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Abstract: This work investigates the complex dynamics of the stochastic fractional Kuramoto–
Sivashinsky equation (SFKSE) with conformable fractional derivatives. The research begins with
the creation of singular stochastic soliton solutions utilizing the modified extended direct algebraic
method (mEDAM). Comprehensive contour, 3D, and 2D visual representations clearly depict the
categorization of these stochastic soliton solutions as kink waves or shock waves, offering a clear
description of these soliton behaviors within the context of the SFKSE framework. The paper also
illustrates the flexibility of the transformation-based approach mEDAM for investigating soliton
occurrence not only in SFKSE but also in a wide range of nonlinear fractional partial differential
equations (FPDEs). Furthermore, the analysis considers the effect of noise, specifically Brownian
motion, on soliton solutions and wave dynamics, revealing the significant influence of randomness
on the propagation, generation, and stability of soliton in complex stochastic systems and advancing
our understanding of extreme behaviors in scientific and engineering domains.

Keywords: FPDEs; stochastic fractional Kuramoto–Sivashinsky equation; conformable fractional
derivative; solitons; singular solutions; shocks; kinks

1. Introduction

Stochastic fractional differential equations (SFDEs) are a powerful mathematical frame-
work with numerous applications in science and engineering [1–3]. They combine stochastic
processes, which address unpredictability, with fractional calculus, which includes mem-
ory and non-local effects, allowing them to simulate complicated events that classical
differential equations cannot. SFDEs are useful in finance for asset price modeling and
risk assessment and in physics, biology, geophysics, and environmental science for un-
derstanding various natural phenomena. They are also useful in control theory, signal
processing, and image analysis, providing novel solutions to difficult system and data
analysis issues [4–8].

Solitons , also called solitary waves, are observed in nonlinear systems in fields as
diverse as physics, optics, and other disciplines [9–11]. These incredible waves are self-
sustaining waves that maintain their form and speed as they travel. They appear as robust
entities in various physical circumstances, providing vital insights into wave dynamics.
Solitons have piqued the curiosity of mathematicians and academics, prompting them to
investigate soliton dynamics in both nonlinear FPDEs. As a result of their efforts, several
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analytical methods have emerged, including the tan-function method [12], exp-function
method [13], sub-equation method [14], Kudryashov method [15], (G’/G)-expansion ap-
proach [16], Sardar sub-equation method [17], Khater method [18], sin-Gordon method [19],
and mEDAM [20–22].

The primary goal of this investigation is to investigate and analyze the characteristics
of solitons in the SFKSE. This nonlinear model is introduced as [23,24]:

du + [pDβ
x (Dβ

x u) + uDβ
x u + rDβ

x (Dβ
x (Dβ

x (Dβ
x u)))]dt = ρudW, (1)

where u ≡ u(x, t) denotes a real stochastic function, Dβ
x (·) denotes conformable fractional

derivative’s operator, r and p are nonzero real constants, W = W(t) denotes Brownian
motion and is completely dependent on t, and ρ denotes noise intensity. The SFKSE, with
parameters ρ = 0 and β = 1, is a versatile Kuramoto–Sivashinsky Equation (KSE) that
can be used to illustrate long waves at the interface of two viscous fluids, unstable drift
waves in plasmas, and Benard convection in a one-dimensional elongated box. It also helps
regulate surface roughness in sputtering-grown thin solid films, generate amorphous films,
and comprehend step dynamics in epitaxy.

Many researchers have successfully solved the KSE and SFKSE using various method-
ologies such as modified polynomial expansion method [25], the ansatz method [26], the
tanh method and its modification [27], perturbation method [28], tanh-coth method [29],
homotopy analysis method [30], Painlevé expansion methods [31], and many others [32]
investigated accurate solutions. In this research, we provide the mEDAM [33] as a novel
way to study soliton dynamics within the SFKSE. We propose using an appropriate complex
transformation to turn the SFKSE into a set of nonlinear ordinary differential equations
(NODEs). These NODEs are then turned into a system of nonlinear equations by assuming
a series-based solution. Using the Maple tool to solve the resultant system, we construct a
wide range of stochastic soliton solutions for the SFKSE. This fresh technique adds to the
expanding amount of innovative ideas proposed by experts in this discipline [34–36].

The researchers discovered that singular solitons in the context of the SFKSE typically
appear as kink waves or shock waves. This classification derives from the equation’s
delicate interaction of fractional derivatives, stochastic (random) effects, and nonlinear
dynamics. Kink waves reflect localized energy concentrations and quick changes in the
spatial pattern of the solution. In contrast, shock waves represent fast gradient shifts im-
pacted by the equation’s complexity. Brownian motion, or noise, introduced into the SFKSE
provides unpredictability into the model, altering soliton solutions and wave dynamics.
Brownian motion can cause system fluctuations, possibly affecting solitons’ generation,
propagation, and stability, making them more unpredictable and changeable in complex
stochastic systems. This research illuminates the significant influence of noise on the behav-
ior of solitons and wave dynamics within the SFKSE framework, providing insights into
extreme occurrences in scientific and practical applications [37–39].

The rest of the study is organized as follows: Section 2 introduces the Brownian
motion, conformable fractal derivative definitions, and methodology of mEDAM. Section 3
focuses on calculating the wave equation for SFKSE, while Section 4 employs the mEDAM
to calculate stochastic soliton solutions for SFKSE. Section 5 contains a series of graphs that
show the effect of multiplicative noise on SFKSE’s soliton solutions. Finally, in the final
part, we summarize our findings and offer conclusions.

2. Methodology and Resources
2.1. Brownian Motion

The stochastic process W(t)t≥0 is called a Brownian motion if it satisfies the following
conditions:

• W(0) = 0;
• W(t) is continuous function;
• W(t)−W(s) is independent for s < t;
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• W(t)−W(s) has a Gaussian distribution with mean 0 and variance t− s.

2.2. Conformable Fractional Derivative

In Equation (1), the fractional derivatives used correspond to conformable fractional
derivatives. The operator that expresses these derivatives of order δ is defined in [40]
as follows:

Dβ
Ωu(Ω) = lim

γ→0

u(γΩ1−β + Ω)− u(Ω)

γ
, β ∈ (0, 1]. (2)

The following features of this derivative are used in this investigation:

Dβ
ΩΩn = nΩn−β, (3)

Dβ
Ω(n1η(Ω)± n2γ(Ω)) = n1Dβ

Ω(η(Ω))± n2Dβ
Ω(γ(Ω)), (4)

Dβ
Ωχ[ξ(Ω)] = χ′ξ(ξ(Ω))Dβ

Ωξ(Ω), (5)

where η(Ω), γ(Ω), χ(Ω), and ξ(Ω) represent functions that exhibit differentiability, whereas
n, n1, and n2 signify constants.

2.3. The Working Mechanism of mEDAM

This section outlines EDAM’s operational procedures. Take into account the general
FPDE listed below [20–22]:

M(y, ∂α
t y, ∂

β
r1 y, ∂

γ
r2 y, y∂

β
r1 y, . . .) = 0, 0 < α, β, γ ≤ 1, (6)

where y = y(t, r1, r2, r3, . . . , ri).
Following these steps allows us to solve Problem (6):

1. First, y(t, r1, r2, r3, . . . , ri) = Y(Ω), Ω = Ω(t, r1, r2, r3, . . . , ri) , (Ω can be written in
many ways) is executed to turn (6) into a NODE of the form:

T(Y, Y′, Y′Y, . . . ) = 0, (7)

where Y in (7) has derivatives with respect to Ω. Equation (7) may occasionally be
integrated once or more to obtain the integration’s constant.

2. Then, we assume the following series form solution for (7):

Y(Ω) =
j

∑
m=−j

Sm(χ(Ω))m, (8)

where Sm(m = −j, . . . , 0, . . . , j) are unknown constants to be found later, and χ(ϕ) is
the general solution of the subsequent ODE.

χ′(Ω) = ln(κ)(c(χ(Ω))2 + bχ(Ω) + a), (9)

where κ 6= 0, 1 and a, b and c are invariables.
3. The positive integer j present in (8) is called balance number, which is obtained by

taking the homogeneous balance between the highest order derivative and the biggest
nonlinear term in (7).

4. Following that, we insert (8) into (7) or into the equation created by integrating (7),
and we then compile all of the terms of χ(Ω) that are in the same order and produce
an expression in χ(Ω). A system of algebraic equations in Sm(m = −j, . . . , 0 . . . , j)
and other parameters is produced by equating all the coefficients of the expression to
zero using the concept of comparison of coefficients.

5. To solve this set of algebraic equations, we use Maple-13 software.
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6. The soliton solutions to (6) are then explored by determining the unidentified coef-
ficients and additional parameters and placing them in (8) together with the χ(Ω)
(general solution of (9)). The families of soliton solutions shown below may be
produced using this generic solution of (9).

Family. 1 : When ν < 0 c 6= 0,

χ1(Ω) = − b
2c

+

√
−ν tanκ

(
1
2
√
−νΩ

)
2c

,

χ2(Ω) = − b
2c
−

√
−ν cotκ

(
1
2
√
−νΩ

)
2c

,

χ3(Ω) = − b
2c

+

√
−ν
(
tanκ

(√
−νΩ

)
±
(√

q1q2 secκ

(√
−νΩ

)))
2c

,

χ4(Ω) = − b
2c
−
√
−ν
(
cotκ

(√
−νΩ

)
±
(√

q1q2 cscκ

(√
−νΩ

)))
2c

,

and

χ5(Ω) = − b
2c

+

√
−ν
(

tanκ

(
1
4
√
−νΩ

)
− cotκ

(
1
4
√
−νΩ

))
4c

.

Family. 2: When ν > 0 c 6= 0,

χ6(Ω) = − b
2c
−

√
ν tanhκ

(
1
2
√

νΩ
)

2c
,

χ7(Ω) = − b
2c
−

√
ν cothκ

(
1
2
√

νΩ
)

2c
,

χ8(Ω) = − b
2c
−
√

ν
(
tanhκ

(√
νΩ
)
±
(√

q1q2sechκ

(√
νΩ
)))

2c
,

χ9(Ω) = − b
2c
−
√

ν
(
cothκ

(√
νΩ
)
±
(√

q1q2cschκ

(√
νΩ
)))

2c
,

and

χ10(Ω) = − b
2c
−

√
ν
(

tanhκ

(
1
4
√

νΩ
)
− cothκ

(
1
4
√

νΩ
))

4c
.

Family. 3: When ac > 0 and b = 0,

χ11(Ω) =

√
a
c

tanκ

(√
acΩ

)
,

χ12(Ω) = −
√

a
c

cotκ

(√
acΩ

)
,

χ13(Ω) =

√
a
c
(
tanκ

(
2
√

acΩ
)
±
(√

q1q2 secκ

(
2
√

acΩ
)))

,

χ14(Ω) = −
√

a
c

(
cotκ

(
2
√

ACΩ
)
±
(√

q1q2 cscκ

(
2
√

acΩ
)))

,

and

χ15(Ω) =
1
2

√
a
c

(
tanκ

(
1
2
√

acΩ
)
− cotκ

(
1
2
√

acΩ
))

.
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Family. 4: When ac > 0 and b = 0,

χ16(Ω) = −
√
− a

c
tanhκ

(√
−acΩ

)
,

χ17(Ω) = −
√
− a

c
cothκ

(√
−acΩ

)
,

χ18(Ω) = −
√
− a

c

(
tanhκ

(
2
√
−acΩ

)
±
(

i
√

q1q2sechA

(
2
√
−acΩ

)))
,

χ19(Ω) = −
√
− a

c

(
cothκ

(
2
√
−acΩ

)
±
(√

q1q2cschκ

(
2
√
−acΩ

)))
,

and

χ20(Ω) = −1
2

√
− a

c

(
tanhκ

(
1
2
√
−acΩ

)
+ cothκ

(
1
2
√
−acΩ

))
.

Family. 5: When c = a and b = 0,

χ21(Ω) = tanκ(aΩ),

χ22(Ω) = − cotκ(aΩ),

χ23(Ω) = tanκ(2 AΩ)± (
√

q1q2 secκ(2 aΩ)),

χ24(Ω) = − cotκ(2 aΩ)± (
√

q1q2 cscκ(2 aΩ)),

and

χ25(Ω) =
1
2

tanκ

(
1
2

aΩ
)
− 1

2
cotκ

(
1
2

aΩ
)

.

Family. 6: When c = −a and b = 0,

χ26(Ω) = − tanhκ(aΩ),

χ27(Ω) = − cothκ(aΩ),

χ28(Ω) = − tanhκ(2 aΩ)± (i
√

q1q2sechκ(2 aΩ)),

χ29(Ω) = − cothκ(2 aΩ)± (
√

q1q2cschκ(2 aΩ)),

and

χ30(Ω) = −1
2

tanhκ

(
1
2

aΩ
)
− 1

2
cothκ

(
1
2

aΩ
)

.

Family. 7: When ν = 0,

χ31(Ω) = −2
a(bΩ lnκ + 2)

b2Ω lnκ
.

Family. 8: When b = ν, a = mω(m 6= 0) and c = 0,

χ32(Ω) = κν Ω −m.

Family. 9: When b = c = 0,
χ33(Ω) = aΩ lnκ.

Family. 10: When b = a = 0,

χ34(Ω) = − 1
cΩ lnκ

.

Family. 11: When a = 0, b 6= 0 and c 6= 0,

χ35(Ω) = − q1b
c(coshκ(bΩ)− sinhκ(bΩ) + q1)

,
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and

χ36(Ω) = − b(coshκ(bΩ) + sinhκ(bΩ))

c(coshκ(bΩ) + sinhκ(bΩ) + q2)
,

Family. 12: When b = ω, c = mω(m 6= 0) and a = 0,

χ37(Ω) =
q1κν Ω

q1 −mq2κν Ω .

where q1, q2 > 0 and are referred to as deformation parameters and ν = b2 − 4ac. The
generalized hyperbolic and trigonometric functions present in our solutions are expressed
as below:

sinκ(Ω) =
q1κiΩ − q2κ−iΩ

2i
, cosκ(Ω) =

q1κ−iΩ + q2κiΩ

2
,

secκ(Ω) =
1

cosκ(Ω)
, cscκ(Ω) =

1
sinκ(Ω)

,

cotκ(Ω) =
cosκ(Ω)

sinκ(Ω)
, tanκ(Ω) =

sinκ(Ω)

cosκ(Ω)
.

Similarly,

sinhκ(Ω) =
q1κΩ − q2κ−Ω

2
, coshκ(Ω) =

q1κ−Ω + q2κΩ

2
,

sechκ(Ω) =
1

coshκ(Ω)
, cschκ(Ω) =

1
sinhκ(Ω)

,

cothκ(Ω) =
coshκ(Ω)

sinhκ(Ω)
, tanhκ(Ω) =

sinhκ(Ω)

coshκ(Ω)
.

3. Wave Equation for SFKSE

To obtain the wave equation of SFSKSE (1), we utilize the following wave transformation:

u(x, t) = U(Ω)e(ρW(t)− ρ2t
2 ), Ω = µt +

λxβ

β
, (10)

where U is the deterministic function. Differentiating (10) with regard to t and x, we obtain

du = (µU′ − ρ2t
2

+
ρ2t
2
)e(ρW(t)− ρ2t

2 )dt + ρUe(ρW(t)− ρ2t
2 )dW

Dβ
x u = λU′e(ρW(t)− ρ2t

2 ), Dβ
x (Dβ

x u) = λ2U′′e(ρW(t)− ρ2t
2 )

Dβ
x (Dβ

x (Dβ
x u)) = λ3U′′′e(ρW(t)− ρ2t

2 ), Dβ
x (Dβ

x (Dβ
x (Dβ

x u))) = λ4U(iv)e(ρW(t)− ρ2t
2 ),

(11)

where ρ2t
2 is the Itô correction term. Inserting (10) into (1) and using (11), we have

µ

λ
U′ + UU′e(ρW(t)− ρ2t

2 ) + pλU′′ + rλ3U′′′′ = 0. (12)

Taking expectation on both sides, we have

µ

λ
U′ + UU′e−

ρ2t
2 E(eρW(t)) + pλU′′ + rλ3U′′′′ = 0, (13)

where U is the deterministic function. We note that E(eρW(t) = e
ρ2t
2 ), where W(t) is normal

standard distribution and ρ is a real constant. Now, (13) has the form

µ

λ
U′ + UU′ + pλU′′ + rλ3U′′′′ = 0. (14)
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Integrating (14) and putting the constant of integration equal zero, we obtain

µ

λ
U +

U2

2
+ pλU′ + rλ3U′′′ = 0, (15)

4. Stochastic Soliton Solutions

In this section, we aim to construct stochastic soliton solutions for SFKSE presented
in (1). For this we homogeneously balance the highest order derivative rλ3U′′′ and the
nonlinear term U2

2 which implies j + 3 = 2j i.e., j = 3. By substituting j = 1 in (8), we
obtain the series form solution for (15) as follows:

W(η) =
3

∑
m=0

Sm(χ(Ω))m = S0 + S1(χ(Ω))1 + S2(χ(Ω))2 + S3(χ(Ω))3. (16)

We generate an expression in χ(Ω) by placing (16) in (15) and collecting every term with
the same powers of χ(Ω). A system of nonlinear algebraic equations is formed by equating
all coefficients to zero. Using Maple to solve the system yields the following two sets of
solutions:

Case. 1

S0 = 30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r
, S1 = −360

λ3(ln(κ))3ac2

r
, S2 = −180

λ3(ln(κ))3bc2

r
,

S3 = −120
λ3(ln(κ))3c3

r
, p = −19

λ2(ln(κ))2ν

r
, λ = λ, µ = −30

λ4(ln(κ))3√ν3

r

(17)

Case. 2

S0 =
30
11

(
−b3 − 18 bca +

√
ν3
)
(ln(κ))3λ3

r
, S1 = −360

11
λ3(ln(κ))3c

(
3 ca + 2 b2)

r
, λ = λ,

S2 =
−180 λ3(ln(κ))3bc2

r
, S3 =

−120 λ3(ln(κ))3c3

r
, p =

19
11

λ2(ln(κ))2ν

r
, µ = −30

11
λ4(ln(κ))3√ν3

r

(18)

Considering Case 1 and using (10) and (16) and the corresponding solution of (9), we
obtain the following families of singular stochastic soliton solutions for (1):

Family. 1.1: When ν < 0 c 6= 0,

u1,1(x, t) = e(ρW(t)− ρ2t
2 )(−15

λ3(ln(κ))3
(
−2
√

ν3 − 3 ν
√
−ν tanκ

(
1
2
√
−νΩ

)
+ (−ν)3/2

(
tanκ

(
1
2
√
−νΩ

))3
)

r
),

(19)

u1,2(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν
√
−ν cotκ

(
1
2
√
−νΩ

)
+ (−ν)3/2

(
cotκ

(
1
2
√
−νΩ

))3
)

r
),

(20)
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u1,3(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)3

r
),

(21)

u1,4(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)3

r
),

(22)

and

u1,5(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)3

r
),

(23)

Family. 1.2: When ν > 0 c 6= 0,

u1,6(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν3/2 tanhκ

(
1
2
√

νΩ
)
+ ν3/2

(
tanhκ

(
1
2
√

νΩ
))3

)
r

),
(24)

u1,7(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν3/2 cothκ

(
1
2
√

νΩ
)
+ ν3/2

(
cothκ

(
1
2
√

νΩ
))3

)
r

),
(25)
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u1,8(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)3

r
),

(26)

u1,9(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)3

r
),

(27)

and

u1,10(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−360 λ3(ln(κ))3ac2
(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)
r

−180 λ3(ln(κ))3bc2
(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)2

r

−120 λ3(ln(κ))3c3
(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)3

r
),

(28)

Family. 1.3 : When ac > 0 and b = 0,

u1,11(x, t) = e(ρW(t)− ρ2t
2 )(

120 (ln(κ))3λ3
(

2
√
−a3c3 − 3 ac2

√
a
c tanκ

(√
acΩ

)
− c2a

√
a
c
(
tanκ

(√
acΩ

))3
)

r
), (29)

u1,12(x, t) = e(ρW(t)− ρ2t
2 )(

120 (ln(κ))3λ3
(

2
√
−a3c3 + 3 ac2

√
a
c cotκ

(√
acΩ

)
+ c2a

√
a
c
(
cotκ

(√
acΩ

))3
)

r
), (30)
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u1,13(x, t) = e(ρW(t)− ρ2t
2 )(−

360 λ3(ln(κ))3ac2
√

a
c
(
tanκ

(
2
√

acΩ
)
+
√

q1q2 secκ

(
2
√

acΩ
))

r

−
120 λ3(ln(κ))3c3( a

c
)3/2(tanκ

(
2
√

acΩ
)
+
√

q1q2 secκ

(
2
√

acΩ
))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(31)

u1,14(x, t) = e(ρW(t)− ρ2t
2 )(

360 λ3(ln(κ))3ac2
√

a
c
(
cotκ

(
2
√

acΩ
)
+
√

q1q2 cscκ

(
2
√

acΩ
))

r

+
120 λ3(ln(κ))3c3( a

c
)3/2(cotκ

(
2
√

acΩ
)
+
√

q1q2 cscκ

(
2
√

acΩ
))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(32)

and

u1,15(x, t) = e(ρW(t)− ρ2t
2 )(−

180 λ3(ln(κ))3ac2
√

a
c

(
tanκ

(
1
2
√

acΩ
)
− cotκ

(
1
2
√

acΩ
))

r

−
15 λ3(ln(κ))3c3( a

c
)3/2

(
tanκ

(
1
2
√

acΩ
)
− cotκ

(
1
2
√

acΩ
))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(33)

Family. 1.4: When ac < 0 and b = 0,

u1,16(x, t) = e(ρW(t)− ρ2t
2 )(

120
√
−(ac)3(ln(κ))3λ3

(
2 + 3 tanhκ

(√
−acΩ

)
−
(
tanhκ

(√
−acΩ

))3
)

r
), (34)

u1,17(x, t) = e(ρW(t)− ρ2t
2 )(

120
√
−(ac)3(ln(κ))3λ3

(
2 + 3 cothκ

(√
−acΩ

)
−
(
cothκ

(√
−acΩ

))3
)

r
), (35)

u1,18(x, t) = e(ρW(t)− ρ2t
2 )(

360 λ3(ln(κ))3ac2
√
− a

c
(
tanhκ

(
2
√
−acΩ

)
+
√−q1q2sechκ

(
2
√
−acΩ

))
r

+
120 λ3(ln(κ))3c3(− a

c
)3/2(tanhκ

(
2
√
−acΩ

)
+
√−q1q2sechκ

(
2
√
−acΩ

))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(36)

u1,19(x, t) = e(ρW(t)− ρ2t
2 )(

360 λ3(ln(κ))3ac2
√
− a

c
(
cothκ

(
2
√
−acΩ

)
+
√

q1q2cschκ

(
2
√
−acΩ

))
r

+
120 λ3(ln(κ))3c3(− a

c
)3/2(cothκ

(
2
√
−acΩ

)
+
√

q1q2cschκ

(
2
√
−acΩ

))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(37)

and

u1,20(x, t) = e(ρW(t)− ρ2t
2 )(

180 λ3(ln(κ))3ac2
√
− a

c

(
tanhκ

(
1
2
√
−acΩ

)
+ cothκ

(
1
2
√
−acΩ

))
r

+
15 λ3(ln(κ))3c3(− a

c
)3/2

(
tanhκ

(
1
2
√
−acΩ

)
+ cothκ

(
1
2
√
−acΩ

))3

r
+ 240

√
−a3c3(ln(κ))3λ3

r
),

(38)
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Family. 1.5: When c = a and b = 0,

u1,21(x, t) = e(ρW(t)− ρ2t
2 )(120

(ln(κ))3λ3
(

2
√
−a6 − 3 a3 tanκ(aΩ)− a3(tanκ(aΩ))3

)
r

), (39)

u1,22(x, t) = e(ρW(t)− ρ2t
2 )(120

(ln(κ))3λ3
(

2
√
−a6 + 3 a3 cotκ(aΩ) + a3(cotκ(aΩ))3

)
r

), (40)

u1,23(x, t) = e(ρW(t)− ρ2t
2 )(−360

λ3(ln(κ))3a3(tanκ(2 aΩ) +
√

q1q2 secκ(2 aΩ)
)

r

− 120
λ3(ln(κ))3a3(tanκ(2 aΩ) +

√
q1q2 secκ(2 aΩ)

)3

r
+ 240

√
−a6(ln(κ))3λ3

r
),

(41)

u1,24(x, t) = e(ρW(t)− ρ2t
2 )(−360

λ3(ln(κ))3a3(− cotκ(2 aΩ)−√q1q2 cscκ(2 aΩ)
)

r

− 120
λ3(ln(κ))3a3(− cotκ(2 aΩ)−√q1q2 cscκ(2 aΩ)

)3

r
+ 240

√
−a6(ln(κ))3λ3

r
),

(42)

and

u1,25(x, t) = e(ρW(t)− ρ2t
2 )(−360

λ3(ln(κ))3a3
(

1
2 tanκ(1/2 aΩ)− 1

2 cotκ

(
1
2 aΩ

))
r

− 120
λ3(ln(κ))3a3

(
1
2 tanκ

(
1
2 aΩ

)
− 1

2 cotκ

(
1
2 aΩ

))3

r
+ 240

√
−a6(ln(κ))3λ3

r
),

(43)

Family. 1.6: When c = −a and b = 0,

u1,26(x, t) = e(ρW(t)− ρ2t
2 )(120

a3(ln(κ))3λ3
(

2 csgn
(
a3)+ 3 tanhκ(aΩ)− (tanhκ(aΩ))3

)
r

), (44)

u1,27(x, t) = e(ρW(t)− ρ2t
2 )(120

a3(ln(κ))3λ3
(

2 csgn
(
a3)+ 3 cothκ(aΩ)− (cothκ(aΩ))3

)
r

), (45)

u1,28(x, t) = e(ρW(t)− ρ2t
2 )(−360

a3(ln(κ))3λ3(− tanhκ(2 aΩ)−√−q1q2sechκ(2 aΩ))

r

+ 120
a3(ln(κ))3λ3(− tanhκ(2 aΩ)−√−q1q2sechκ(2 aΩ))3

r
+ 240

a3(ln(κ))3λ3

r
),

(46)

u1,29(x, t) = e(ρW(t)− ρ2t
2 )(−360

a3(ln(κ))3λ3(− cothκ(2 aΩ)−√q1q2cschκ(2 aΩ)
)

r

+ 120
a3(ln(κ))3λ3(− cothκ(2 aΩ)−√q1q2cschκ(2 aΩ)

)3

r
+ 240

a3(ln(κ))3λ3

r
),

(47)
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and

u1,30(x, t) = e(ρW(t)− ρ2t
2 )(−360

a3(ln(κ))3λ3
(
− 1

2 tanhκ

(
1
2 aΩ

)
− 1

2 cothκ

(
1
2 aΩ

))
r

+ 120
a3(ln(κ))3λ3

(
− 1

2 tanhκ

(
1
2 aΩ

)
− 1

2 cothκ

(
1
2 aΩ

))3

r
+ 240

a3(ln(κ))3λ3

r
),

(48)

Family. 1.7: When ν = 0,

u1,31(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3)(ln(κ))3λ3

r
+ 720

λ3(ln(κ))2ac2a(bΩ ln(κ) + 2)
rb2Ω

− 720
λ3 ln(κ)c2(a(bΩ ln(κ) + 2))2

b3rΩ2 + 960
λ3c3(a(bΩ ln(κ) + 2))3

rb6Ω3 ),

(49)

Family. 1.8: When b = a = 0,

u1,32(x, t) = e(ρW(t)− ρ2t
2 )(30

λ3
(√

ν3(ln(κ))3Ω3 + 4
)

rΩ3 ), (50)

Family. 1.9: When a = 0, b 6= 0 and c 6= 0,

u1,33(x, t) = e(ρW(t)− ρ2t
2 )(30

(
b3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3b3q1

2

r(coshκ(bΩ)− sinhκ(bΩ) + q1)
2 + 120

λ3(ln(κ))3q1
3b3

r(coshκ(bΩ)− sinhκ(bΩ) + q1)
3 ),

(51)

and

u1,34(x, t) = e(ρW(t)− ρ2t
2 )(30

(
b3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3b3(coshκ(bΩ) + sinhκ(bΩ))2

r(coshκ(bΩ) + sinhκ(bΩ) + q2)
2 + 120

λ3(ln(κ))3b3(coshκ(bΩ) + sinhκ(bΩ))3

r(coshκ(bΩ) + sinhκ(bΩ) + q2)
3 ),

(52)

Family. 1.10: When b = ω, c = mω(m 6= 0) and a = 0,

u1,35(x, t) = e(ρW(t)− ρ2t
2 )(30

(
ω3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3ω3m2q1

2(κω Ω)2

r(p−mq2κω Ω)
2 − 120

λ3(ln(κ))3m3ω3q1
3(κω Ω)3

r(p−mq2κω Ω)
3 ),

(53)

where Ω = −30 λ4(ln(κ))3√ν3

r t + λxβ

β .
Considering Case 2 and using (10), (16), and the corresponding solution of (9), we

obtain the following families of singular stochastic soliton solutions for (1):
Family. 2.1: When ν < 0 c 6= 0,

u2,1(x, t) = e(ρW(t)− ρ2t
2 )(−15

λ3(ln(κ))3
(
−2
√

ν3 − 3 ν
√
−ν tanκ

(
1
2
√
−νΩ

)
+ (−ν)3/2

(
tanκ

(
1
2
√
−νΩ

))3
)

r
),

(54)
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u2,2(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν
√
−ν cotκ

(
1
2
√
−νΩ

)
+ (−ν)3/2

(
cotκ

(
1
2
√
−νΩ

))3
)

r
),

(55)

u2,3(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c +

1
2

√
−ν(tanκ(

√
−νΩ)+

√
q1q2 secκ(

√
−νΩ))

c

)3

r
),

(56)

u2,4(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c −

1
2

√
−ν(cotκ(

√
−νΩ)+

√
q1q2 cscκ(

√
−νΩ))

c

)3

r
),

(57)

and

u2,5(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c +

1
4

√
−ν(tanκ( 1

4
√
−νΩ)−cotκ( 1

4
√
−νΩ))

c

)3

r
),

(58)

Family. 2.2: When ν > 0 c 6= 0,

u2,6(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν3/2 tanhκ

(
1
2
√

νΩ
)
+ ν3/2

(
tanhκ

(
1
2
√

νΩ
))3

)
r

),
(59)
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u2,7(x, t) = e(ρW(t)− ρ2t
2 )(15

λ3(ln(κ))3
(

2
√

ν3 − 3 ν3/2 cothκ

(
1
2
√

νΩ
)
+ ν3/2

(
cothκ

(
1
2
√

νΩ
))3

)
r

),
(60)

u2,8(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c −

1
2

√
ν(tanhκ(

√
νΩ)+

√−q1q2sechκ(
√

νΩ))
c

)3

r
),

(61)

u2,9(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c −

1
2

√
ν(cothκ(

√
νΩ)+

√
q1q2cschκ(

√
νΩ))

c

)3

r
),

(62)

and

u2,10(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3 +

√
ν3
)
(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)
r

−
180 λ3(ln(κ))3bc2

(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)2

r

−
120 λ3(ln(κ))3c3

(
− 1

2
b
c −

1
4

√
ν(tanhκ( 1

4
√

νΩ)−cothκ( 1
4
√

νΩ))
c

)3

r
),

(63)

Family. 2.3: When ac > 0 and b = 0,

u2,11(x, t) = e(ρW(t)− ρ2t
2 )(

120 (ln(κ))3λ3
(

2
√
−c3a3 − 3 ac2

√
a
c tanκ

(√
caΩ

)
− c2a

√
a
c
(
tanκ

(√
caΩ

))3
)

r
), (64)
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u2,12(x, t) = e(ρW(t)− ρ2t
2 )(

120 (ln(κ))3λ3
(

2
√
−c3a3 + 3 ac2

√
a
c cotκ

(√
caΩ

)
+ c2a

√
a
c
(
cotκ

(√
caΩ

))3
)

r
), (65)

u2,13(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

−
360 λ3(ln(κ))3ac2

√
a
c
(
tanκ

(
2
√

caΩ
)
+
√

q1q2 secκ

(
2
√

caΩ
))

r

−
120 λ3(ln(κ))3c3( a

c
)3/2(tanκ

(
2
√

caΩ
)
+
√

q1q2 secκ

(
2
√

caΩ
))3

r
),

(66)

u2,14(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

+
360 λ3(ln(κ))3ac2

√
a
c
(
cotκ

(
2
√

caΩ
)
+
√

q1q2 cscκ

(
2
√

caΩ
))

r

+
120 λ3(ln(κ))3c3( a

c
)3/2(cotκ

(
2
√

caΩ
)
+
√

q1q2 cscκ

(
2
√

caΩ
))3

r
),

(67)

and

u2,15(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

−
180 λ3(ln(κ))3ac2

√
a
c

(
tanκ

(
1
2
√

caΩ
)
− cotκ

(
1
2
√

caΩ
))

r

−
15 λ3(ln(κ))3c3( a

c
)3/2

(
tanκ

(
1
2
√

caΩ
)
− cotκ

(
1
2
√

caΩ
))3

r
),

(68)

Family. 2.4: When ac < 0 and b = 0,

u2,16(x, t) = e(ρW(t)− ρ2t
2 )(

120
√
−(ac)3(ln(κ))3λ3

(
2 + 3 tanhκ

(√
−caΩ

)
−
(
tanhκ

(√
−caΩ

))3
)

r
), (69)

u2,17(x, t) = e(ρW(t)− ρ2t
2 )(

120
√
−(ac)3(ln(κ))3λ3

(
2 + 3 cothκ

(√
−caΩ

)
−
(
cothκ

(√
−caΩ

))3
)

r
), (70)

u2,18(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

+
360 λ3(ln(κ))3ac2

√
− a

c
(
tanhκ

(
2
√
−caΩ

)
+
√−q1q2sechκ

(
2
√
−caΩ

))
r

+
120 λ3(ln(κ))3c3(− a

c
)3/2(tanhκ

(
2
√
−caΩ

)
+
√−q1q2sechκ

(
2
√
−caΩ

))3

r
),

(71)
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u2,19(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

+
360 λ3(ln(κ))3ac2

√
− a

c
(
cothκ

(
2
√
−caΩ

)
+
√

q1q2cschκ

(
2
√
−caΩ

))
r

+
120 λ3(ln(κ))3c3(− a

c
)3/2(cothκ

(
2
√
−caΩ

)
+
√

q1q2cschκ

(
2
√
−caΩ

))3

r
),

(72)

and

u2,20(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−c3a3(ln(κ))3λ3

r

+
180 λ3(ln(κ))3ac2

√
− a

c

(
tanhκ

(
1
2
√
−caΩ

)
+ cothκ

(
1
2
√
−caΩ

))
r

+
15 λ3(ln(κ))3c3(− a

c
)3/2

(
tanhκ

(
1
2
√
−caΩ

)
+ cothκ

(
1
2
√
−caΩ

))3

r
),

(73)

Family. 2.5: When c = a and b = 0,

u2,21(x, t) = e(ρW(t)− ρ2t
2 )(120

(ln(κ))3λ3
(

2
√
−a6 − 3 a3 tanκ(aΩ)− a3(tanκ(aΩ))3

)
r

), (74)

u2,22(x, t) = e(ρW(t)− ρ2t
2 )(120

(ln(κ))3λ3
(

2
√
−a6 + 3 a3 cotκ(aΩ) + a3(cotκ(aΩ))3

)
r

), (75)

u2,23(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−a6(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3(tanκ(2 aΩ) +
√

q1q2 secκ(2 aΩ)
)

r

− 120
λ3(ln(κ))3a3(tanκ(2 aΩ) +

√
q1q2 secκ(2 aΩ)

)3

r
),

(76)

u2,24(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−a6(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3(− cotκ(2 aΩ)−√q1q2 cscκ(2 aΩ)
)

r

− 120
λ3(ln(κ))3a3(− cotκ(2 aΩ)−√q1q2 cscκ(2 aΩ)

)3

r
),

(77)

and

u2,25(x, t) = e(ρW(t)− ρ2t
2 )(240

√
−a6(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3
(

1
2 tanκ(1/2 aΩ)− 1

2 cotκ

(
1
2 aΩ

))
r

− 120
λ3(ln(κ))3a3

(
1
2 tanκ

(
1
2 aΩ

)
− 1

2 cotκ

(
1
2 aΩ

))3

r
),

(78)

Family. 2.6: When c = −a and b = 0,

u2,26(x, t) = e(ρW(t)− ρ2t
2 )(30

(ln(κ))3λ3
(√

ν3 + 12 a3 tanhκ(aΩ)− 4 a3(tanhκ(aΩ))3
)

r
), (79)
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u2,27(x, t) = e(ρW(t)− ρ2t
2 )(30

(ln(κ))3λ3
(√

ν3 + 12 a3 cothκ(aΩ)− 4 a3(cothκ(aΩ))3
)

r
), (80)

u2,28(x, t) = e(ρW(t)− ρ2t
2 )(30

√
ν3(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3(− tanhκ(2 aΩ)−√−q1q2sechκ(2 aΩ))

r

+ 120
λ3(ln(κ))3a3(− tanhκ(2 aΩ)−√−q1q2sechκ(2 aΩ))3

r
),

(81)

u2,29(x, t) = e(ρW(t)− ρ2t
2 )(240

√
a6(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3(− cothκ(2 aΩ)−√q1q2cschκ(2 aΩ)
)

r

+ 120
λ3(ln(κ))3a3(− cothκ(2 aΩ)−√q1q2cschκ(2 aΩ)

)3

r
),

(82)

and

u2,30(x, t) = e(ρW(t)− ρ2t
2 )(240

√
a6(ln(κ))3λ3

r
− 360

λ3(ln(κ))3a3
(
− 1

2 tanhκ

(
1
2 aΩ

)
− 1

2 cothκ

(
1
2 aΩ

))
r

+ 120
λ3(ln(κ))3a3

(
− 1

2 tanhκ

(
1
2 aΩ

)
− 1/2 cothκ

(
1
2 aΩ

))3

r
,

(83)

Family. 2.7: When ν = 0,

u2,31(x, t) = e(ρW(t)− ρ2t
2 )(30

(
−6 bca + b3)(ln(κ))3λ3

r
+ 720

λ3(ln(κ))2ac2a(bΩ ln(κ) + 2)
rb2Ω

− 720
λ3 ln(κ)c2(a(bΩ ln(κ) + 2))2

b3rΩ2 + 960
λ3c3(a(bΩ ln(κ) + 2))3

rb6Ω3 ),

(84)

Family. 2.8: When b = a = 0,

u2,32(x, t) = e(ρW(t)− ρ2t
2 )(30

λ3
(√

ν3(ln(κ))3Ω3 + 4
)

rΩ3 ), (85)

Family. 2.9: When a = 0, b 6= 0 and c 6= 0,

u2,33(x, t) = e(ρW(t)− ρ2t
2 )(30

(
b3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3b3q1

2

r(coshκ(bΩ)− sinhκ(bΩ) + q1)
2 + 120

λ3(ln(κ))3q1
3b3

r(coshκ(bΩ)− sinhκ(bΩ) + q1)
3 ),

(86)

and

u2,34(x, t) = e(ρW(t)− ρ2t
2 )(30

(
b3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3b3(coshκ(bΩ) + sinhκ(bΩ))2

r(coshκ(bΩ) + sinhκ(bΩ) + q2)
2 + 120

λ3(ln(κ))3b3(coshκ(bΩ) + sinhκ(bΩ))3

r(coshκ(bΩ) + sinhκ(bΩ) + q2)
3 ),

(87)



Fractal Fract. 2023, 7, 753 18 of 24

Family. 2.10: When b = λ, c = nλ(n 6= 0) and a = 0,

u2,35(x, t) = e(ρW(t)− ρ2t
2 )(30

(
ω3 +

√
ν3
)
(ln(κ))3λ3

r

− 180
λ3(ln(κ))3ω3m2q1

2(κω Ω)2

r(p−mq2κω Ω)
2 − 120

λ3(ln(κ))3m3ω3q1
3(κω Ω)3

r(p−mq2κω Ω)
3 ),

(88)

where Ω = − 30
11

λ4(ln(κ))3√ν3

r t + λxβ

β .

5. Discussion and Graphs

We launched a detailed examination of the SFKSE in this article, embracing con-
formable fractional derivatives. We have successfully generated singular stochastic soliton
solutions for the SFKSE using the powerful mEDAM. These solitons have been classified
into several varieties, including kink, shock, and periodic solitons, each with its own fasci-
nating wave properties. To help in the intuitive comprehension of these solutions, we have
used a variety of graphical representations, both in contour, 3D, and 2D forms, displaying
their distinct wave behaviors.

The figures’ visualizations clearly depict the complicated dynamics of single stochastic
solitons in the SFKSE. These solitons have intriguing features and behaviors that shed light
on the complicated interplay between nonlinearity and stochasticity in FPDEs. Furthermore,
our research demonstrates the adaptability of the transformation-based technique, mEDAM,
as a reliable and user-friendly tool for researching soliton events in a wide range of nonlinear
FPDEs. This study not only increases our understanding of soliton dynamics in stochastic
systems, but also highlights the potential use of mEDAM in a variety of disciplines where
nonlinear FPDEs are found, opening up new possibilities for investigation and discovery.

Our study has revealed that singular solitons typically emerge as kink waves or shock
waves in the region of SFKSE. The delicate interplay between the equation’s fractional
derivatives, stochastic effects, and nonlinear dynamics accounts for this restricted classi-
fication of solitons into these two separate categories. The unique mix of these elements
creates conditions that favor the formation of kink waves, which are characterized by
localized energy concentrations, or shock waves, which indicate fast gradient shifts. This
solitons duality illustrates the underlying complexity and diversity of SFKSE solutions,
encapsulating the main behaviors in a system where these two kinds embody the key
dynamics, making them the prevalent and distinguishing expressions.

In the context of the SFKSE, a kink wave is a localized wave-like structure that signifies
a quick transition or abrupt shift in the solution’s spatial pattern. It happens as a result of
the SFKSE’s interaction of nonlinearity, diffusion, and stochastic (random) effects. The kink
wave represents areas where the system’s behavior varies drastically from one condition to
the next. These transitions may occur due to the system’s intrinsic unpredictability or as a
result of intricate interactions between fractional derivatives and stochastic disturbances.
The study of kink waves in SFKSE can shed light on the complicated dynamics of stochastic
soliton solutions in this complex equation, shedding light on the influence of randomness
on the generation, propagation, and stability of solitary wave structures.

In the context of the SFKSE, a singular shock wave is a highly localized and intense
disruption in the spatial pattern that implies a quick shift in the gradient of the solution. It
happens as a result of SFKSE’s complicated interaction of fractional derivatives, stochastic
disturbances, and nonlinear terms. Singular shock waves draw attention to the occurrence
of uncommon and severe occurrences inside stochastic soliton solutions, emphasizing the
system’s tremendous variability and unpredictability. These waves can develop as a result
of precise combinations of stochastic fluctuations and nonlinear dynamics, demonstrating
the SFKSE’s complex and nuanced behavior in the face of randomness. Singular shock wave
analysis in SFKSE gives significant insights into the extreme occurrences and unusual phe-
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nomena that can appear in complex stochastic systems, with implications for understanding
and forecasting extreme behaviors in a variety of scientific and engineering contexts.

In Figure 1, the three-dimensional representation of u1,5 in Equation (23) is shown with
the parameters’ values: a = 3, b = 1, c = 2, λ = 10, κ = e, r = 4, β = 1, ρ = 0. Similarly, the
two-dimensional graph is constructed using t = 70 and the previously specified parameter
values. Overall, this profile shows a singular kink soliton. Figure 2, The three-dimensional
representation of u1,16 in Equation (34) is shown with the parameters’ values: a = −50,
b = 0, c = 40, λ = 100, κ = e, r = 10, β = 0.9, ρ = 0. Similarly, the two-dimensional graph
is constructed using t = 100 and the previously specified parameter values. Overall,
this profile shows a kink soliton. Figure 3, the three-dimensional representation of u1,32
in Equation (50) is shown with the parameters’ values: a = 0, b = 0, c = 200, λ = 50,
κ = 2, r = 120, β = 1, ρ = 1. Similarly, the two-dimensional graph is constructed using
x = −100 and the previously specified parameter values. Overall, this profile shows a
shock soliton. Figure 4, the three-dimensional representation of u2,29 in Equation (82) is
shown with the parameters’ values: a = 70, b = 0, c = −70, λ = 100, κ = e, r = 200,
β = 0.9, ρ = 0, q1 = 100, q2 = 90. Similarly, the two-dimensional graph is constructed using
t = 6 and the previously specified parameter values. Overall, this profile shows a periodic
kink soliton. Figure 5, three-dimensional and contour representations of u2,16 in Equation
(69) is shown with the parameters’ values: a = −1, b = 0, c = 5, λ = 5, κ = e, r = 7,
β = 0.8, ρ = 0, q1 = 5. Overall, this profile shows a singular shock soliton. Figure 6, the
three-dimensional representation of u2,35 in Equation (88) is shown with the parameters’
values: a = 0, b = 200, c = 800, ω = 200, m = 4, λ = 160, κ = 3, r = 23, ρ = 0, β = 1,
q1 = 100, q2 = 45. Similarly, the two-dimensional graph is constructed using t = 0 and the
previously specified parameter values. Overall, this profile shows a singular kink soliton.

Figure 1. (a) The three-dimensional representation of u1,5 in Equation (23) is shown with the parame-
ters’ values: a = 3, b = 1, c = 2, λ = 10, κ = e, r = 4, β = 1, ρ = 0. Similarly, (b) the two-dimensional
graph is constructed using t = 70 and the previously specified parameter values. Overall, this profile
shows a singular kink soliton.
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Figure 2. (a) The three-dimensional representation of u1,16 in Equation (34) is shown with the
parameters’ values: a = −50, b = 0, c = 40, λ = 100, κ = e, r = 10, β = 0.9, ρ = 0. Similarly, (b) the
two-dimensional graph is constructed using t = 100 and the previously specified parameter values.
Overall, this profile shows a kink soliton.

Figure 3. (a) The three-dimensional representation of u1,32 in Equation (50) is shown with the
parameters’ values: a = 0, b = 0, c = 200, λ = 50, κ = 2, r = 120, β = 1, ρ = 1. Similarly, (b) the
two-dimensional graph is constructed using x = −100 and the previously specified parameter values.
Overall, this profile shows a shock soliton.



Fractal Fract. 2023, 7, 753 21 of 24

Figure 4. (a) The three-dimensional representation of u2,29 in Equation (82) is shown with the
parameters’ values: a = 70, b = 0, c = −70, λ = 100, κ = e, r = 200, β = 0.9, ρ = 0, q1 = 100, q2 = 90.
Similarly, (b) the two-dimensional graph is constructed using t = 6 and the previously specified
parameter values. Overall, this profile shows a periodic kink soliton.

Figure 5. The three-dimensional (a) and contour representations (b) of u2,16 in Equation (69) is shown
with the parameters’ values: a = −1, b = 0, c = 5, λ = 5, κ = e, r = 7, β = 0.8, ρ = 0, q1 = 5. Overall,
this profile shows a singular shock soliton.
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Figure 6. (a) The three-dimensional representation of u2,35 in Equation (88) is shown with the
parameters’ values: a = 0, b = 200, c = 800, ω = 200, m = 4, λ = 160, κ = 3, r = 23, ρ = 0, β = 1,
q1 = 100, q2 = 45. Similarly, (b) the two-dimensional graph is constructed using t = 0 and the
previously specified parameter values. Overall, this profile shows a singular kink soliton.

6. Conclusions

In conclusion, this work has considerably increased our understanding of the SFKSE by
offering a varied variety of singular stochastic soliton solutions in a multiple-noise setting
using mEDAM. These answers provide a solid foundation for deciphering complicated
physical phenomena regulated by this equation. Using modern computational tools such
as the Maple-13 program, we were able to properly visualize the complicated interplay
between the stochastic term and SFKSE solutions. While our present analysis has mostly
focused on the interaction between multiplicative noise and fractional space, the future of
research in this subject seems promising. Future research may focus on additive noise effects
and fractional time dynamics, offering a more complete understanding of the SFKSE’s
multifarious behavior and its larger implications in mathematics, physics, and engineering.
Such efforts have the potential to produce useful insights and practical ramifications for
real-world circumstances.
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