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Abstract: This paper mainly studies fault-tolerant control for a class of semi-linear fractional-order
multi-agent systems with diffusion characteristics, where the actuator fault is considered. The adap-
tive fault-tolerant control protocol based on the adjacency relationship of agents is firstly designed,
which can adjust the coupling gain online through the adaptive mechanism. Using the Lyapunov
stability theory, the adaptive fault-tolerant control protocol can drive the agents to achieve consensus
for leader-following and leaderless cases. Finally, the simulation experiment is carried out, showing
the effectiveness of the proposed theory.

Keywords: adaptive control; fault-tolerant control; multi-agent systems; consensus

1. Introduction

In recent years, multi-agent systems (MASs) have attracted more and more scholars’
attention. MASs have been extensively applied in many fields, such as spacecraft formation,
multi-robot cooperative control, and ship course-keeping [1–4]. With the rapid development
of industry, many large and complex systems have been designed. These systems have a
strong working ability and have a profound impact on human production and life and even
the development of society. However, MASs in long-term operation have the possibility of
failure, such as actuator failure, sensor failure, because of the impact of the environment
on multi-agents [5–7]. Once the failure is not found in time and not properly handled, it is
very likely for an accident to occur, causing economic losses and even casualties. Therefore,
the fault-tolerant control method of MASs has a good value to research.

At present, adaptive technology has been widely used for the fault-tolerant control of
MASs [8]. This is because the development of adaptive control is more in line with practical
applications, and adaptive control can automatically compensate for unpredictable changes
in various parameters and input signals, which can better overcome system disturbances
and improve the robustness of MASs.

Adaptive fault-tolerant control of MASs has made progress in recent years. In 2014,
Yin et al. proposed an integrated design of fault-tolerant control systems through adaptive
residual generators by iterative optimization methods [9]. In 2018, Khalili et al. studied a
class of uncertain nonlinear MASs and designed a local fault-tolerant control scheme [10].
In 2019, Deng and Yang designed a distributed finite-time observer and an adaptive fault-
tolerant controller for output regulation of MASs with actuator faults [11]. In 2020, Liu et
al. studied the formation tracking of MASs with bias faults and unknown effectiveness
losses through adaptive fault-tolerant strategies [12]. In 2020, Li and Wang proposed a fault-
tolerant tracking consensus protocol for MASs with actuator faults [13]. In 2021, Dongn et
al. studied the problem of cooperative output regulation of mismatched or mismatched
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nonlinear uncertain MASs [14]. In 2021, Yadegar and Meskin studied an adaptive fault-
tolerant control for nonlinear heterogeneous MASs with time-varying additive actuator
faults [15].

Actually, all processes essentially depend on both time and space [16,17]. There are
many dynamic behaviors with spatio-temporal characteristics in nature, such as transport
reaction processes [18], continuous casting [19], sputtering processes [20], hydraulic frac-
turing [21] and cracking furnaces [22]. As a result, it has a great practical significance to
study MASs with spatio-temporal characteristics. In such systems, when considering the
behavioral state of the system, one needs to consider the impact of changes in time and
space on the state. To better express the spatio-temporal characteristics, the system model is
usually created by partial differential equations (PDEs). In 2022, Dai et al. studied the con-
sensus of semilinear parabolic MASs with time delay based on partial integral-differential
equations [23]. In 2018, Yang et al. studied the boundary control of distributed measure-
ment for MASs based on PDEs [24]. In 2020, Yang and Li et al. studied boundary control
for exponential synchronization of reaction-diffusion neural networks based on coupled
PDEs [25]. The research achievements of systems with spatio-temporal characteristics have
been relatively abundant, but the research achievements of fault-tolerant control of MASs
with spatio-temporal characteristics are still very few. Considering the practical value of
fault-tolerant control of MASs with spatio-temporal characteristics, this paper carries out
the research.

More recently, fractional-order calculus attracted increasing attention because of its
hereditary and memory properties. Fractional-order MASs could portray dynamic be-
haviors more clearly [26–30]. Actually, many practical systems are better identified as
fractional-order calculus than integer order, such as biomedical signal processing [31],
motion control [32], image edge detection [33], and temperature control [34]. As a result, it
has important significance for the research consensus of PDE-based fractional-order MASs
(PDEFOMASs). Yan et al. proposed boundary consensus control for PDEFOMASs under
collocated and distributed boundary measurement form [35], which is further applied in
image encryption [36]. Wang et al. studied observer-based consensus PDEFOMASs via
boundary communication [37]. However, the fault-tolerant control of PDEFOMASs is still
a challenge, which has not been solved yet.

This paper focuses on the problem of the fault-tolerant consensus adaptive control of
semi-linear PDEFOMASs accompanied by actuator faults, which is modeled by semi-linear
parabolic PDEs. An adaptive fault-tolerant control method is constructed based on the
information interaction among adjacent agents, which is used in leaderless PDEFOMASs
and leader-following PDEFOMASs, respectively. The organization of the main content is
as follows: Firstly, the actuator fault models and the system dynamics model are given.
The second part defines the error system and applies the optimized adaptive fault-tolerant
control protocol to leaderless PDEFOMASs, to reach the asymptotic convergence of the
errors using Lyapunov’s generalized function. The third part applies the optimized fault-
tolerant control protocol to leader-following PDEFOMASs and proves the asymptotic
convergence of the errors by using Lyapunov’s function. Finally, numerical simulation
experiments of the two theorems are conducted to verify the effectiveness of the proposed
fault-tolerant control protocol.

Notations: In denotes the identity matrix with nth order. λmax(min)(·) denotes the
maximum (minimum) eigenvalue. λ2(·) denotes the minimum non-zero eigenvalue. || · ||2
is the Euclidean norm.

2. Problem Formulation
2.1. System Dynamics Model

A class of semi-linear PDEFOMASs with considering spatio-temporal characteristics
and actuator faults is studied as
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c
t0

Dα
t yi(θ, t) = Θ1

∂2yi(θ, t)
∂θ2 + Θ2

∂yi(θ, t)
∂θ

+ Ayi(θ, t)

+ f (yi(θ, t)) + uF
i (θ, t),

∂yi(0, t)
∂θ

= 0,
∂yi(L, t)

∂θ
= 0,

yi(θ, t) = y0
i (θ),

(1)

where yi(θ, t) ∈ Rn represents the state of the i-th agent, (θ, t) ∈ [0, L]× [0, ∞] mean the
space variable and time variable, respectively. α ∈ (0, 1) is a positive scalar. c

t0
Dα

t is a Caputo
fractional-order derivative. 0 < L ∈ R. f (·) ∈ Rn is a nonlinear function. Θ1 ∈ Rn×n is
symmetric positive definite. Θ2 and A ∈ Rn×n are known matrices. i ∈ {1, 2, · · · , N} and
N is the number of agents in the PDEFOMASs .

Definition 1 ([38]). Caputo fractional-order derivative with t of p(θ, t) is defined as

c
t0

Dα
t p(θ, t) =

1
Γ(1− α)

∫ t

t0

∂p(θ, t)
∂θ

1
(t− κ)α

dκ, (2)

where 0 < α < 1.

2.2. Actuator Fault Model

Fault-tolerant control of PDEFOMASs with actuator faults are considered in this study.
One actuator fault model is proposed for the MASs with two communication typologies,
one the leaderless case and the other the leader-following case, as follows:

uF
i (θ, t) = δ(θ)ui(θ, t), (3)

where 0 < δ(θ) < 1 represents an unknown actuator fault impact factor and ui(θ, t)
represents the control input.

Definition 2. For the leaderless PDEFOMAS Equation (1) with any initial conditions, it is said
to reach consensus, if it satisfies

lim
t→∞
||yi(θ, t)− 1

N

N

∑
j=1

yj(θ, t)|| = 0, i = 1, · · · , N. (4)

Assumption 1. Assuming that the impact factor of the actuator in Equation (3) is bounded, namely,
0 < δ ≤ δ(θ) ≤ δ < 1, in which δ > 0 and δ > 0.

Assumption 2. Suppose for any scalars s1 and s2, there exists a scalar γ > 0 such that

|| f (s1)− f (s2)||2 ≤ γ||s1 − s2||2. (5)

Lemma 1 ([39]). For a differential function p(θ, t), one has

c
t0

Dα
t (pT(θ, t)p(θ, t)) ≤ 2pT(θ, t)c

t0
Dα

t p(θ, t). (6)

3. Consensus of Leaderless the PDEFOMAS through Adaptive Fault-Tolerant
Control Protocol

The dynamics model of the i-th agent with actuator fault Equation (3) in the leaderless
PDEFOMAS Equation (1) is represented as
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c
t0

Dα
t yi(θ, t) = Θ1

∂2yi(θ, t)
∂θ2 + Θ2

∂yi(θ, t)
∂θ

+ Ayi(θ, t)

+ f (yi(θ, t)) + δ(θ)ui(θ, t).
(7)

Define the consensus error of leaderless PDEFOMAS as ei(θ, t) , yi(θ, t)− 1
N ∑N

j=1 yj(θ, t),
and the adaptive fault-tolerant control protocol is designed as

ui(θ, t) = di(t)
N

∑
j=1

aij(yj(θ, t)− yi(θ, t)),

ḋi(t) = τi[
N

∑
j=1

aij(yj(θ, t)− yi(θ, t))]T [
N

∑
j=1

aij(yj(θ, t)− yi(θ, t))],

(8)

where di(t) is the control gain and τi is a known positive real number. The graph
A = (aij)N×N is undirected, which is defined as aij = aji > 0 when the agent i is connected
with the agent j; otherwise, aij = 0.

Combined with the control protocol Equation (8), the derivative of the error system
ei(θ, t) can be obtained

c
t0

Dα
t e(θ, t) = (IN ⊗Θ1)

∂2e(θ, t)
∂θ2 + (IN ⊗Θ2)

∂e(θ, t)
∂θ

+ (IN ⊗ A)e(θ, t) + F(e(θ, t))

− (ΛD(t)L⊗ In)e(θ, t),

ḋi(t) = τi[
N

∑
j=1
LijeT

j (θ, t)][
N

∑
j=1
Lijej(θ, t)],

∂e(0, t)
∂θ

=
∂e(L, t)

∂θ
= 0,

(9)

where e ∆
= [eT

1 , · · · , eT
N ], F(e) ∆

= [F(e1), · · · , F(eN)], F(ei)
∆
= f (yi) − 1

N ∑N
j=1 f (yj), D(t) ,

diag{d1(t), · · · , dN(t)}, and Λ ∆
= δ(θ)IN . Here, Lii =

N
∑

j=1
aij and Lij = −aij when i 6= j. So,

L is a Laplacian matrix.

Theorem 1. By using the adaptive fault-tolerant control Equations (3) and (8), the leaderless
PDEFOMAS Equation (4) with the actuator fault can reach consensus if Assumptions 1 and 2
are satisfied.

Proof. Construct the Lyapunov function as

V1(t) =0.5
∫ L

0
eT(θ, t)(L⊗ In)e(θ, t)dθ +

∫ L

0

N

∑
i=1

δ(θ)
(di(t)− β)2

2τi
dθ, (10)

where β is a positive real number that can be determined later.
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Taking the derivative of V1(t) yields

c
t0

Dα
t V1(t) =

∫ L

0
eT(θ, t)(L⊗ In)

c
t0

Dα
t e(θ, t)dθ −

∫ L

0

N

∑
i=1

δ(θ)
di(t)− β

τi
ḋi(t)dθ

=
∫ L

0
eT(θ, t)(L⊗Θ1)

∂2e(θ, t)
∂θ2 dθ +

∫ L

0
eT(θ, t)(L⊗Θ2)

∂e(θ, t)
∂θ

dθ

+
∫ L

0
eT(θ, t)(L⊗ A)e(θ, t)dθ +

∫ L

0
eT(θ, t)(L⊗ In)F(e(θ, t))dθ

−
∫ L

0
eT(θ, t)(LΛD(t)L⊗ In)e(θ, t)dθ

+
∫ L

0

N

∑
i=1

δ(θ)(di(t)− β)[
N

∑
j=1
LijeT

j (θ, t)][
N

∑
j=1
Lijej(θ, t)]dθ.

(11)

By the integration by parts, we obtain

∫ L

0
eT(θ, t)(L⊗Θ1)

∂2e(θ, t)
∂θ2 dθ

=eT(θ, t)(L⊗Θ1)
∂e(θ, t)

∂θ

∣∣θ=L
θ=0−

∫ L

0

∂eT(θ, t)
∂θ

(L⊗Θ1)
∂e(θ, t)

∂θ
dθ

=−
∫ L

0

∂eT(θ, t)
∂θ

(L⊗Θ1)
∂e(θ, t)

∂θ
dθ ≤ −λ2(L)λmin(Θ1)

∫ L

0

∂Te(θ, t)
∂θ

∂e(θ, t)
∂θ

dθ.

(12)

Using the triangle inequality [40], for any η > 0, one has∫ L

0
eT(θ, t)(L⊗Θ2)

∂e(θ, t)
∂θ

dθ

≤1
2

η−1
∫ L

0
eT(θ, t)(L2 ⊗Θ2ΘT

2 )e(θ, t)dθ +
1
2

η
∫ L

0

∂eT(θ, t)
∂θ

∂e(θ, t)
∂θ

dθ.
(13)

According to the property of the triangle inequality, we obtain∫ L

0
eT(θ, t)(L⊗ In)F(e(θ, t))dθ

≤1
2

∫ L

0
eT(θ, t)(L2 ⊗ In)e(θ, t)dθ +

1
2

∫ L

0
F(eT(θ, t))F(e(θ, t))dθ

≤1
2

λmax(L2)
∫ L

0
eT(θ, t)e(θ, t)dθ +

1
2

γ2
∫ L

0
eT(θ, t)e(θ, t)dθ.

(14)

Since L is the Laplace matrix and Λ ∆
= δ(θ)IN , one has

−
∫ L

0
eT(θ, t)(LΛD(t)L⊗ In)e(θ, t)dθ

=−
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1
LijeT

j (θ, t)][
N

∑
j=1
Lijej(θ, t)]dθ.

(15)
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Substituting Equations (12)–(15) into Equation (11) yields

c
t0

Dα
t V1(t) ≤−λ2(L)λmin(Θ1)

∫ L

0

∂Te(θ, t)
∂θ

∂e(θ, t)
∂θ

dθ.

+
1
2

η−1
∫ L

0
eT(θ, t)(L2 ⊗Θ2ΘT

2 )e(θ, t)dθ

+
1
2

η
∫ L

0

∂eT(θ, t)
∂θ

∂e(θ, t)
∂θ

dθ

+
∫ L

0
eT(θ, t)(L⊗ A)e(θ, t)dθ

+
1
2

λmax(L2)
∫ L

0
eT(θ, t)e(θ, t)dθ

+
1
2

γ2
∫ L

0
eT(θ, t)e(θ, t)dθ

−
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1
LijeT

j (θ, t)][
N

∑
j=1
Lijej(θ, t)]dθ

+
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1
LijeT

j (θ, t)][
N

∑
j=1
Lijej(θ, t)]dθ

− δ(θ)β
∫ L

0
eT(θ, t)(L2 ⊗ In)e(θ, t)dθ.

(16)

Using the property of the Laplace matrix, we obtain

− δβ
∫ L

0
eT(θ, t)(L2 ⊗ In)e(θ, t)dθ

≤− δβλ2(L2)
∫ L

0
eT(θ, t)e(θ, t)dθ.

(17)

Plugging η = 2λ2(L)λmin(Θ1) and Equation (17) into Equation (16) yields

c
t0

Dα
t V1(t) ≤

1
4λ2(L)λmin(Θ1)

∫ L

0
eT(θ, t)(L2 ⊗Θ2ΘT

2 )e(θ, t)dθ

+
∫ L

0
eT(θ, t)(L⊗ A)e(θ, t)dθ

+
1
2

λmax(L2)
∫ L

0
eT(θ, t)e(θ, t)dθ

+
1
2

γ2
∫ L

0
eT(θ, t)e(θ, t)dθ.

− δβλ2(L2)
∫ L

0
eT(θ, t)e(θ, t)dθ,

(18)

for β > λmax(P)
δλ2(L2)

, where P ∆
=

L2⊗Θ2ΘT
2

4λ2(L)λmin(Θ1)
+ L ⊗ A+AT

2 + 1
2 λmax(L2) + 1

2 γ2 INn, we can
obtain c

t0
Dα

t V1(t) < 0, which indicates that the system reaches consensus.

4. Consensus of the Leader-Following PDEFOMAS through Adaptive Fault-Tolerant
Control Protocols

The dynamics for the i-th follower with actuator fault (2) of the PDEFOMAS is repre-
sented in the following form:

c
t0

Dα
t yi(θ, t) = Θ1

∂2yi(θ, t)
∂θ2 + Θ2

∂yi(θ, t)
∂θ

+ Ayi(θ, t)

+ f (yi(θ, t)) + δ(θ)ui(θ, t).
(19)
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The dynamics model of the leader in the leader-following PDEFOMAS is represented
in the following form: 

∂y0(θ, t)
∂t

= Θ1
∂2y0(θ, t)

∂θ2 + Θ2
∂y0(θ, t)

∂θ

+ Ay0(θ, t) + f (y0(θ, t)),

∂y0(0, t)
∂θ

=
∂y0(L, t)

∂θ
= 0,

y0(θ, t) = y0
0(θ).

(20)

Define the error system of the leader-following PDEFOMAS as ẽ(θ, t) , yi(θ, t) −
y0(θ, t), and the adaptive fault-tolerant control protocol is expressed in the following form:

ui(θ, t) = di(t)[
N

∑
j=1

aij(yj(θ, t)− yi(θ, t))

+ bi(y0(θ, t)− yi(θ, t))],

ḋi(t) = τibi(y0(θ, t)− yi(θ, t))T(y0(θ, t)− yi(θ, t))

+ τi[
N

∑
j=1

aij(yj(θ, t)− yi(θ, t))]T [
N

∑
j=1

aij(yj(θ, t)− yi(θ, t))],

(21)

if yi can obtain information from y0, then bi > 0; otherwise, bi = 0.
Combined with the control protocol Equation (21), the derivative of the error system

ẽ(θ, t) can be obtained as

c
t0

Dα
t ẽ(θ, t) = (IN ⊗Θ1)

∂2 ẽ(θ, t)
∂θ2

+ (IN ⊗Θ2)
∂ẽ(θ, t)

∂θ

+ (IN ⊗ A)ẽ(θ, t)

+ F(ẽ(θ, t))

− (δ(θ)D(t)H⊗ In)ẽ(θ, t),

ḋi(t) = τi[
N

∑
j=1

hij ẽj(θ, t)]T [
N

∑
j=1

hij ẽj(θ, t)],

∂ẽ(0, t)
∂θ

=
∂ẽ(L, t)

∂θ
= 0.

(22)

where ẽ ∆
= [ẽT

1 , ẽT
2 , · · · , ẽT

N ], F(ẽ) ∆
= [F(ẽ1), F(ẽ2), · · · , F(ẽN)], F(ẽi)

∆
= f (yi) − f (y0),H =

[hij] = L+ diag{bi}, andH is a positive definite symmetric matrix.

Theorem 2. By using the adaptive fault-tolerant control protocol Equations (3) and (21), the
follower-following PDEFOMAS Equations (19) and (20) with an actuator fault can reach consensus
if Assumptions 1 and 2 are satisfied.

Proof. Constructing the Lyapunov function is

V2(t) =
1
2

∫ L

0
ẽT(θ, t)(H⊗ In)ẽ(θ, t)dθ +

∫ L

0

N

∑
i=1

δ(θ)
(di(t)− β)2

2τi
dθ, (23)

where β is a positive real number that can be determined later.
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Taking the derivative of V2(t) and substituting Equation (22) into this derivative yields
the following:

c
t0

Dα
t Ṽ2(t) =

∫ L

0
ẽT(θ, t)(H⊗ In)

c
t0

Dα
t ẽ(θ, t)−

∫ L

0

N

∑
i=1

δ(θ)
di(t)− β

τi
ḋi(t)dθ

=
∫ L

0
ẽT(θ, t)(H⊗Θ1)

∂2 ẽ(θ, t)
∂θ2 dθ +

∫ L

0
ẽT(θ, t)(H⊗Θ2)

∂ẽ(θ, t)
∂θ

dθ

+
∫ L

0
ẽT(θ, t)(H⊗ A)ẽ(θ, t)dθ +

∫ L

0
ẽT(θ, t)(H⊗ In)F(ẽ(θ, t))dθ

−
∫ L

0
ẽT(θ, t)(Hδ(θ)D(t)H⊗ In)ẽ(θ, t)dθ

+
∫ L

0

N

∑
i=1

δ(θ)(di(t)− β)[
N

∑
j=1

hij ẽT
j (θ, t)][

N

∑
j=1

hij ẽj(θ, t)]dθ.

(24)

Using integration by parts, one has

∫ L

0
ẽT(θ, t)(H⊗Θ1)

∂2 ẽ(θ, t)
∂θ2 dθ

=ẽT(θ, t)(H⊗Θ1)
∂ẽ(θ, t)

∂θ

∣∣ζ=L
ζ=0

−
∫ L

0

∂ẽT(θ, t)
∂θ

(H⊗Θ1)
∂ẽ(θ, t)

∂θ
dθ

=−
∫ L

0

∂ẽT(θ, t)
∂θ

(H⊗Θ1)
∂ẽ(θ, t)

∂θ
dθ

≤−λmin(H)λmin(Θ1)
∫ L

0

∂ẽT(θ, t)
∂θ

∂ẽ(θ, t)
∂θ

dθ.

(25)

Using the triangle inequality [40], for any η > 0, one has∫ L

0
ẽT(θ, t)(H⊗Θ2)

∂ẽ(θ, t)
∂θ

dθ

≤1
2

η−1
∫ L

0
ẽT(θ, t)(H2 ⊗Θ2ΘT

2 )ẽ(θ, t)dθ

+
1
2

η
∫ L

0

∂ẽT(θ, t)
∂θ

∂ẽ(θ, t)
∂θ

dθ.

(26)

Using Assumption 1, we obtain

∫ L

0
ẽT(θ, t)(H⊗ In)F(ẽ(θ, t))dθ

≤1
2

∫ L

0
ẽT(θ, t)(H2 ⊗ In)ẽ(θ, t)dθ

+
1
2

∫ L

0
F(ẽT(θ, t))F(ẽ(θ, t))dθ

≤1
2

λmax(H2)
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ

1
2

γ2
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ.

(27)
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Because H is a positive definite matrix, one has

−
∫ L

0
ẽT(θ, t)(HρD(t)H⊗ In)ẽ(θ, t)dθ

=−
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1

hij ẽT
j (θ, t)][

N

∑
j=1

hij ẽj(θ, t)]dθ.
(28)

Substituting Equations (25)–(28) into Equation (24), one has

c
t0

Dα
t V2(t) ≤−λmin(H)λmin(Θ1)

∫ L

0

∂ẽT(θ, t)
∂θ

∂ẽ(θ, t)
∂θ

dθ.

+
1
2

η−1
∫ L

0
ẽT(θ, t)(H2 ⊗Θ2ΘT

2 )ẽ(θ, t)dθ

+
1
2

η
∫ L

0

∂ẽT(θ, t)
∂θ

∂ẽ(θ, t)
∂θ

dθ +
∫ L

0
ẽT(θ, t)(H⊗ A)ẽ(θ, t)dθ

+
1
2

λmax(H2)
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ +

1
2

γ2
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ

−
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1

hij ẽT
j (θ, t)][

N

∑
j=1

hij ẽj(θ, t)]dθ

+
∫ L

0

N

∑
i=1

δ(θ)di(t)[
N

∑
j=1

hij ẽT
j (θ, t)][

N

∑
j=1

hij ẽj(θ, t)]dθ

− β
∫ L

0
ẽT(θ, t)(Hδ(θ)H⊗ In)ẽ(θ, t)dθ.

(29)

Using Assumption 1, we obtain

− β
∫ L

0
ẽT(θ, t)(Hδ(θ)H⊗ In)ẽ(θ, t)dθ

≤− β
∫ L

0
ẽT(θ, t)(HδH⊗ In)ẽ(θ, t)dθ

≤− βλmin(HδH)
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ.

(30)

Plugging η = 2λmin(H)λmin(Θ1) and Equation (30) into Equation (29) yields

c
t0

Dα
t V2(t) ≤

1
4λmin(H)λmin(Θ1)

∫ L

0
ẽT(θ, t)(H2 ⊗Θ2ΘT

2 )ẽ(θ, t)dθ

+
∫ L

0
ẽT(θ, t)(H⊗ A)ẽ(θ, t)dθ +

1
2

λmax(H2)
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ

+
1
2

γ2
∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ − βλmin(HδH)

∫ L

0
ẽT(θ, t)ẽ(θ, t)dθ.

(31)

It is easy to see from Equation (31) that for β > λmax(Q)
λmin(HδH)

, where Q ∆
=

H2⊗Θ2ΘT
2

4λ2(H)λmin(Θ1)
+

H⊗ A+AT

2 + 1
2 λmax(H2) + 1

2 γ2 INn, c
t0

Dα
t V2(t) < 0 is obtained, indicating that the system

reaches consensus.

Remark 1. Many works on adaptive fault-tolerant control for fractional-order multi-agent systems
have obtained important results [26–30] but without considering the spatiotemporal behaviors, and
this problem is addressed in this paper.
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Remark 2. More recently, there have only been a few important works devoted to researching
fractional-order multi-agent systems based on PDEs [35–37,41]. This paper firstly addresses the
fractional-order multi-agent systems based on PDEs with faults.

Remark 3. This paper addresses adaptive fault-tolerant control for fractional-order multi-agent
systems based on PDEs, not only for the leaderless case but also for the leader-following case.

5. Numerical Simulation

Example 1. To show the effectiveness of Theorem 1, consider a semi-linear PDEFOMAS Equation (3)
composed of 4 nodes with random initial conditions and coefficients listed as

Θ1 =

[
1.5 0
0 1.5

]
, Θ2 =

[
1 0.2
−0.5 2

]
, A =

[
1 0.2

0.2 −1.5

]
,

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

, f (yi(θ, t)) = tanh(yi(θ, t)), L = 1,

γ = 1, α = 0.95, δ(θ) = 0.95 + 0.02 sin(πθ).

(32)

Through numerical simulation, Figure 1 shows the error system ẽ(θ, t) without an adaptive
fault-tolerant controller. It can be found that ẽ(θ, t) diverges and cannot approach zero, that is to
say, the target system does not reach consensus. Figure 2 shows the simulation results obtained
after the use of a fault-tolerant controller. Obviously, consensus errors tend to zero quickly, and the
system finally reaches consensus. Figure 3 shows the control input of leader-follower PDEFOMASs
with an actuator fault. Figure 4 shows the adaptive control gain of leader-following PDEFOMASs.

Figure 1. e(θ, t) of the leaderless PDEFOMASs without adaptive control.
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Figure 2. e(θ, t) of the leaderless PDEFOMASs with adaptive control.

Figure 3. The control input with fault of the leaderless PDEFOMASs.
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Figure 4. The adaptive control gain of the leaderless PDEFOMASs.

Example 2. In order to prove the validity of Theorem 2, consider the leader-following nonlinear
PDEFOMASs Equation (18) composed of four followers and one leader, setting bi = 0.2, random
initial conditions, and the other coefficients are the same as those in Example 1.

Through numerical simulation, it can be found that Figure 5 shows e(θ, t) without an adaptive
fault-tolerant controller. e(θ, t) does not approach zero, that is to say, the leader-following PDE-
FOMAS cannot achieve consensus. Figure 6 shows the simulation results obtained after the use of
a fault-tolerant controller with δ(θ) = 0.95 + 0.2 sin(πθ). Obviously, consensus errors tend to
zero quickly, and the PDEFOMAS finally reaches consensus. Figures 7–9 respectively show the
consensus errors when δ(θ) = 0.95(a fixed fault), δ(θ) = 1(fault-free), δ(θ) = 1(fault-free), and
δ(θ) = 0.95 + 0.2rand sin(πθ)(a random fault). The corresponding control inputs of the leader-
less PDEFOMAS are shown in Figures 10–13. Figures 14–17 shows the corresponding adaptive
control gains.

Figure 5. e(θ, t) of the leader-following PDEFOMAS without adaptive control.
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Figure 6. e(θ, t) of the leader-following PDEFOMAS with adaptive control and a varying fault.

Figure 7. e(θ, t) of the leader-following PDEFOMAS with adaptive control and without faults.
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Figure 8. e(θ, t) of the leader-following PDEFOMAS with adaptive control and a fixed fault.

Figure 9. e(θ, t) of the leader-following PDEFOMAS with adaptive control and a random fault.
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Figure 10. The adaptive control input of the leader-following PDEFOMAS with a varying fault.

Figure 11. The adaptive control input of the leader-following PDEFOMAS without faults.
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Figure 12. The adaptive control input of the leader-following PDEFOMAS with a fixed fault.

Figure 13. The adaptive control input of the leader-following PDEFOMAS with a random fault.
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Figure 14. The adaptive control input gains of the leader-following PDEFOMAS with a varying fault.

Figure 15. The adaptive control input gains of the leader-following PDEFOMAS without faults.

Figure 16. The adaptive control input gains of the leader-following PDEFOMAS with a fixed fault.
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Figure 17. The adaptive control input gains of the leader-following PDEFOMAS with a random fault.

6. Conclusions

In this paper, we studied the fault-tolerant consensus adaptive control problem of
PDEFOMASs based on PDEs with actuator faults. An adaptive fault-tolerant control
protocol was proposed to use the information interaction among adjacent agents, which was
suitable for both leaderless PDEFOMASs and leader-following PDEFOMASs, respectively.
This control protocol dynamically addresses fault information during the process of system
operation and reorganizes the controller to realize fault tolerance. The results show that the
adaptive fault-tolerant control protocol can effectively realize consensus of PDEFOMASs
with actuator faults. In future studies, we will continue to consider the fault-tolerant
consensus of multi-agent systems with disturbance, delays, event triggers, and other factors.
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tion, Y.Y., J.H. and C.Y.; formal analysis, J.H.; investigation, Y.Y. and Q.Q.; writing—original draft
preparation, Y.Y. and Q.Q.; writing—review and editing, J.H., C.Y. and J.D.; funding acquisition, C.Y.
and J.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Key Science and Technology Planning Project of the
Yunnan Provincial Science and Technology Department under Grant No. 202302AD080006, in part
by Natural Science Foundation of Shandong Province under Grant No. ZR2022MF222, in part by
Natural Science Research in Colleges and Universities of Anhui Province of China under Grant Nos.
KJ2020A0362, KJ2020A0361, KJ2019ZD15, and in part by Anhui Natural Science Foundation under
Grant No. 2108085MF213.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Yu, Y.; Peng, S.; Dong, X.; Li, Q.; Ren, Z. UIF-based cooperative tracking method for multi-agent systems with sensor faults. Sci.

China Inf. Sci. 2019, 62, 10202. [CrossRef]
2. Wang, W.; Li, C.; Guo, Y. Relative position coordinated control for spacecraft formation flying with obstacle/collision avoidance.

Nonlinear Dyn. 2021, 104, 1329–1342. [CrossRef]
3. Wang, C.; Yan, C.; Liu, Z. Leader-following consensus for second-order nonlinear multi-agent systems under Markovian

switching topologies with application to ship course-keeping. Int. J. Control. Autom. Syst. 2021, 19, 54–62. [CrossRef]
4. Yuchao, Z.; Yuan, J.; Jiyang, D. Dynamic Obstacle Avoidance Control of Three-order Multi-robot Cooperative Formation. J. Syst.

Simul. 2022, 34, 1762.
5. Zhao, Q.; Jiang, J. Reliable state feedback control system design against actuator failures. Automatica 1998, 34, 1267–1272.

[CrossRef]
6. Bounemeur, A.; Chemachema, M.; Essounbouli, N. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear

systems with actuator and sensor failures. ISA Trans. 2018, 79, 45–61. [CrossRef]
7. Maybeck, P.S. Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in

aircraft flight control systems. Int. J. Robust Nonlinear Control 1999, 9, 1051–1070. [CrossRef]

http://doi.org/10.1007/s11432-018-9581-y
http://dx.doi.org/10.1007/s11071-021-06348-9
http://dx.doi.org/10.1007/s12555-019-0395-8
http://dx.doi.org/10.1016/S0005-1098(98)00072-7
http://dx.doi.org/10.1016/j.isatra.2018.04.014
http://dx.doi.org/10.1002/(SICI)1099-1239(19991215)9:14<1051::AID-RNC452>3.0.CO;2-0


Fractal Fract. 2023, 7, 760 19 of 20

8. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M.; Schröder, J. Diagnosis and Fault-Tolerant Control; Springer: Berlin/Heidelberg,
Germany, 2006.

9. Yin, S.; Luo, H.; Ding, S.X. Real-time implementation of fault-tolerant control systems with performance optimization. IEEE
Trans. Ind. Electron. 2013, 61, 2402–2411. [CrossRef]

10. Khalili, M.; Zhang, X.; Polycarpou, M.M.; Parisini, T.; Cao, Y. Distributed adaptive fault-tolerant control of uncertain multi-agent
systems. Automatica 2018, 87, 142–151. [CrossRef]

11. Deng, C.; Yang, G.H. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent
systems. Automatica 2019, 103, 62–68. [CrossRef]

12. Liu, F.; Hua, Y.; Dong, X.; Li, Q.; Ren, Z. Adaptive fault-tolerant time-varying formation tracking for multi-agent systems under
actuator failure and input saturation. ISA Trans. 2020, 104, 145–153. [CrossRef] [PubMed]

13. Li, X.; Wang, J. Fault-tolerant tracking control for a class of nonlinear multi-agent systems. Syst. Control Lett. 2020, 135, 104576.
[CrossRef]

14. Dong, S.; Chen, G.; Liu, M.; Wu, Z.G. Cooperative neural-adaptive fault-tolerant output regulation for heterogeneous nonlinear
uncertain multiagent systems with disturbance. Sci. China Inf. Sci. 2021, 64, 172212. [CrossRef]

15. Yadegar, M.; Meskin, N. Fault-tolerant control of nonlinear heterogeneous multi-agent systems. Automatica 2021, 127, 109514.
[CrossRef]

16. Wang, J.W.; Wang, J.M. Spatiotemporal adaptive state feedback control of a linear parabolic partial differential equation. Int. J.
Robust Nonlinear Control 2023, 33, 3850–3873. [CrossRef]

17. Feng, Y.; Wang, Y.; Wang, J.W.; Li, H.X. Backstepping-based distributed abnormality localization for linear parabolic distributed
parameter systems. Automatica 2022, 135, 109930. [CrossRef]

18. Christofides, P.D.; Chow, J. Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction
processes. Appl. Mech. Rev. 2002, 55, B29–B30. [CrossRef]

19. Yu, Y.; Luo, X.; Liu, Q. Model predictive control of a dynamic nonlinear PDE system with application to continuous casting.
J. Process Control 2018, 65, 41–55. [CrossRef]

20. Lou, Y.; Christofides, P.D. Nonlinear feedback control of surface roughness using a stochastic PDE: Design and application to a
sputtering process. Ind. Eng. Chem. Res. 2006, 45, 7177–7189. [CrossRef]

21. Sidhu, H.S.; Narasingam, A.; Siddhamshetty, P.; Kwon, J.S.I. Model order reduction of nonlinear parabolic PDE systems with
moving boundaries using sparse proper orthogonal decomposition: Application to hydraulic fracturing. Comput. Chem. Eng.
2018, 112, 92–100. [CrossRef]

22. Panjapornpon, C.; Limpanachaipornkul, P.; Charinpanitkul, T. Control of coupled PDEs–ODEs using input–output linearization:
Application to a cracking furnace. Chem. Eng. Sci. 2012, 75, 144–151. [CrossRef]

23. Dai, J.; Yang, C.; Yan, X.; Wang, J.; Zhu, K.; Yang, C. Leaderless consensus control of nonlinear PIDE-type multi-agent systems
with time delays. IEEE Access 2022, 10, 21211–21218. [CrossRef]

24. Yang, C.; Huang, T.; Li, Z.; Zhang, A.; Qiu, J.; Alsaadi, F.E. Boundary control for exponential stabilization of nonlinear distributed
parameter systems modeled by PIDEs. IEEE Access 2018, 6, 47889–47896. [CrossRef]

25. Yang, C.; Li, Z.; Chen, X.; Zhang, A.; Qiu, J. Boundary control for exponential synchronization of reaction-diffusion neural
networks based on coupled PDE-ODEs. IFAC-PapersOnLine 2020, 53, 3415–3420. [CrossRef]

26. Li, Y.X.; Wang, Q.Y.; Tong, S. Fuzzy adaptive fault-tolerant control of fractional-order nonlinear systems. IEEE Trans. Syst. Man
Cybern. Syst. 2019, 51, 1372–1379. [CrossRef]

27. Gong, P.; Lan, W.; Han, Q.L. Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent
systems with directed topologies. Automatica 2020, 117, 109011. [CrossRef]

28. Zhao, L.; Zhao, F.; Che, W.W. Distributed adaptive fuzzy fault-tolerant control for multi-agent systems with node faults and
denial-of-service attacks. Inf. Sci. 2023, 631, 385–395. [CrossRef]

29. Zhang, X.; Zheng, S.; Ahn, C.K.; Xie, Y. Adaptive neural consensus for fractional-order multi-agent systems with faults and
delays. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7873–7886. [CrossRef]

30. Zhang, J.; Tong, S. Event-triggered fuzzy adaptive output feedback containment fault-tolerant control for nonlinear multi-agent
systems against actuator faults. Eur. J. Control 2023, In Press, 100887. [CrossRef]

31. Ferdi, Y. Some applications of fractional order calculus to design digital filters for biomedical signal processing. J. Mech. Med.
Biol. 2012, 12, 1240008. [CrossRef]

32. Ma, C.; Hori, Y. Fractional-order control: Theory and applications in motion control past and present. IEEE Ind. Electron. Mag.
2007, 1, 6–16. [CrossRef]

33. Kumar, S.; Saxena, R.; Singh, K. Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits
Syst. Signal Process. 2017, 36, 1493–1513. [CrossRef]

34. Jamil, A.A.; Tu, W.F.; Ali, S.W.; Terriche, Y.; Guerrero, J.M. Fractional-order PID controllers for temperature control: A review.
Energies 2022, 15, 3800. [CrossRef]

35. Yan, X.; Yang, C.; Cao, J.; Korovin, I.; Gorbachev, S.; Gorbacheva, N. Boundary consensus control strategies for fractional-order
multi-agent systems with reaction-diffusion terms. Inf. Sci. 2022, 616, 461–473. [CrossRef]

http://dx.doi.org/10.1109/TIE.2013.2273477
http://dx.doi.org/10.1016/j.automatica.2017.09.002
http://dx.doi.org/10.1016/j.automatica.2019.01.013
http://dx.doi.org/10.1016/j.isatra.2019.01.024
http://www.ncbi.nlm.nih.gov/pubmed/30712841
http://dx.doi.org/10.1016/j.sysconle.2019.104576
http://dx.doi.org/10.1007/s11432-020-3122-6
http://dx.doi.org/10.1016/j.automatica.2021.109514
http://dx.doi.org/10.1002/rnc.6599
http://dx.doi.org/10.1016/j.automatica.2021.109930
http://dx.doi.org/10.1115/1.1451164
http://dx.doi.org/10.1016/j.jprocont.2017.10.008
http://dx.doi.org/10.1021/ie060410h
http://dx.doi.org/10.1016/j.compchemeng.2018.02.004
http://dx.doi.org/10.1016/j.ces.2012.03.014
http://dx.doi.org/10.1109/ACCESS.2022.3153078
http://dx.doi.org/10.1109/ACCESS.2018.2867343
http://dx.doi.org/10.1016/j.ifacol.2020.12.2543
http://dx.doi.org/10.1109/TSMC.2019.2894663
http://dx.doi.org/10.1016/j.automatica.2020.109011
http://dx.doi.org/10.1016/j.ins.2023.02.059
http://dx.doi.org/10.1109/TNNLS.2022.3146889
http://dx.doi.org/10.1016/j.ejcon.2023.100887
http://dx.doi.org/10.1142/S0219519412400088
http://dx.doi.org/10.1109/MIE.2007.4375295
http://dx.doi.org/10.1007/s00034-016-0364-x
http://dx.doi.org/10.3390/en15103800
http://dx.doi.org/10.1016/j.ins.2022.10.125


Fractal Fract. 2023, 7, 760 20 of 20

36. Yan, X.; Yang, C.; Yang, Y.; Wang, X.; Li, Z.; Huang, T. Boundary control for synchronization of fractional-order complex
spatiotemporal networks based on PDEs with multiple delays and its application in image encryption. J. Frankl. Inst. 2023,
360, 5267–5291. [CrossRef]

37. Wang, F.; Zhang, C.; Yang, Y.; Li, N. Observer-based consensus of fractional order parabolic PDEs agents on directed networks
via boundary communication. Chaos Solitons Fractals 2023, 170, 113332. [CrossRef]

38. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,
The Netherlands, 2006; Volume 204.

39. Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866.
[CrossRef]

40. Tversky, A.; Gati, I. Similarity, separability, and the triangle inequality. Psychol. Rev. 1982, 89, 123. [CrossRef]
41. Zhang, X.; Wu, H. Bipartite consensus for multi-agent networks of fractional diffusion PDEs via aperiodically intermittent

boundary control. Math. Biosci. Eng. 2023, 20, 12649–12665. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jfranklin.2023.03.019
http://dx.doi.org/10.1016/j.chaos.2023.113332
http://dx.doi.org/10.1016/j.automatica.2013.05.030
http://dx.doi.org/10.1037/0033-295X.89.2.123
http://dx.doi.org/10.3934/mbe.2023563

	Introduction
	Problem Formulation
	System Dynamics Model
	Actuator Fault Model

	Consensus of Leaderless the PDEFOMASMASs Achieves through Adaptive Fault-Tolerant Control Protocol
	 Consensus of the Leader-Following PDEFOMASMASs Achieves Consensus through Adaptive Fault-Tolerant Control Protocols
	Numerical Simulation
	Conclusions
	References

