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Abstract: This work presents a highly accurate method for the numerical solution of the advection–
diffusion equation of fractional order. In our proposed method, we apply the Laplace transform to
handle the time-fractional derivative and utilize the Chebyshev spectral collocation method for spatial
discretization. The primary motivation for using the Laplace transform is its ability to avoid the
classical time-stepping scheme and overcome the adverse effects of time steps on numerical accuracy
and stability. Our method comprises three primary steps: (i) reducing the time-dependent equation
to a time-independent equation via the Laplace transform, (ii) employing the Chebyshev spectral
collocation method to approximate the solution of the transformed equation, and (iii) numerically
inverting the Laplace transform. We discuss the convergence and stability of the method and assess
its accuracy and efficiency by solving various problems in two dimensions.

Keywords: advection–diffusion equation; Caputo derivative; Laplace transform; Chebyshev spectral
collocation method; Stehfest’s method; Talbot’s method

1. Introduction

Fractional calculus (FC) is the generalization of classical calculus, which includes
integrals and derivatives in non-integer order [1,2]. In recent years, the concept of fractional
derivatives has been applied with great success to model various real-life phenomena in
many scientific fields [3]. Fractional order operators include the history of a physical phe-
nomenon from the initial state to the current state. Therefore, fractional order operators are
often applied to model systems that describe the influence of memory effects [4]. Fractional
order operators have broadened the concept of integer order operators [5]. In the last ten
years, PDEs of fractional order have attracted the remarkable attention of the research com-
munity due to their ability to model various problems, such as neural networks [6], optimal
voltage controllers for electronic vehicle charging stations [7], robotics [8], optimal controls
for impulsive systems [9], hydrology [10], medical sciences [11], and many others [12].

The time-fractional advection–diffusion equations (TFADEs) have been widely used
in many fields of science because of their ability to model memory and non-local prop-
erties [13]. ADEs combine diffusion and advection terms to describe physical events in
which particles, energy, or other physical quantities are moved inside a physical system
by two processes, i.e., diffusion and advection. The concentration of substances for mass
and heat transfer is represented by the advection and diffusion models. This equation has
been used to model heat transfer in draining films [14], flow in porous media [15], and
air pollution [16], etc. There have been many attempts to solve the TFADEs accurately.
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In [17], a second-order implicit difference method was proposed for solving a time–space-
fractional ADE. Mardani et al. [18] studied a meshless method for the solution of ADEs
with variable coefficients. A fully implicit finite difference scheme based on cubic B-splines
was developed in [19] for solving TFADEs. Abbaszadeh and Amjadian [20] studied the
spectral element method for the solution of TFADEs. In the current study, we investigate the
numerical solution of two-dimensional TFADEs using the Chebyshev spectral collocation
method (CSCM) coupled with the Laplace transform (LT).

Spectral collocation methods have attracted the attention of the research community
due to their highly accurate solutions to partial differential equations. They converge
exponentially fast as compared to the algebraic convergence rates for FEM and FDM.
Spectral methods are global in nature. This means that the optimal accuracy can be
obtained with few grid points. For the first time, spectral methods were introduced by
Gottlieb and Orszag [21]. Their work paved the way for more advanced extensions of
the method for a larger variety of problems [22,23]. The most important tool for spectral
methods is the computation of differentiation matrices, discussed briefly by Welfert [24].
The spectral collocation methods have been used by many authors. For example, in [25],
the authors discussed the Hermite spectral methods for unbounded domains. The solution
of the fractional advection–dispersion equation by the Chebyshev spectral method was
incorporated by Sweilam et al. [26]. In [27], the spectral Legendre–Chebyshev collocation
method for variable coefficients was examined. Tian et al. [28] investigated the polynomial
spectral collocation method for space-fractional ADEs. The spectral collocation method and
the non-standard finite difference technique for the solution of TFADEs were introduced
by [29].

In the aforementioned methods, the time discretization is carried out using the finite
difference time-stepping method. The main shortcoming of the time-stepping technique is
that it may not always result in a stable solution. A finite difference time-stepping scheme
is stable if the errors calculated at a one-time step do not cause the errors to be increased
during the calculations. In other words, the time-stepping scheme is stable whether
the errors remain constant or decay during the computations. Furthermore, for optimal
accuracy, we need to decrease the time step, which results in an increased computational
time, and, thus, has low efficiency in simulating the time-fractional problems. To overcome
this drawback of the finite difference time-stepping scheme, the LT has been used as one
of the best alternative mathematical tools [30,31]. However, while using the LT, the main
difficulty is its inversion. In the literature, many algorithms have been developed for the
numerical inversion of the LT [32–34]. In the current study, we use Stehfest’s method [35]
and Talbot’s method [32,36] for the numerical inversion of the LT.

2. Numerical Scheme

In our numerical scheme, a two-dimensional TFADE is taken into account. First, the LT
is employed to reduce the TFADE to a time-independent problem in the LT domain. Then,
the CSCM is employed to obtain the approximate solution to the transformed problem.
Finally, the time domain solution is retrieved from the LT domain solution via the inverse LT.

2.1. Two-Dimensional TFADE

We consider a two-dimensional time-fractional advection–diffusion equation of the form

Dα
τU(x̄, τ) = λ1∆U(x̄, τ) + (−→u · ∇)U(x̄, τ)− λ2U(x̄, τ) +Q(x̄, τ), x̄ ∈ Ω, 0 ≤ τ ≤ 1, (1)

with boundary conditions

U(x̄, τ) = h(x̄, τ), x̄ ∈ ∂Ω, 0 ≤ τ ≤ 1, (2)

and the initial condition

U(x̄, 0) = U0(x̄), x̄ ∈ Ω, (3)
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where −→u = (u1, u2) is a known vector, λ1 and λ2 are arbitrary constants, Q(x̄, τ), U0(x̄),
h(x̄, τ) are given continuous functions, Ω ⊂ R2 is a bounded domain with a smooth
boundary ∂Ω, and Dα

τ represents Caputo’s derivative, defined as [3]

Dα
τU(x̄, τ) =

1
Γ(1− α)

∫ τ

0

∂U(x̄, z)
∂z

(τ − z)−αdz, 0 < α ≤ 1.

2.2. Time Discretization

In this section, the LT is used to reduce the TFADE to an equivalent time-independent
problem in the LT domain. The LT of the function U(x̄, τ) is denoted by Û(x̄, s) and is
defined as

Û(x̄, s) =
∫ ∞

0
e−sτU(x̄, τ)dτ,

and the LT of Caputo’s derivative is defined as

L{Dα
τU(x̄, τ)} = sαÛ(x̄, s)− sα−1U0.

Applying the LT to (1)–(3) gives

sαÛ(x̄, s)− sα−1U0 = λ1∆Û(x̄, s) + (−→u · ∇)Û(x̄, s)− λ2Û(x̄, s) + Q̂(x̄, s), (4)

and

Û(x̄, s) = ĥ(x̄, s), (5)

Equations (4) and (5) can be rearranged as

(sα I − L)Û(x̄, s) = Ĝ(x̄, s), (6)

and

Û(x̄, s) = ĥ(x̄, s). (7)

where L = λ1∆+ (−→u · ∇)− λ2 I is a linear differential operator, Ĝ(x̄, s) = sα−1U0 + Q̂(x̄, s),
and I denotes the identity operator. To obtain the approximate solution of the system
defined in (6) and (7), first, the linear spatial operator L is discretized using the CSCM.
Then, the fully discrete system is solved for each node s in the LT domain. Finally, the
numerical inversion of the LT is performed to obtain the solution of the problem defined in
Equations (1)–(3).

2.3. Chebyshev Spectral Collocation Method

In the CSCM, we interpolate the data
{(

xj, Û(xj)

)}
by using the Lagrange interpo-

lation polynomial (LIP) lj(x) of a degree of at most n [23,37]

In(x) =
n

∑
j=0

lj(x)Ûj

where lj(x) is the LIP at the point xj(j = 0, 1, . . . , n), given as

lj(x) =
(x− x0) . . . (x− xj−1)(x− xj+1) . . . (x− xn)

(xj − x0) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)
(8)

where Ûj = Û(xj). In the CSCM, the Chebyshev nodes are selected as the interpolation
nodes. The domain [−1, 1] is discretized using the Chebyshev points defined as
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xj = cos
(

jπ
n

)
, j = 0, 1, . . . , n. (9)

The approximation of the first derivative ∂Û(x)
∂x on the Chebyshev points can be obtained as

∂Û(x)
∂x

≈ DnÛ,

where the entries of the matrix Dn are

[Dn]i,j = l′j(xi), i, j = 1, 2, . . . , n.

The off-diagonal entries of [Dn]i,j are obtained as

[Dn]i,j =
αj

αi(xi − xj)
, i 6= j,

where α−1
j = ∏n

i 6=j(xi − xj), and the diagonal elements are obtained as

[Dn]i,j = −
n

∑
j=0, j 6=i

[Dn]i,j, i = 0, 1, 2, .., n.

Next, the entries of the µth-order differentiation matrix Dµ
n can be obtained analytically as

[Dµ
n ]i,j = lµ

j (xi), i, j = 1, 2, . . . , n.

A more accurate and stable evaluation can be found in [24,38]. In [24], the author derived a
useful recursion relation for the differentiation matrices, given as

[Dµ
n ]kj =

µ

xk − xj

(
αj

αk
[D(µ−1)

n ]kk − [D(µ−1)
n ]kj

)
, k 6= j

For square domain [−1, 1]2, assume the points x̄ij are defined as

x̄ij =

(
cos

(
iπ
n

)
, cos

(
jπ
n

))
, i, j = 0, 1, 2, . . . , n

The LIP corresponding to the above Chebyshev points are given as

lij(x̄) = li(x)lj(y), (10)

where lij(x̄ij) = δij, i, j = 0, 1, 2, . . . , n. In terms of x and y, the second derivatives of the
LIPs (10) are given as

∂2lij(x̄rs)

∂x2 = l′′i (xr)lj(ys) = [D2
n]riδjs,

∂2lij(x̄rs)

∂y2 = li(xr)l′′j (ys) = δri[D2
n]sj,

where D2
n denotes the second-order Chebyshev differentiation matrix. Applying the linear

operator L on the LIP at the Chebyshev nodes, {x̄rs} gives

L(lij(x̄rs)) = λ1

(
[D2

n]riδjs + δri[D2
n]sj

)
+

(
u1

(
[Dn]riδjs

)
+ u2

(
δri[Dn]sj

))
− λ2δriδsj, (11)
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Therefore, the discretized form of the linear differential operator L via the CSCM can
be expressed as

LD = λ1

(
In ⊗D2

n + D2
n ⊗ In

)
+

(
u1

(
In ⊗Dn

)
+ u2

(
Dn ⊗ In

))
− λ2

(
In ⊗ In

)
. (12)

By using Equation (12) in Equation (6), we have

(sα I − LD)Û(x̄, s) = Ĝ(x̄, s), (13)

where we incorporate the boundary conditions in Equation (7) by taking the matrix LD,
based on all collocation points x̄, and then replace the rows of LD corresponding to colloca-
tion at boundary points with unit vectors that have a one in the position corresponding to
the diagonal of LD. Thus, the boundary condition U(x̄, s) = ĥ(x̄, s) in (7) will be explicitly
enforced at this point as soon as we set the right-hand side to the corresponding value of
ĥ(x̄, s) [23]. After incorporating the boundary conditions and solving Equation (13) for each
node s, we obtain the approximate solution Û(x̄, s) in the LT domain. In Section 2.4, we
describe the numerical inverse LT method used to evaluate the approximate time domain
solution U(x̄, τ) for the original problem in Equations (1)–(3).

Stability and Error Analysis

Given the Chebyshev nodes in Equation (9) and the Lagrange interpolation polynomi-
als defined in Equation (8), the interpolation operator is defined as follows [37]:

In : C(Ω)→ Pn, In(U) =
n

∑
j=0

U(xj)lj(x). (14)

The steps proposed by Borm et al. [39] for constructing the error bound are utilized
here. Let Mn be a constant with the stability estimate given as

‖In(U)‖∞ ≤ Mn‖U‖∞, f or all U ∈ C[−1, 1]. (15)

In(U) = U, f or all U ∈ Pn. (16)

For the Chebyshev interpolation, we have

Mn =
ln(n + 1)

(π
2 )

+ 1 ≤ (n + 1). (17)

Thus, the stability constant depends on n and develops extremely slowly. Additionally,
the following approximation error bound [39] holds for a function U ∈ C(n+1)[−1, 1],

‖U − In(U)‖∞ ≤
2−n

(n + 1)!
‖U(n+1)‖∞. (18)

Theorem 1 ([39]). If (15) and (18) hold for U ∈ C(n+1)[−1, 1], and considering k ∈ {0, 1, 2, . . . , n},
then

‖U(k) − In(U)(k)‖∞ ≤
2(M(k)

n + 1)
(n− k + 1)!

(
1
2

)(n−k+1)

‖U(n+1)‖∞ (19)

depending on the stability constant

M(k)
n =

Mn

k!

(
n!

(n− k)!

)
.
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Now, use (18) and (19) for the TFADE (1) in one dimension. For the 1− D case, the
linear differential operator L is of the form L = λ1

∂2

∂x2 + u1
∂

∂x − λ2 I. Thus, we find the
following error estimate

E = ‖(Dα
t U − LU)− (Dα

t In(U)− LIn(U))‖∞

= ‖(Dα
t (U − In(U))− L(U − In(U))‖∞

≤ ‖(Dα
t (U − In(U)))‖∞ + ‖L(U − In(U))‖∞

≤ ‖Dα
t (U − In(U))‖∞ + |λ1|‖Uxx − In(U)xx‖∞

+ |u1|‖Ux − In(U)x‖∞ + |λ2|‖U − In(U)‖∞

E ≤ ‖Dα
t (U − In(U))‖∞ + |λ1|

2(M(2)
n + 1)

(n− 1)!

(
1
2

)n−1

‖U(n+1)‖∞

+ |u1|
2(M(1)

n + 1)
n!

(
1
2

)n

‖U(n+1)‖∞ + |λ2|
2−n

(n + 1)!
‖U(n+1)‖∞

The time derivative is accurately evaluated. Therefore, the error bound of ‖(Dα
t (U −

In(U)))‖∞ is the same order of ‖(U − In(U))‖∞. Finally, we have [37]:

E ≤ C‖U(n+1)‖∞.

where C is constant, resulting from calculation of the coefficients of ‖U(n+1)‖∞. We can use
the tensor product interpolation operators for two-dimensional problems.

2.4. Numerical Inversion of Laplace Transform

In this section, we implement the inverse Laplace transform method to convert the
CSCM solution Û(x̄, s) from the Laplace domain to the time domain as follows:

U(x̄, τ) =
1

2πi

∫ ρ+i∞

ρ−i∞
esτÛ(x̄, s)ds, ρ > ρ0. (20)

Here the transform Û(x̄, s) needs to be inverted, ρ0 is the converging abscissa, and
ρ > ρ0. This means that all of the singularities of Û(x̄, s) lie in the open half-plane Re(s) < ρ.
We aim to approximate the integral defined in Equation (20). In most cases, it is quite diffi-
cult to evaluate the integral defined in Equation (20) analytically; thus, a numerical method
must be used. There are several numerical algorithms in the literature that can be used to
evaluate the integral defined in Equation (20). Among them, we can list the Fourier series
method [40], the de Hoog method [41], Stehfest’s method [35,42], Talbot’s method [32,36],
and the Weeks method [43,44], etc. Each approach has an identifiable use and is appropriate
for a particular function. In this article, we use two popular inversion algorithms: the
improved Talbot’s and Stehfest’s methods will be presented in the following sections.

2.4.1. TheImproved Talbot’s Method

Here, we use Talbot’s method to approximate the U(x̄, τ)

U(x̄, τ) =
1

2πi

∫ ρ+i∞

ρ−i∞
esτÛ(x̄, s)ds =

1
2πi

∫
C

esτÛ(x̄, s)ds, Re(s) > 0. (21)

where C is a suitably chosen line. It is very difficult to solve the above integral due to
the highly oscillatory exponential function esτ and the slow-decaying transform Û(x̄, s).
Talbot [36] suggested that by utilizing contour integration, this problem can be resolved. He
further said that the integration might be carried out so that the real parts of the contours
begin and stop on the left side of the complex plane, which contains all of the singularities
in the transformed function Û(x̄, s). Due to the exponential element, the integrand decays
quickly on such contours, making integral Equation (21) suitable for approximation with
the midpoint rule. Consider a contour of the form [32]:
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Γ : s = s(η), −π ≤ η ≤ π, (22)

where Res(±π) = −∞, and s(η) is given as

s(η) =
MT
τ

ζ(η), ζ(η) = −δ + $ηcot(µη) + γiη, (23)

where µ, $, and γ will be chosen precisely. Using Equation (23) in Equation (21) , we obtain

U(x̄, τ) =
1

2πi

∫ π

−π
es(η)τÛ(x̄, s(η))s′(η)dη. (24)

The integral defined in (24) is approximated via the midpoint rule with spacing h = 2π
MT

as

UApp(x̄, τ) ≈ 1
MTi

MT

∑
j=1

es(ηj)τÛ(x̄, s(ηj))s′(ηj), ηj = −π + (j− 1
2
)h. (25)

Convergence

The approximate value of the defined integral in Equation (24) depends on the contour
of integration Γ; different rates of convergence are attained for the suggested numerical
scheme. Additionally, the quadrature step h determines that the suggested scheme will
converge. In order to have optimal results, we need to search for the optimal contour of
integration, which can be found by using the optimal values for the parameters involved
in (23). In [32], the authors have proposed optimal values for the parameters as

δ = 0.6122, , γ = 0.2645, µ = 0.6407, and $ = 0.5017,

For the improved Talbot’s method, the error estimate is given as

Errorest = | UApp(x̄, τ)−U(x̄, τ)| = O(e−1.35800MT ).

2.4.2. TheStehfest’s Method

The Gaver–Stehfest method is one of the most important techniques for the numerical
inversion of the Laplace transform. It was designed in the second half of the 1960s. It has
gained prominence in a number of disciplines, such as chemistry, finance, economics, and
computational physics, due to its effectiveness and ease. The series of Gaver approximants,
as determined by Gaver [42], is the foundation of the Gaver–Stehfest method. Acceleration
was required because the Gaver approximants’ convergence was basically logarithmic.
Stehfest [35] used the Salzer acceleration method to offer a linear acceleration method. The
Gaver–Stehfest approach uses a series of functions to approximate U(x̄, τ) as

UApp(x̄, τ) =
ln2
τ

MS

∑
j=1

αjÛ
(

x̄,
ln2
τ

j
)

, (26)

where the coefficients αj are defined by

αj = (−1)
MS

2 +j
min(j, MS

2 )

∑
`=b j+1

2 c

`
MS

2 (2`)!

(MS
2 − `)!`!(`− 1)!(j− `)!(2`− j)!

. (27)

Solve Equation (6) for the corresponding Laplace parameters s = ln2
τ j, j = 1, 2, 3, . . . ,

MS. The solution to the given problem in Equation (1) can be obtained by (26). There are a
few appealing features of the Gaver–Stehfest algorithm: (i) UApp(x̄, τ) are linear in terms
of the values of U(x̄, s); (ii) the values of U(x̄, s) are needed only for the real value of s;
(iii) the process of computing the coefficients is quite simple; and (iv) for constant functions,
this approach yields highly accurate approximations. In the literature, this technique has
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been used by many authors in [45,46], where it has been demonstrated that this method
converges very fast to UApp(x̄, τ) (provided UApp(x̄, τ) is non-oscillatory).

Convergence

In [45], the author has derived two conditions for U(x̄, τ), which guarantee the con-
vergence of UApp(x̄, τ). The conditions are given in the following theorem.

Theorem 2. Let U : (0, ∞) → R be a locally integrable function and the approximate solution
UApp(x̄, τ) be defined by (26), and let its LT Û(x̄, s) be defined for s > 0 :

1. UApp(x̄, τ) converges for the values of UApp(x̄, τ) in the neighborhood of τ.
2. Let for some real number m and some 0 < ε < 1/4∫ ε

0
|U(−τlog2(1/2 + ξ)) + U(−τlog2(1/2− ξ))− 2m|ξ−1dξ < ∞.

Then, U → m as MS → +∞.
3. Allow that UApp(x̄, τ) has a bounded variation in the neighborhood of τ. Then,

UApp(τ)→
U(τ + 0) + U(τ − 0)

2
as MS → +∞.

Corollary 1. Under the above assumptions, if

U(τ + ξ)−U(τ) = O(|ξ|υ),

∀ ξ and some υ in the neighborhood of τ, then UApp(x̄, τ)→ U(x̄, τ), as MS → +∞.

Additionally, the authors in [47] performed various experiments for the parameter
effect on the accuracy of the numerical scheme, and they concluded in their findings that
“If p significant digits are required, then let MS be the positive integer d2.2pe. Set the system
precision to q = d1.1MSe and, for a given MS, calculate αi, 1 ≤ i ≤ MS, using (27). Then, for
the given transform Û(x̄, s) and the argument τ, calculate the UApp(x̄, τ) in (26)”. According

to these conclusions, if the error of input data is 10−(q+1) ≤ ‖Û−U‖
‖U‖ ≤ 10−q, with an even

positive integer MS via q = d1.1MSe, then the final error is 10−(p+1) ≤ ‖Û−U‖
‖U‖ ≤ 10−p,

where MS = d2.2pe [48]. Next, we present Algorithm 1 for the proposed numerical scheme.

Algorithm 1 : Algorithm for the proposed numerical scheme

1: Input: The computational domain, the fractional order derivative, the final time, the
optimal parameters for the inverse laplace transform methods, the inhomogeneous
function, and other conditions.

2: Step i: Apply the Laplace transform to problems (1) and (2), and obtain the time-
independent problems (6) and (7).

3: Step ii: Obtain LD by discretizing the linear differential operator L using the CSCM
via (12).

4: Step iii: Solve Equation (13) with the boundary conditions given in Equation (7) for
each point in the LT domain.

5: Step iv: Compute the approximate solution to the problem in Equations (1)–(3) using
Equation (21) or Equation (26).

6: Step v: The approximate solution is UApp(x̄, τ).
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3. Numerical Results and Discussion

The numerical results and discussions are addressed in this section. Three examples
are used to evaluate and validate the effectiveness and accuracy of the Laplace-transformed
CSCM. We performed our experiments in MATLAB R2019a on a Windows 10 (64-bit) PC
equipped with an Intel(R) Core TM i5-4310M CPU @ 2.70 GHz with 4 GB of RAM. Three
error norms—the relative L2 error, the maximum absolute error, and the RMS error—are
used to evaluate the accuracy of the proposed method and are defined below:

er2 =

√√√√∑n
j=1(U(x̄j, τ)−UApp(x̄j, τ))2

∑n
j=1(U(x̄j, τ))2 ,

er∞ = max
1≤j≤n

|U(x̄j, τ)−UApp(x̄j, τ)|,

errms =

√
∑n

j=1(U(x̄j, τ)−UApp(x̄j, τ))2

n
,

where U(x̄j, τ) and UApp(x̄j, τ) represent the analytic and numerical solutions, respectively.

Example 1. Consider the 2D time-fractional advection–diffusion Equation (1) with an exact
solution given as

U(x, y, τ) = x2 + y2 + τ2, Ω = [−1, 1]2, τ ∈ [0, 1],

where λ1 = 1,−→u = (1, 1)T , and λ2 = 0. The forcing term Q(x, y, τ), and the initial-boundary
data are extracted from the exact solution. The numerical results obtained via Talbot’s and Stehfest’s
methods are presented in Tables 1 and 2 by using different values of α, MS, MT , and n at τ = 1.
The approximate solution obtained by the proposed method is shown in Figure 1a. The plots for the
comparison of errors er2, er∞, and errms using Stehfest’s method for several values of α, MS, and τ
at n = 25 are shown in Figure 1b–d, respectively. Figure 2a–c show the plots of errors er2, er∞, and
errms obtained using Talbot’s method with different values of α, MT , and τ at n = 25. Figure 2d
presents the contour plot of the absolute error using Talbot’s method for different values of α with
MT = 26, τ = 1, and n = 25. The accuracy of Stehfest’s method enhances for MS = 8, 10, 12, 14
and then gradually diminishes for values exceeding MS = 14. From all of the obtained results
presented in the figures and tables, we conclude that the proposed method is stable, accurate, and
efficient. Clearly, the numerical results show that the accuracy of Talbot’s method is better than that
of Stehfest’s method.

Example 2. Consider the 2D time-fractional advection–diffusion Equation (1) with an exact
solution given as

U(x, y, τ) = sin(x + y) + τ2, Ω = [−1, 1]2, τ ∈ [0, 1],

where λ1 = 1,−→u = (1, 1)T , and λ2 = 0. The forcing term Q(x, y, τ), and the initial-boundary
data are extracted from the exact solution. The numerical results obtained via Talbot’s and Stehfest’s
methods are presented in Tables 3 and 4 by using different values for α, MS, MT , and n at τ = 1.
The approximate solution obtained by the proposed method is shown in Figure 3a. The plots of the
comparison of errors er2, er∞, and errms using Stehfest’s method for several values of α, MS, and
τ at n = 25 are shown in Figure 3b–d, respectively. Figure 4a–c show the plots of errors er2, er∞,
and errms by using Talbot’s method with different values of α, MT , and τ at n = 25. Figure 3e
presents the contour plot of the absolute error obtained by using Stehfest’s method for different
values of α with MS = 12, τ = 1, and n = 25. The accuracy of Stehfest’s method enhances for
MS = 8, 10, 12, 14 and then gradually diminishes for values exceeding MS = 14. From all of the
obtained results presented in the figures and tables, we conclude that the proposed method is stable,
accurate, and efficient. Clearly, the results show that the accuracy of Talbot’s method is better than
that of Stehfest’s method.
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Table 1. The er2, er∞, and errms obtained using Stehfest’s method for different values of α, n, and MS

at τ = 1 for Example 1.

α = 0.30 n MS er2 er∞ errms CPU(s)

21 12 9.7994 × 10−4 6.0556 × 10−5 4.6664 × 10−5 0.233261
23 1.1084 × 10−3 8.2038 × 10−5 4.8190 × 10−5 0.200611
25 1.1581 × 10−3 7.1935 × 10−5 4.6325 × 10−5 0.266045
25 08 1.0812×10−1 4.1584 × 10−3 4.3246 × 10−3 0.196162

10 1.4553 × 10−3 5.8142 × 10−5 5.8213 × 10−5 0.249590
12 1.1581 × 10−3 7.1935 × 10−5 4.6325 × 10−5 0.255773

α = 0.50

21 12 9.8850 × 10−4 5.6517 × 10−5 4.7071 × 10−5 0.167258
23 1.0923 × 10−3 7.1906 × 10−5 4.7492 × 10−5 0.204245
25 1.2186 × 10−3 1.3279 × 10−4 4.8744 × 10−5 0.302795
25 08 1.0812×10−1 4.1584 × 10−4 4.3246 × 10−3 0.196037

10 1.4539 × 10−3 5.7437 × 10−5 5.8156 × 10−5 0.241286
12 1.2186 × 10−3 1.3279 × 10−4 4.8744 × 10−5 0.377014

α = 0.80

21 12 1.0540 × 10−3 9.2987 × 10−5 5.0191 × 10−5 0.142862
23 9.8247 × 10−4 6.2113 × 10−5 4.2716 × 10−5 0.235252
25 1.2741 × 10−3 1.5227 × 10−4 5.0962 × 10−5 0.287223
25 08 1.0811×10−1 4.1585 × 10−3 4.3246 × 10−5 0.214762

10 1.4514 × 10−3 5.7719 × 10−5 5.8056 × 10−5 0.234821
12 1.2741 × 10−3 1.5227 × 10−4 5.0962 × 10−5 0.287223

Table 2. The er2, er∞, and errms obtained via Talbot’s method for different values of α, n, and MT at
τ = 1 for Example 1.

α = 0.30 n MT er2 er∞ errms CPU(s)

21 26 3.6788 × 10−10 9.4858 × 10−11 1.7518 × 10−11 0.477112
23 5.1649 × 10−10 1.5900 × 10−10 2.2456 × 10−11 0.710826
25 8.1265 × 10−10 3.4762 × 10−10 3.2506 × 10−11 1.118694
25 22 3.6227 × 10−8 1.5662 × 10−9 1.4491 × 10−9 0.955487

24 3.0969 × 10−9 3.1978 × 10−10 1.2388 × 10−10 0.997716
26 8.1265 × 10−10 3.4762 × 10−10 3.2506 × 10−11 1.082287

α = 0.50

21 26 4.5560 × 10−10 1.7228 × 10−10 2.1695 × 10−11 0.468985
23 5.0871 × 10−10 1.8159 × 10−10 2.2118 × 10−11 0.741330
25 8.4173 × 10−10 3.3289 × 10−10 3.3669 × 10−11 1.042339
25 22 3.6042 × 10−8 1.4790 × 10−9 1.4417 × 10−9 0.952621

24 2.8473 × 10−9 3.0892 × 10−10 1.1389 × 10−10 0.987540
26 8.4173 × 10−10 3.3289 × 10−10 3.3669 × 10−11 1.042339

α = 0.80

21 26 3.9392 × 10−10 8.8192 × 10−11 1.8758 × 10−11 0.479675
23 4.8220 × 10−10 1.9319 × 10−10 2.0965 × 10−11 0.761089
25 1.1098 × 10−9 7.7091 × 10−10 4.4393 × 10−11 1.094016
25 22 3.6116 × 10−8 1.5182 × 10−9 1.4446 × 10−9 0.917780

24 2.9420 × 10−9 2.3727 × 10−10 1.1768 × 10−10 1.010576
26 1.1098 × 10−9 7.7091 × 10−10 4.4393 × 10−11 1.094016
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Figure 1. (a) Numerical solution of Example 1. (b) The plot shows a comparison of er2, er∞, and
errms using Stehfest’s method for different α, with MS = 10 and n = 25 at τ = 1 for Example 1.
(c) The plot shows a comparison of er2, er∞, and errms using Stehfest’s method for different MS with
α = 0.3 and n = 25 at τ = 1 for Example 1. (d) The plot shows a comparison of er2, er∞, and errms

using Stehfest’s method for different τ with MS = 10, α = 0.3, and n = 25 for Example 1.

Example 3. Consider the 2D time-fractional advection–diffusion Equation (1) with an exact
solution given as

U(x, y, τ) = τ2e(x+y), Ω = [−1, 1]2, τ ∈ [0, 1],

where λ1 = 1,−→u = (1, 1)T , and λ2 = 0. The forcing term Q(x, y, τ), and the initial-boundary
data are extracted from the exact solution. The numerical results obtained via Talbot’s and Stehfest’s
methods are presented in Tables 5 and 6 by using different values of α, MS, andMT , with n at
τ = 1. The approximate solution obtained by the proposed method is shown in Figure 5a. The
plots of the comparison of the errors er2, er∞, and errms using Stehfest’s method for several values
of α, MS, and τ at n = 25 are shown in Figure 5b–d, respectively. Figure 6a–c show the plots
of errors er2, er∞, and errms via Talbot’s method with different values of α, MT , and τ at n = 25.
Figure 6d presents the contour plot of the absolute error by using Talbot’s method for different
values of α with MT = 26, τ = 1, and n = 25. The accuracy of Stehfest’s method enhances for
MS = 8, 10, 12, 14 and then gradually diminishes for values exceeding than MS = 14. From all the
obtained results presented in the figures and tables, we conclude that the proposed method is stable,
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accurate, and efficient. Clearly, the results show that the accuracy of Talbot’s method is better than
that of Stehfest’s method.

Table 3. The er2, er∞, anderrms obtained via Stehfest’s method for different values of α, n, and MS at
τ = 1 of Example 2.

α = 0.30 n MS er2 er∞ errms CPU(s)

21 12 9.9430 × 10−4 5.2055 × 10−5 4.7348 × 10−5 0.192349
23 1.0940 × 10−3 6.1845 × 10−5 4.7567 × 10−5 0.333385
25 1.1758 × 10−3 6.1712 × 10−5 4.7031 × 10−5 0.303723
25 08 1.0812×10−1 4.1584 × 10−3 4.3246 × 10−3 0.271822

10 1.4554 × 10−3 5.8032 × 10−5 5.8217 × 10−5 0.257647
12 1.1758 × 10−3 6.1712 × 10−5 4.7031 × 10−5 0.303723

α = 0.50

21 12 9.9254 × 10−4 5.2330 × 10−5 4.7264 × 10−5 0.170534
23 1.0888 × 10−3 5.9124 × 10−5 4.7338 × 10−5 0.257113
25 1.1700 × 10−3 5.4659 × 10−5 4.6800 × 10−5 0.360627
25 08 1.0812×10−1 4.1583 × 10−3 4.3246 × 10−3 0.197690

10 1.4551 × 10−3 5.6736 × 10−5 5.8205 × 10−5 0.383466
12 1.1700 × 10−3 5.4659 × 10−5 4.6800 × 10−5 0.360627

α = 0.80

21 12 9.9170 × 10−4 5.0410 × 10−5 4.7224 × 10−5 0.178846
23 1.0836 × 10−3 5.0672 × 10−5 4.7115 × 10−5 0.276298
25 1.2056 × 10−3 6.7927 × 10−5 4.8224 × 10−5 0.292158
25 08 1.0812×10−1 4.1583 × 10−3 4.3246 × 10−5 0.274343

10 1.4550 × 10−3 5.6956 × 10−5 5.8199 × 10−5 0.269435
12 1.2056 × 10−3 6.7927 × 10−5 4.8224 × 10−5 0.292158

Table 4. The er2, er∞, anderrms obtained using Talbot’s method for different values of α, n, and MT at
τ = 1 of Example 2.

α = 0.30 n MT er2 er∞ errms CPU(s)

21 26 2.3790 × 10−10 6.3914 × 10−11 1.1328 × 10−11 0.508399
23 2.6664 × 10−10 5.2105 × 10−11 1.1593 × 10−11 0.829189
25 5.6968 × 10−10 3.8928 × 10−10 2.2787 × 10−11 1.151650
25 22 3.6179 × 10−8 1.4491 × 10−9 1.4472 × 10−9 0.977947

24 2.9202 × 10−9 2.3436 × 10−10 1.1681 × 10−10 1.044065
26 5.6968 × 10−10 3.8928 × 10−10 2.2787 × 10−11 1.151650

α = 0.50

21 26 2.7669 × 10−10 7.5912 × 10−11 1.3176 × 10−11 0.545475
23 2.7187 × 10−10 6.4024 × 10−11 1.1820 × 10−11 0.806244
25 4.6716 × 10−10 2.0896 × 10−10 1.8687 × 10−11 1.225075
25 22 3.6229 × 10−8 1.4880 × 10−9 1.4492 × 10−9 0.939474

24 2.8311 × 10−9 1.5034 × 10−10 1.1324 × 10−10 1.027609
26 4.6716 × 10−10 2.0896 × 10−10 1.8687 × 10−11 1.225075

α = 0.80

21 26 2.4234 × 10−10 4.0678 × 10−11 1.1540 × 10−11 0.512461
23 2.4004 × 10−10 7.5801 × 10−11 1.0437 × 10−11 0.820029
25 4.3673 × 10−10 2.3799 × 10−10 1.7469 × 10−11 1.162087
25 22 3.6188 × 10−8 1.4465 × 10−9 1.4475 × 10−9 0.988509

24 2.8035 × 10−9 1.4878 × 10−10 1.1214 × 10−10 1.047553
26 4.3673 × 10−9 2.3799 × 10−10 1.7469 × 10−11 1.162087
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Figure 2. (a) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different
α with MT = 22 and n = 25 at τ = 1 for Example 1. (b) The plot shows a comparison of er2, er∞,
and errms using Talbot’s method for different MT with α = 0.3 and n = 25 at τ = 1 for Example 1.
(c) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different τ with
MT = 22, alpha = 0.3, and n = 25 for Example 1. (d) Contour plot of the absolute error obtained
with MT = 26, τ = 1 alpha = 0.3, and n = 25 using Talbot’s method for Example 1.
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Figure 3. (a) Numerical solution of Example 2. (b) The plot shows a comparison of er2, er∞, and
errms using Stehfest’s method for different α, with MS = 10 and n = 25 at τ = 1 for Example 2.
(c) The plot shows a comparison of er2, er∞, and errms using Stehfest’s method for different MS with
α = 0.3 and n = 25 at τ = 1 for Example 2. (d) The plot shows a comparison of er2, er∞, and
errms using Stehfest’s method for different τ with MS = 10, α = 0.3, and n = 25 for Example 2.
(e) Contour plot of the absolute error obtained using Stehfest’s method with α = 0.5, MS = 12, τ = 1,
and n = 25 for Example 2.
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Table 5. The er2, er∞, anderrms obtained via Stehfest’s method for different values of α, n, and MS at
τ = 1 of Example 3.

α = 0.30 n MS er2 er∞ errms CPU(s)

21 14 1.9041 × 10−4 3.5446 × 10−5 9.0670×10−6 0.142019
23 1.7304 × 10−4 2.7673 × 10−5 7.5234×10−6 0.214226
25 2.2300 × 10−4 4.3858 × 10−5 8.9200×10−6 0.278411
25 10 3.3997 × 10−3 4.1349 × 10−4 1.3599 × 10−4 0.234626

12 2.7481 × 10−3 3.3443 × 10−4 1.0992 × 10−4 0.275799
14 2.2300 × 10−4 4.3858 × 10−5 8.9200×10−6 0.334381

α = 0.50

21 14 1.7886 × 10−4 3.4616 × 10−5 8.5172×10−6 0.173237
23 1.9875 × 10−4 4.7601 × 10−5 8.6413×10−6 0.238699
25 1.8379 × 10−4 2.8417 × 10−5 7.3515×10−6 0.321624
25 10 3.3995 × 10−3 4.1349 × 10−4 1.3598 × 10−4 0.246361

12 2.7522 × 10−3 3.3443 × 10−4 1.1009 × 10−4 0.256780
14 1.8379 × 10−4 2.8417 × 10−5 7.3515×10−6 0.320022

α = 0.80

21 14 2.1292 × 10−4 2.4907 × 10−5 1.0139 × 10−5 0.160703
23 2.8307 × 10−4 4.5577 × 10−5 1.2307 × 10−5 0.228405
25 4.0222 × 10−4 4.9547 × 10−5 1.6089 × 10−5 0.323644
25 10 3.3995 × 10−3 4.1349 × 10−4 1.3598 × 10−4 0.253768

12 2.7525 × 10−3 3.3443 × 10−4 1.1010 × 10−5 0.318281
14 4.0222 × 10−4 4.9547 × 10−5 1.6089 × 10−5 0.323644

Table 6. The er2, er∞, anderrms obtained using Talbot’s method for different values of α, n, and MT at
τ = 1 for Example 3.

α = 0.30 n MS er2 er∞ errms CPU(s)

21 30 2.4416 × 10−11 8.9271 × 10−12 1.1627 × 10−12 0.623102
23 4.5926 × 10−11 2.4259 × 10−11 1.9968 × 10−12 0.893166
25 1.0575 × 10−10 3.6040 × 10−11 4.2300 × 10−12 1.424708
25 26 5.3511 × 10−10 8.2624 × 10−11 2.1404 × 10−11 1.154428

28 7.2756 × 10−11 3.0986 × 10−11 2.9102 × 10−12 1.290241
30 1.0575 × 10−10 3.6040 × 10−11 4.2300r × 10−12 1.304660

α = 0.50

21 30 2.4307 × 10−11 8.8405 × 10−12 1.1575 × 10−12 0.590850
23 4.5760 × 10−11 1.3785 × 10−11 1.9896 × 10−12 0.895766
25 6.7767 × 10−11 3.3908 × 10−11 2.7107 × 10−12 1.342481
25 26 5.0284 × 10−10 7.5070 × 10−11 2.0114 × 10−11 1.118816

28 8.2316 × 10−11 3.8009 × 10−11 3.2926 × 10−12 1.221575
30 6.7767 × 10−11 3.3908 × 10−11 2.7107 × 10−12 1.282603

α = 0.80

21 30 2.6976 × 10−11 8.4350 × 10−12 1.2846 × 10−12 0.569593
23 4.9832 × 10−11 1.3129 × 10−11 2.1666 × 10−12 0.901900
25 8.9002 × 10−11 5.0524 × 10−11 3.5601 × 10−12 1.338635
25 26 5.0864 × 10−10 7.6800 × 10−11 2.0346 × 10−11 1.152948

28 6.4788 × 10−11 2.4306 × 10−11 2.5915 × 10−12 1.197204
30 8.9002 × 10−11 5.0524 × 10−11 3.5601 × 10−12 1.295479
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Figure 4. (a) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different
α, with MT = 22 and n = 25 at τ = 1 for Example 2. (b) The plot shows a comparison of er2, er∞,
and errms using Talbot’s method for different MT with α = 0.3 and n = 25 at τ = 1 for Example 2.
(c) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different τ with
MT = 22, alpha = 0.3, and n = 25 for Example 2.
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Figure 5. (a) Numerical solution of Example 3. (b) The plot shows a comparison of er2, er∞, and
errms using Stehfest’s method for different α, with MS = 10 and n = 25 at τ = 1 for Example 3.
(c) The plot shows a comparison of er2, er∞, and errms using Stehfest’s method for different MS with
α = 0.3 and n = 25 at τ = 1 for Example 3. (d) The plot shows a comparison of er2, er∞, and errms

using Stehfest’s method for different τ with MS = 10, α = 0.3, and n = 25 for Example 3.
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Figure 6. (a) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different
α, with MT = 26 and n = 25 at τ = 1 for Example 3. (b) The plot shows a comparison of er2, er∞,
and errms using Talbot’s method for different MT with α = 0.3 and n = 25 at τ = 1 for Example 3.
(c) The plot shows a comparison of er2, er∞, and errms using Talbot’s method for different τ with
MT = 26, alpha = 0.3, and n = 25 for Example 3. (d) Contour plot of the absolute error obtained
with MT = 26, τ = 1 alpha = 0.5, and n = 25 using Talbot’s method for Example 3.

4. Conclusions

In this article, a numerical method based on the LT coupled with the CSCM for the
numerical solution of two-dimensional TFADEs in the Caputo sense has been developed.
It first uses the LT to convert a TFADE into a time-independent inhomogeneous equation
in the LT space. Then, it uses the CSCM to discretize the spatial derivatives of this Laplace-
transformed inhomogeneous equation. Finally, it chooses Stehfest’s method and Talbot’s
method for the numerical inversion of the LT to retrieve the numerical solutions of the
TFADE from the corresponding CSCM solutions in the LT domain. Compared with the
finite difference time-stepping scheme, the proposed method introduces the LT technique to
avoid the calculation of a costly convolution integral in the approximation of time-fractional
derivation and to avoid the effect of the time step on the stability and accuracy. Hence, it
can successfully solve the long time history TFADEs. The proposed advection–diffusion
equation of fractional order presents significant potential for extension into uncertainty



Fractal Fract. 2023, 7, 762 19 of 20

propagation and sensitivity analysis, enabling a more comprehensive and nuanced under-
standing of system responses to parameter variations and initial conditions [49–51].
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