zi,1

]T

(Dαxi,1 − Dαyi∗)−
N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

=
N

∑
i=1

[
µ ∑

j∈Ni

aij(yi − yj) + 2ai(t)yi + bi(t)

]T

(Dαxi,1 − Dαyi∗)

−
N

∑
i=1

[
µ ∑

j∈Ni

aij(yi∗ − yj∗) + 2ai(t)yi∗ + bi(t)

]T

(Dαxi,1 − Dαyi∗)

−
N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

=
N

∑
i=1

[
µ ∑

j∈Ni

aij(yi − yj) + 2ai(t)yi + bi(t)

]T

(Dαxi,1 − Dαyi∗)

−
N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

=
N

∑
i=1

m

∑
k=1

{[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
(Dαxi,1,k − Dαyi,k∗)

}

−
N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

(21)
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where [ai(t)yi + bi(t)]k is the kth element of vector ai(t)yi + bi(t). According to (6), we have

Dαxi,1,k = x∗i,2,k + wi,2,k + hi,2,k(Xi,n) + zi,2,k (22)

Substituting Dαxi,1,k into (21), one has

DαV1 =
N

∑
i=1

m

∑
k=1

{[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
(x∗i,2,k + wi,2,k + zi,2,k

+ hi,2,k(Xi,n)− Dαyi,k∗)

}
−

N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

(23)

Using the RBFNNs to approximate the unknown nonlinear function hi,2,k(Xi,n) −
Dαyi,k∗, from (12), it results in

DαV1 =
N

∑
i=1

m

∑
k=1

{[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
(x∗i,2,k + wi,2,k + zi,2,k

+ ϑT
i,1,k ϕi,1,k(Xi,n) + ϑ̃T

i,1,k ϕi,1,k(Xi,n) + εi,1,k)

}
−

N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

(24)

According to Young’s inequality, one obtains[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
wi,2,k

≤1
2

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]2

+
1
2

w2
i,2,k

(25)

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
zi,2,k

≤1
2

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]2

+
1
2

z2
i,2,k

(26)

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
εi,1,k

≤1
2

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]2

+
1
2

ε2
i,1,k

(27)

Combining (23) with (25)–(27), one obtains

DαV1 ≤
N

∑
i=1

m

∑
k=1

{[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

](
x∗i,2,k + ϑT

i,1,k ϕi,1,k(Xi,n)

+ϑ̃T
i,1,k ϕi,1,k(Xi,n)

)
+

3
2

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]2

+
1
2

w2
i,2,k

+
1
2

z2
i,2,k +

1
2

ε2
i,1,k

}
−

N

∑
i=1

m

∑
k=1

1
γi,1,k

ϑ̃T
i,1,kDαϑi,1,k

(28)
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Design the virtual controller x∗i,2,k and the adaptive law ϑi,1,k as

x∗i,2,k = −c1

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
− ϑT

i,1,k ϕi,1,k(Xi,n) (29)

Dαϑi,1,k = γi,1,k ϕi,1,k(Xi,n)

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
− ρi,1,kϑi,1,k (30)

where c1, ρi,1,k are positive designed parameters and c1 > 3
2 . According to (20), zT

1 HHz1 =(
∂F(y)

∂y

)T( ∂F(y)
∂y

)
can be obtained. Thus, substituting x∗i,2,k and ϑi,1,k into (28), it results in

DαV1 ≤
N

∑
i=1

m

∑
k=1

{
−(c1 −

3
2
)

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]2

+
1
2

w2
i,2,k

+
1
2

z2
i,2,k +

1
2

ε2
i,1,k

}
+

N

∑
i=1

m

∑
k=1

ρi,1,k

γi,1,k
ϑ̃T

i,1,kϑi,1,k

≤− (c1 −
3
2
)zT

1 HHz1 +
N

∑
i=1

m

∑
k=1

ρi,1,k

γi,1,k
ϑ̃T

i,1,kϑi,1,k +
1
2

N

∑
i=1

m

∑
k=1

(w2
i,2,k + z2

i,2,k + ε2
i,1,k)

≤− 2c1 − 3
2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
+

N

∑
i=1

m

∑
k=1

ρi,1,k

γi,1,k
ϑ̃T

i,1,kϑi,1,k

+
1
2

N

∑
i=1

m

∑
k=1

(w2
i,2,k + z2

i,2,k + ε2
i,1,k)

(31)

where λmax
(

H−1) is the maximum eigenvalue of the matrix H−1.
Based on FODSC technique, as the solution of the fractal differential equation, the

state variable ri,2,k is as follows

ηi,2,kDαri,2,k + ri,2,k = x∗i,2,k ri,2,k(0) = x∗i,2,k(0). (32)

From (15) and (32), one has

Dαwi,2,k = −
wi,2

ηi,2,k
+ Mi,2,k (33)

where ηi,2,k is the positive designed parameter, Mi,2,k is a continuous function depanding on
variables xi,1,k, xj,1,k, zi,2,k, zj,2,k, wi,2,k, wj,2,k, ϑi,1,k, ϑj,1,k, bi(t), Dαbi(t). According to [48,49],
there exist constants Γi,2,k > 0, i = 1, . . . , N, such that |Mi,2,k| ≤ Γi,2,k holds.

Step 2. Define the error variable zi,2,k = xi,2,k − ri,2,k. Taking the fractional derivative
of zi,2,k, one has

Dαzi,2,k =Dαxi,2,k − Dαri,2,k

=xi,3,k + ϑT
i,2,k ϕi,2,k(Xi,n) + ϑ̃T

i,2,k ϕi,2,k(Xi,n) + εi,2,k − Dαri,2,k.
(34)

From (15), one obtains

Dαzi,2,k = zi,3,k + x∗i,3,k + wi,3,k + ϑT
i,2,k ϕi,2,k(Xi,n) + ϑ̃T

i,2,k ϕi,2,k(Xi,n) + εi,2,k − Dαri,2,k. (35)
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Let V2 = V1 +
1
2 ∑N

i=1 ∑m
k=1

(
z2

i,2,k +
1

γi,2,k
ϑ̃T

i,2,kϑ̃i,2,k + w2
i,2,k

)
, where γi,2,k is a positive

designed parameter. Then we have

DαV2 = DαV1 +
N

∑
i=1

m

∑
k=1

{
zi,2,kDαzi,2,k +

1
γi,2,k

ϑ̃T
i,2,kDαϑ̃i,2,k + wi,2,kDαwi,2,k

}
. (36)

Substituting (35) into (36), we have

DαV2 =DαV1 +
N

∑
i=1

m

∑
k=1

[
zi,2,k

(
zi,3,k + x∗i,3,k + wi,3,k + ϑT

i,2,k ϕi,2,k(Xi,n) + ϑ̃T
i,2,k ϕi,2,k(Xi,n)

+ εi,2,k − Dαri,2,k

)
+

1
γi,2,k

ϑ̃T
i,2,kDαϑ̃i,2,k + wi,2,kDαwi,2,k

]
.

(37)

According to Young’s inequality, one has

zi,2,k(zi,3,k + wi,3,k) ≤ z2
i,2,k +

1
2

(
z2

i,3,k + w2
i,3.k

)
(38)

zi,2,kεi,2,k ≤
1
2

z2
i,2,k +

1
2

ε2
i,2,k (39)

Substituting (38) and (39) into (37), it results in

DαV2 ≤DαV1 +
N

∑
i=1

m

∑
k=1

[
zi,2,k

(
x∗i,3,k + ϑT

i,2,k ϕi,2,k(Xi,n) + ϑ̃T
i,2,k ϕi,2,k(Xi,n)− Dαri,2,k

)
+

3
2

z2
i,2,k +

1
2

w2
i,3,k +

1
2

z2
i,3,k +

1
2

ε2
i,2,k −

1
γi,2,k

ϑ̃T
i,2,kDαϑi,2,k + wi,2,kDαwi,2,k

]
.

(40)

Design the virtual controller x∗i,3,k and the update law ϑi,2,k as follow

x∗i,3,k = −ci,2,kzi,2,k − 2zi,2,k − ϑT
i,2,k ϕi,2,k(Xi,n) +

x∗i,2,k − ri,2,k

ηi,2,k
(41)

Dαϑi,2,k = γi,2,k ϕi,2,k(Xi,n)zi,2,k − ρi,2,kϑi,2,k (42)

where ci,2,k and ρi,2,k are positive designed parameters.
Substituting Equations (31), (33), (41) and (42) into (40), it results in

DαV2 ≤−
2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
+

N

∑
i=1

m

∑
k=1

ρi,1,k

γi,1,k
ϑ̃T

i,1,kϑi,1,k

+
1
2

N

∑
i=1

m

∑
k=1

(w2
i,2,k + z2

i,2,k + ε2
i,1,k) +

N

∑
i=1

m

∑
k=1

[
zi,2,k

(
−ci,2,kzi,2,k − 2zi,2,k

− ϑT
i,2,k ϕi,2,k(Xi,n) +

x∗i,2,k − ri,2,k

ηi,2,k
+ ϑT

i,2,k ϕi,2,k(Xi,n) + ϑ̃T
i,2,k ϕi,2,k(Xi,n)− Dαri,2,k

)
+

3
2

z2
i,2,k +

1
2

w2
i,3,k +

1
2

z2
i,3,k +

1
2

ε2
i,2,k −

1
γi,2,k

ϑ̃T
i,2,k

(
γi,2,k ϕi,2,k(Xi,n)zi,2,k − ρi,2,kϑi,2,k

)
+ wi,2,k

(
−

wi,2,k

ηi,2,k
+ Mi,2,k

)]
.

(43)

Using Young’s inequality, we have wi,2,k Mi,2,k ≤ 1
2 w2

i,2,k +
1
2 Γ2

i,2,k. Combining the
inequality with (43), one obtains
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DαV2 ≤−
2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

N

∑
i=1

m

∑
k=1

ci,2,kz2
i,2,k +

N

∑
i=1

m

∑
k=1

ρi,1,k

γi,1,k
ϑ̃T

i,1,kϑi,1,k

+
N

∑
i=1

m

∑
k=1

ρi,2,k

γi,2,k
ϑ̃T

i,2,kϑi,2,k −
N

∑
i=1

m

∑
k=1

(
1

ηi,2,k
− 1
)

w2
i,2,k +

1
2

N

∑
i=1

m

∑
k=1

(
ε2

i,1,k + ε2
i,2,k

)
+

1
2

N

∑
i=1

m

∑
k=1

Γ2
i,2 +

1
2

N

∑
i=1

m

∑
k=1

(
z2

i,3,k + w2
i,3,k

)
(44)

By using the FODSC technique, one has

ηi,3,kDαri,3,k + ri,3,k = x∗i,3,k, ri,3,k(0) = x∗i,3,k(0). (45)

From (15) and (45), we obtain

Dαwi,3,k = −
wi,3,k

ηi,3,k
+ Mi,3,k (46)

where ηi,3,k is the positive designed parameter, Mi,3,k = −Dαx∗i,3,k and there exists a positive
constant Γi,3,k, |Mi,3,k| ≤ Γi,3,k.

Step p. The p-th error variable is defined as zi,p,k = xi,p,k − ri,p,k and combined
with (15), we have

Dαzi,p,k =Dαxi,p,k − Dαri,p,k

=zi,p+1,k + x∗i,p+1,k + wi,p+1,k + ϑT
i,p,k ϕi,p,k(Xi,n) + ϑ̃T

i,p,k ϕi,p,k(Xi,n) + εi,p,k − Dαri,p,k.
(47)

Through the FODSC technique, the next fractal differential equation is obtained as

ηi,p,kDαri,p,k + ri,p,k = x∗i,p,k, ri,p,k(0) = x∗i,p,k(0). (48)

According to Equations (15) and (48), we have

Dαwi,p,k = −
wi,p,k

ηi,p,k
+ Mi,p,k (49)

where ηi,p,k is the positive designed parameter, Mi,k = −Dαx∗i,p,k and there exists a positive
constant Γi,p,k, |Mi,p,k| ≤ Γi,p,k.

Let Vp = Vp−1 +
1
2 ∑N

i=1 ∑m
k=1

(
z2

i,p,k +
1

γi,p,k
ϑ̃T

i,p,kϑ̃i,p,k + w2
i,p,k

)
where γi,p,k is a positive

designed parameter. Then we have

DαVp = DαVp−1 +
N

∑
i=1

m

∑
k=1

(
zi,p,kDαzi,p,k +

1
γi,p,k

ϑ̃T
i,p,kDαϑ̃i,p,k + wi,p,kDαwi,p,k

)
. (50)

Substituting (49) into (50), it results in

DαVp =DαVp−1 +
N

∑
i=1

m

∑
k=1

[
zi,p,k

(
zi,p+1,k + x∗i,p+1,k + wi,p+1,k + ϑT

i,p,k ϕi,p,k(Xi,n)

+ ϑ̃T
i,p,k ϕi,p,k(Xi,n) + εi,p,k − Dαri,p,k

)
+

1
γi,p,k

ϑ̃T
i,p,kDαϑ̃i,p,k + wi,p,kDαwi,p,k

]
.

(51)

According to Young’s inequality, one has

zi,p,k

(
zi,p+1,k + wi,p+1,k

)
≤ z2

i,p,k +
1
2

(
z2

i,p+1,k + w2
i,p+1,k

)
(52)
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zi,p,kεi,p,k ≤
1
2

z2
i,p,k +

1
2

ε2
i,p,k (53)

Substituting (52) and (53) into (51), we obtain

DαVp =DαVp−1 +
N

∑
i=1

m

∑
k=1

[
zi,p,k

(
x∗i,p+1,k + ϑT

i,p,k ϕi,p,k(Xi,n) + ϑ̃T
i,p,k ϕi,p,k(Xi,n)− Dαri,p,k

)
+

3
2

z2
i,p,k +

1
2

(
z2

i,p+1,k +
1
2

ε2
i,p,k + w2

i,p+1,k

)
+

1
γi,p,k

ϑ̃T
i,p,kDαϑ̃i,p,k + wi,p,kDαwi,p,k

]
.

(54)

Design the virtual controller x∗i,p+1,k and the update law θi,p,k as follow

x∗i,p+1,k = −ci,p,kzi,p,k − 2zi,p,k − ϑT
i,p,k ϕi,p,k +

x∗i,p,k − ri,p,k

ηi,p,k
(55)

Dαϑi,p,k = γi,p,k ϕi,p,k(Xi,n)zi,p,k − ρi,p,kϑi,p,k (56)

where ρi,p,k is the positive designed parameter. Substituting Equations (49), (55) and (56)
into (54), then we have

DαVp ≤DαVp−1 +
N

∑
i=1

m

∑
k=1

[
zi,p,k

(
−ci,p,kzi,p,k − 2zi,p,k − ϑT

i,p,k ϕi,p,k(Xi,n) +
x∗i,p,k − ri,p,k

ηi,p,k

+ ϑT
i,p,k ϕi,p,k(Xi,n) + ϑ̃T

i,p,k ϕi,p,k(Xi,n)− Dαri,p,k

)
+

3
2

z2
i,p,k +

1
2
(
z2

i,p,k+1 + w2
i,p,k+1

+ ε2
i,p,k
)
− 1

γi,p,k
ϑ̃T

i,p,k
(
γi,p,k ϕi,p,k(Xi,n)zi,p,k − ρi,p,kϑi,p,k

)
+ wi,p,k

(
−

wi,p,k

ηi,p,k
+ Mi,p,k

)]
.

(57)

Through (31) and (44), one obtains

DαVp−1 ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

p−1

∑
l=2

ci,l,kz2
i,l,k +

p−1

∑
l=1

ρi,l,k

γi,l,k
ϑ̃T

i,l,kϑi,l,k

+
1
2

p−1

∑
l=1

ε2
i,l,k −

p−1

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k +
1
2

p−1

∑
l=2

Γ2
i,l,k +

1
2

(
z2

i,p,k + w2
i,p,k

)]
.

(58)

Using Young’s inequality, one has wi,p,k Mi,p,k ≤ 1
2 w2

i,p,k +
1
2 Γ2

i,p,k. Combined with (57)
and (58), we have

DαVp ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

p

∑
l=2

ci,l,kz2
i,l,k +

p

∑
l=1

ρi,l,k

γi,l,k
ϑ̃T

i,l,kϑi,l,k

−
p

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k +
1
2

p

∑
l=1

ε2
i,l,k +

1
2

p

∑
l=2

Γ2
i,l,k +

1
2

(
z2

i,p+1,k + w2
i,p+1,k

)]
.

(59)

Step n. Define the n-th error variable as zi,n,k = xi,n,k − ri,n,k. Then, one has

Dαzi,n,k =Dαxi,n,k − Dαri,n,k

=ui,k + ϑT
i,n,k ϕi,n,k(Xi,n) + ϑ̃T

i,n,k ϕi,n,k(Xi,n) + εi,n,k − Dαri,n,k.
(60)

Through the FODSC technique, the following fractal differential equation can be obtained

ηi,n,kDαri,n,k + ri,n,k = x∗i,n,k, ri,n,k(0) = x∗i,n,k(0). (61)
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By Equation (61), we have

Dαwi,n,k = −
wi,n,k

ηi,n,k
+ Mi,n,k (62)

where ηi,n,k is the positive designed parameter, Mi,n,k = −Dαx∗i,n,k and there exists a positive

constant Γi,n,k, |Mi,n,k| ≤ Γi,n,k. Let Vn = Vn−1 +
1
2 ∑N

i=1 ∑m
k=1

(
z2

i,n,k +
1

γi,n,k
ϑ̃T

i,n,kϑ̃i,n,k + w2
i,n,k

)
where γi,n,k is the positive designed parameter. Then we obtain

DαVn = DαVn−1 +
N

∑
i=1

m

∑
k=1

(
zi,n,kDαzi,n,k +

1
γi,n,k

ϑ̃T
i,n,kDαϑ̃i,n,k + wi,n,kDαwi,n,k

)
. (63)

Substituting (62) into (63), it results in

DαVn =DαVn−1 +
N

∑
i=1

m

∑
k=1

[
zi,n,k

(
ui,k + ϑT

i,n,k ϕi,n,k(Xi,n) + ϑ̃T
i,n,k ϕi,n,k(Xi,n) + εi,n,k − Dαri,n,k

)
+

1
γi,n,k

ϑ̃T
i,n,kDαϑ̃i,n,k + wi,n,kDαwi,n,k

]
.

(64)

By employing Young’s inequality, one has zi,n,kεi,n,k ≤ 1
2 z2

i,n,k +
1
2 ε2

i,n,k. Combined
with (64), we obtain

DαVn =DαVn−1 +
N

∑
i=1

m

∑
k=1

[
zi,n,k

(
ui,k + ϑT

i,n,k ϕi,n,k(Xi,n) + ϑ̃T
i,n,k ϕi,n,k(Xi,n)− Dαri,n,k

)
+

1
2

z2
i,n,k

+
1
2

ε2
i,n,k +

1
γi,n,k

ϑ̃T
i,n,kDαϑ̃i,n,k + wi,n,kDαwi,n,k

]
.

(65)

Design the actual controller vi,k(t) and the adaptive law ϑi,n,k as

x̄∗i,n,k = ci,n,kzi,n,k +
3
2

zi,n,k + ϑT
i,n,k ϕi,n,k(Xi,n)−

x∗i,n,k − ri,n,k

ηi,n,k
(66)

Dαϑi,n,k = γi,n,k ϕi,n,k(Xi,n)zi,n,k − ρi,n,kϑi,n,k (67)

vi,k(t) =
1

1− d

−x̄∗i,n,k −
zi,n,k

(
πi,1,k x̄∗i,n,k

)2√(
zi,n,kπi,1,k x̄∗i,n,k

)2
+ π2

i,2,k

−
zi,n,kΠ2

i,1,k√
(zi,n,kΠi,1,k)

2 + π2
i,2,k

 (68)

where ci,n,k, ρi,n,k ,πi,1,k, πi,2,k and Πi,1,k are positive designed parameters. Based on the
hysteresis quantizer technique and Lemma 5, one obtains

Ξ(vi,k)vi,k(t) ≤ −x̄∗i,n,k −
zi,n,k

(
πi,1,k x̄∗i,n,k

)2√(
zi,n,kπi,1,k x̄∗i,n,k

)2
+ π2

i,2,k

−
zi,n,kΠ2

i,1,k√
(zi,n,kΠi,1,k)

2 + π2
i,2,k

(69)

The event-triggered controller ui,k(t) is designed as

ui,k(t)=υi,k(vi,k(tι)), ∀ ∈ [tι, tι+1) (70)

and the trigger condition for the sampling instants are designed as

tι+1= inf
{

t ∈ R|
∣∣∆i,k(t)

∣∣ ≥ πi,1
∣∣ui,k(t)

∣∣+ Υi,1,k
}

(71)
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where ∆i,k(t)=υi,k(vi,k(tι))− ui,k(t) is the event sampling error, 0 < πi,1,k < 1 and Υi,1,k
are positive designed parameters, tι, ι ∈ z+ is the update time for the controller.

According to (71), one has

∆i,k(t)=υi,k(vi,k(tι))− ui,k(t)=τi,1,k(t)πi,1ui,k(t) + τi,2,k(t)Υi,1,k (72)

where τi,1,k(t), τi,2,k(t) are time-varying parameters satisfying
∣∣τi,1,k(t)

∣∣ ≤ 1,
∣∣τi,2,k(t)

∣∣ ≤ 1.
Thus, we have

ui,k(t)=
υi,k(vi,k(t))− τi,2,k(t)Υi,1,k

1 + τi,1,k(t)πi,1,k
(73)

Combining (73), (62) and (67) with (65), it results in

DαVn =DαVn−1 +
N

∑
i=1

m

∑
k=1

[
zi,n,k

(
υi,k(vi,k(t))− τi,2,k(t)Υi,1,k

1 + τi,1,k(t)πi,1,k
+ x∗i,n,k

− x∗i,n,k + ϑT
i,n,k ϕi,n,k(Xi,n) + ϑ̃T

i,n,k ϕi,n,k(Xi,n)− Dαri,n,k

)
+

1
2

z2
i,n,k +

1
2

ε2
i,n,k −

1
γi,n,k

ϑ̃T
i,n,k
(
γi,n,k ϕi,p,k(Xi,k)zi,n,k

− ρi,n,kϑi,n,k
)
+ wi,n,k

(
−

wi,n,k

ηi,n,k
+ Mi,n,k

)]
.

(74)

Through Young’s inequality, we have wi,n,k Mi,n,k ≤ 1
2 w2

i,n,k +
1
2 Γ2

i,n,k. Then, from (66),
one has

DαVn =DαVn−1 +
N

∑
i=1

m

∑
k=1

[
zi,n,k

(
υi,k(vi,k(t))− τi,2,k(t)Υi,1,k

1 + τi,1,k(t)πi,1,k
+ x∗i,n,k

)

− ci,n,kz2
i,n,k −

3
2

z2
i,n,k +

1
2

z2
i,n,k +

1
2

ε2
i,n,k +

ρi,n,k

γi,n,k
ϑ̃T

i,n,kϑi,n,k −
w2

i,n,k

ηi,n,k

+
1
2

w2
i,n,k +

1
2

Γ2
i,n,k

]
.

(75)

According to Lemma 3, (68) and (69), one has

DαVn =DαVn−1 +
N

∑
i=1

m

∑
k=1

[
−ci,n,kz2

i,n,k −
3
2

z2
i,n,k +

1
2

z2
i,n,k +

1
2

ε2
i,n,k +

ρi,n,k

γi,n,k
ϑ̃T

i,n,kϑi,n,k

−
w2

i,n,k

ηi,n,k
+

1
2

w2
i,n,k +

1
2

Γ2
i,n,k +

1
2

z2
i,n,k +

v2
min

2(1− πi,1,k)2 +
2π2

i,2,k

1− πi,1,k

]
.

(76)

From (44) and (59), one obtains

DαVn−1 ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

n−1

∑
l=2

ci,l,kz2
i,l,k +

n−1

∑
l=1

ρi,l,k

γi,l,k
ϑ̃T

i,l,kϑi,l,k

+
1
2

n−1

∑
l=1

ε2
i,l,k −

n−1

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k +
1
2

n−1

∑
l=2

Γ2
i,l,k +

1
2

(
z2

i,n,k + w2
i,n,k

)]
.

(77)

Thus, combining (76) and (77), it results in
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DαVn ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

n

∑
l=2

ci,l,kz2
i,l,k +

n

∑
l=1

ρi,l,k

γi,l,k
ϑ̃T

i,l,kϑi,l,k

+
1
2

n

∑
l=1

ε2
i,l,k −

n

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k +
1
2

n

∑
l=2

Γ2
i,l,k +

v2
min

2(1− πi,1,k)2 +
2π2

i,2,k

1− πi,1,k

]
.

(78)

From Young’s inequality, one has

ϑ̃T
i,l,kϑi,l,k ≤ −

1
2

ϑ̃T
i,l,kϑ̃i,l,k +

1
2

ϑ∗Ti,l,kϑ∗i,l,k (79)

Therefore, rewrite (78) as

DαVn ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

n

∑
l=2

ci,l,kz2
i,l,k −

n

∑
l=1

ρi,l,k

2γi,l,k
ϑ̃T

i,l,kϑ̃i,l,k

+
1
2

n

∑
l=1

ε2
i,l,k −

n

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k +
1
2

n

∑
l=2

Γ2
i,l,k +

v2
min

2(1− πi,1,k)2 +
2π2

i,2,k

1− πi,1,k

+
n

∑
l=1

ρi,l,k

2γi,l,k
ϑ∗Ti,l,kϑ∗i,l,k

]
.

(80)

Denote

ε =
1
2

N

∑
i=1

m

∑
k=2

(
n

∑
l=2

Γ2
i,l,k +

v2
min

2(1− πi,1,k)2 +
2π2

i,2,k

1− πi,1,k
+

n

∑
l=1

ρi,l,k

2γi,l,k
ϑ∗Ti,l,kϑ∗i,l,k +

1
2

n

∑
l=1

ε2
i,l,k

)
(81)

Accordingly, the Equation (80) can be rewritten as follows

DαVn ≤
N

∑
i=1

m

∑
k=1

[
− 2c1 − 3

2λmax(H−1)

(
∂F(y)

∂y

)T
H−1

(
∂F(y)

∂y

)
−

n

∑
l=2

ci,l,kz2
i,l,k −

n

∑
l=1

ρi,l,k

2γi,l,k
ϑ̃T

i,l,kϑ̃i,l,k

−
n

∑
l=2

(
1

ηi,l,k
− 1

)
w2

i,l,k

]
+ ε

(82)

where 2c1−3
2λmax

> 0, ci,l,k > 0, ρi,l,k
2γi,l,k

> 0, ( 1
ηi,l,k
− 1) > 0. Define Θ = min{2 2c1−3

2λmax
, 2ci,l,k,

ρi,l,k
γi,l,k

, 2( 1
ηi,l,k
− 1)}. Then, (82) becomes

DαVn(t, x) ≤ −ΘVn(t, x) + ε. (83)

From (83) and Lemma 4, it results in

lim
t→∞
|Vn(t)| ≤

εµ

Θ
. (84)

According to the Lyapunov function V1, we obtain that 1
2 zT

1 Hz1 ≤ εµ
Θ . Thus, one has

‖z1‖ ≤
√

2εµ
Θ . Since z1 = y1 − y∗, ‖y1 − y∗‖ ≤

√
2εµ
Θ holds. Then, it can be summarized

that the error between agents’ outputs and the optimal trajectory is bounded. From the
definition of Θ, one concludes that with designed parameters c1, ci,l,k increasing, the value

of
√

2εµ
Θ will be decreasing, which means that sufficiently large parameters c1 and ci,l,k

brings the error small enough. This complete the proof of Theorem 1.

Next, the proof of avoiding Zeno phenomenon is as follows.
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From ∆i,k(t)υi,k(vi,k(tι)) − ui,k(t), one has Dα|∆i,k(t)| = sign(∆i,k(t))Dα(∆i,k(t)) ≤
|Dα(υi,k(vi,k(t)))| ≤ (1 + d)|Dα(vi,k(t))|. From the actual controller vi,k(t), it is known
that Dα(vi,k(t)) is bounede in a closed interval [0, t]. Thus, given a positive constant h such
that |Dα(vi,k(t))| < h. From ∆(tι) = 0 and limt→tι+1 ∆(t) = Υi,1,k. Hence, there exists t∗

such that t∗ ≥ Υi,1,k/h. Therefore, there exists t∗ ≥ 0 such that ∀ι ∈ z+, {tι+1 − tι} ≥ t∗,
the Zeno phenomenon will not occur.

Remark 2. In contrast to [7,8,50], where the high-order DOP is investigated for single-input–single-
output agent, agents in this paper are described by MIMO dynamics, which means the developed
control protocol are fitted in many practical engineering applications, like marine surface vehicles,
unmanned aerial vehicles and wheeled multimobile robots.

5. Simulation

In this section, we propose a simulation exmaple to verify the abovementioned theo-
retical results. Construct a connected undirected graph with five agents (see Figure 1). The
dynamic of each MIMO agent is described as

Dαxi,1,k(t) = xi,2,k + hi,1,k(Xi,2)

Dαxi,2,k(t) = ui,k(t) + hi,2,k(Xi,2)

yi,k = xi,2,k

(85)

where i = 1, . . . , 5, k = 1, 2, Xi,2 = [xT
i,1, xT

i,2]
T , h1,1,1(X1,2) = −0.02x1,1,1 − 0.05x1,2,1,

h1,2,1(X1,2) = −0.02x1,1,1 + 0.01x1,2,1 − 0.04x1,2,2, h1,1,2(X1,2) = 0.05x1,1,2 + 0.02x1,1,1,
h1,2,2(X1,2) = 0.02x1,1,2 − 0.04x1,2,2 + 0.01x1,1,1, h2,1,1(X2,2) = 0.03x2,1,1 + 0.01x2,2,1,
h2,2,1(X2,2) = 0.01x2,1,1 + 0.03x2,2,1, h2,1,2(X2,2) = −0.03x2,1,2 − 0.01x2,2,2, h2,2,2(X2,2) =
−0.01x2,1,2 − 0.03x2,2,2, h3,1,1(X3,2) = 0.05x3,1,1 + 0.05 sin(x3,2,1), h3,2,1(X3,2) = x3,1,1 +
0.08x3,2,1 − x2

3,1,1 sin(x3,2,1)− 0.05x3,1,2, h3,1,2(X3,2) = −0.05x3,1,2 − 0.05 sin(x3,2,2),
h3,2,2(X3,2) = −x3,1,2 − 0.08x3,2,2 − x2

3,1,2 sin(x3,2,2)− 0.05x3,1,1, h4,1,1(X4,2) = −0.06x4,1,1 −
0.01x4,1,1x4,2,1, h4,2,1(X4,2) = x4,1,1 − 0.01x4,2,1 + 0.02x2

4,1,1 − 0.01x4,1,1x4,2,1, h4,1,2(X4,2) =

0.02x4,1,2 + 0.01x4,1,2x4,2,2, h4,2,2(X4,2) = x4,1,1 + 0.01x4,2,2 − 0.02x2
4,1,2 + 0.01x4,1,2x4,2,2,

h5,1,1(X5,2) = 0.02(x5,1,1 − x5,1,2) + 0.02x5,1,2, h5,2,1(X5,2) = 0.1x5,1,1 + 0.02x2
5,2,1 +

sin(0.01x2
5,1,1 + 0.04x2

5,2,1) + sin(−0.01x2
5,1,2 − 0.04x2

5,2,2), h5,1,2(X5,2) = 0.02(x5,1,2 − x5,1,1) +

0.02x5,1,1 and h5,2,2(X5,2) = −0.1x5,1,2 − 0.02x2
5,2,2 + sin(0.01x2

5,1,1 + 0.04x2
5,2,1) +

sin(−0.01x2
5,1,2 − 0.04x2

5,2,2).

1

2

3 4

5

Figure 1. Communication topology.
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Construct the local objective function for each agent as

fi(yi) = (yi,1 − (0.9 + 0.05i) sin(t))2 + (yi,2 + (0.9 + 0.05i) cos(t))2 (86)

and the global objective function is

f (y) =
5

∑
i=1

fi(yi). (87)

Accodring to the Theorem 1, design the virtual controller, the controller and adaptive
laws as

x∗i,2,k = −c1

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
− ϑT

i,1,k ϕi,1,k(Xi,2) (88)

x̄∗i,2,k = ci,2,kzi,2,k +
3
2

zi,2,k + ϑT
i,2,k ϕi,2,k(Xi,2)−

x∗i,2,k − ri,2,k

ηi,2,k
(89)

vi,k(t) =
1

1− d

−x̄∗i,2,k −
zi,2,k

(
πi,1,k x̄∗i,2,k

)2√(
zi,2,kπi,1,k x̄∗i,2,k

)2
+ π2

i,2,k

−
zi,2,kΠ2

i,1,k√
(zi,2,kΠi,1,k)

2 + π2
i,2,k

 (90)

ui,k(t)=υi,k(vi,k(tι)), ∀ ∈ [tι, tι+1) (91)

Dαϑi,1,k = γi,1,k ϕi,1,k(Xi,2)

[
µ ∑

j∈Ni

aij(xi,1,k − xj,1,k) + 2[ai(t)yi + bi(t)]k

]
− ρi,1,kϑi,1,k (92)

Dαϑi,2,k = γi,2,k ϕi,2,k(Xi,2)zi,2,k − ρi,2,kϑi,2,k (93)

where the designed parameter aij = 1, c1 = 1.6, ci,2,k = 50, ηi,2,k = 40, γi,2,k = 1.5, ρi,1,k = 5,
ρi,2,k = 0.3, πi,1,k = 0.5, πi,2,k = 2, Πi,1,k = 2, Υi,1,k = 2, vmin = 1 and d = 0.4. Select the
initial conditions of FOMASs as x1,1 = [−1.1, 0.9]T , x2,1 = [−1.05, 0.95]T , x3,1 = [−1, 1]T ,
x4,1 = [−0.95, 1.05]T and x5,1 = [−0.9, 1.1]T .

Figures 2–16 show the simulation results. The trajectory of FOMASs’ outputs are
seen in Figures 2 and 3, which show that all signals in FOMASs remain bounded and all
agents reach consensus and follow the optimal trajectory. Figures 4–13 release interval
and display the trajectories of ui,k, q(vi,k) and (1− d)vi,k with i = 1, . . . , 5, k = 1, 2, which
illustrate the boundness of ui,k. Figure 14 shows the value of global objective function f (y),
from which we can summarize that the proposed control protocol minimizes the global
objective function f (y) and deals with the DOP for FOMASs with small errors. Figure 15
shows errors between agents’ outputs and the optimal solution of global objective function,
from which we can conlude that the optimal consensus errors are bounded and close to
zero. Figure 16 shows trajectories of RBFNN and h1,1,1(X1,2)− Dαy1,1∗. It can be seen that
RBFNN can track the unknown nonlinear function with small errors. From the simulation
results, it can be concluded that the proposed algorithm can ensure all MIMO agents reach
the optimal trajectory with lower computation in the uncertain FOMASs.
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Figure 2. Outputs of subsystem 1.

Figure 3. Outputs of subsystem 2.

Figure 4. Controller u1,1.
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Figure 5. Controller u1,2.

Figure 6. Controller u2,1.
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Figure 7. Controller u2,2.

Figure 8. Controller u3,1.
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Figure 9. Controller u3,2.

Figure 10. Controller u4,1.
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Figure 11. Controller u4,2.

Figure 12. Controller u5,1.
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Figure 13. Controller u5,2.

Figure 14. Value of the global objective function f (y).
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Figure 15. Errors between agents’ outputs and the optimal solution.
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Figure 16. Trajectories of RBFNN and h1,1,1(X1,2)− Dαy1,1∗.

6. Conclusions

This paper deals with a class of nonlinear FOMASs where each agent is described
by MIMO dynamics. To make all agents not only reach consensus, but also achieve the
optimal solution of DOP, the penalty term is constructed by using the property of connected
undirected communication graph and the global objected function is reconstructed. Frac-
tional derivatives of virtual controllers are acquired by FODSC technique while avoiding
“explosion of complexity”. Compared to existing literatures which only investigate DOPs
for the first-order or second-order linear MASs, the DOP for high-order uncertain nonlinear
MIMO MASs is solved by constructing a novel event-trigger based quantized adaptive
backstepping control protocol using RBFNNs technique, which reduces the utilization of
communication resources. Simulation results demonstrate that the developed algorithm
makes all agents reach the optimal trajectory with bounded errors and the smaller sam-
pling frequency of the control input. It should be noted that the algorithm in this paper is
developed based on Lyapunov asymptotically stability theorem and the state trajectories
converge to stability in a sufficiently long time. In future work, we plan to investigate
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the finite-time DOP for high-order nonlinear MASs and apply this control scheme to real
physical systems.
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