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Abstract: This paper focuses on the equilibrium problem of an urban public transportation system
with time delay. Time delay, multi-weights, and stochastic disturbances are considered in the urban
public transportation system. Hence, one can regard the urban public transportation system as a
stochastic multi-weighted delayed complex network. By combining graph theory and the Lyapunov
method, the global Lyapunov function is constructed indirectly. Moreover, the response system
can realize synchronization with the drive system under the adaptive controller. In other words,
the urban public transportation system is balanced in the actual running traffic network. Finally,
numerical examples about the Chua system and small-world network are presented to confirm the
accuracy and validity of the theoretical results.
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1. Introduction

Recently, the study of complex networks has aroused widespread attention [1–3].
Especially in the field of traffic, fruitful results have been obtained [4–7], but most of the
research focuses on the traffic networks with a single weight. In most traffic networks,
there are often multiple weights between different network nodes. If the place of travel
is regarded as a network node, the alternative transportation modes between two places
include the subway, bus, a bicycle and so on, and the travel time required for each mode
is different. By viewing a mode of transportation as a kind of weight, a traffic network
constitutes a multi-weighted complex network, which is more meaningful than a single-
weighted complex network [8–10].

As one of the important dynamic features of complex networks, synchronization is
also widely used in the transportation field [11–14]. The synchronization of the traffic
network actually refers to the equilibrium of the urban public transportation system, which
is the dynamical balance between running buses and passengers. When the urban public
transportation system reaches equilibrium, the buses run with the shortest delay while
passengers have the shortest waiting time at the bus stops. So far, there are few studies on
the equilibrium of a multi-weighted urban public transportation system (MUPTS). Thus, it
is of practical materiality to study the equilibrium problem of MUPTS in this paper.

In the traffic network, stochastic disturbances such as weather, road conditions, and
traffic control are always present. These can have an impact on the transportation system,
so that the operation of a bus stop often does not reach the ideal situation. Hence, the bus
running time becomes longer and the passenger waiting time becomes correspondingly
longer, which leads to traffic congestion and an unbalanced traffic network. At the same
time, an emergency requires a driver to make a corresponding response in the driving
process, but the driver needs a reaction time, which leads to the existence of time delay.
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Therefore, taking the effect of time delay and stochastic disturbances on the MUPTS into
account is of great practical significance.

Until now, most papers study the synchronization problem by utilizing the Lyapunov
method, in which the global Lyapunov function is always directly constructed. Nonetheless,
it is very difficult to directly construct the global Lyapunov function of the MUPTS including
multiple weights, stochastic disturbances, and time delay. According to the graph-theoretic
method [15], the global Lyapunov function is indirectly constructed by the weighted
summation of the Lyapunov function of the vertex system. Scholars have obtained many
results with the help of this method [16–19]. However, there are few works on urban public
transportation systems based on this method [20]. So this paper attempts to investigate the
equilibrium problem of MUPTS by using the graph-theoretic method.

The main novelties of this study are outlined as follows:

• The model of MUPTS takes multiple weights, stochastic disturbances, and time delay
into consideration, which makes the model more general and can depict the actual
traffic network better.

• The graph-theoretic method is first applied to study the equilibrium problem of MUPTS.
• Based on the appropriate adaptive controller and updating laws, MUPTS can restore a

balanced operation.

Other parts of the paper are arranged as follows. The preliminaries regarding notations
and model formulation are given in Section 2. Section 3 introduces the main results about
the equilibrium problem of MUPTS. Section 4 details the numerical examples that show
the effectiveness of the theoretical results. Ultimately, the conclusion is given in Section 5.

2. Preliminaries
2.1. Notations

Unless otherwise stated in this article, let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and
F0 contains all P-null sets). G = (D, E) displays a digraph including a set D = {1, 2, . . . , p}
of nodes and a set E of arcs (r, s) leading from initial node r to terminal node s. Denote
the weight matrix as U = (urs)p×p, where urs is the weight of arc (s, r). urs is positive if
there is an arc from node s to node r in G, and 0 otherwise. W(G) and CG are the product of
the weights on the arcs of G and the directed cycle of G, respectively. Denote the digraph
G with weighted matrix U as (G, U). The Laplacian matrix V of (G, U) is represented
as V = (lrs)p×p, lrs = −urs(s 6= r) , lrr = ∑h 6=r urh. Cb

F0
([−ε, 0];Rn) is the family of all

F0-measurable bounded C([−ε, 0];Rn)-valued random variables. Denote C([−ε, 0];Rn)
as the set of continuous functions Υ : [−ε, 0] → Rn with norm ‖Υ‖ = sup−ε≤ν≤0 |Υ(ν)|.
C2,1(Rn ×R+;R+) stands for the space formed by the nonnegative functions Vı(eı, t) on
Rn ×R+ which are continuously twice differentiable in eı and once in t.

2.2. Model Formulation

In this paper, the P-space method is adopted, with bus stops as network nodes and bus
routes as edges. If there is a direct route between two stops, a directed edge is connected
between the two stops. Based on the concept of drive–response systems, considering
that there are q weights on the connected edges between the ı-th station and -th station.
The weights include passenger flow, departure frequency, congestion level, route length
coefficient, and so on. The operating state of a bus stop under ideal conditions is regarded
as the drive system, whose expression is

ẋı(t) = Γı(xı(t), xı(t− ε), t) +
q

∑
m=1

p

∑
=1

Φ(m)
ı Bmx(t− ε), ı ∈ P, t > 0,

xı(t) = xı,0(t), t ∈ [−ε, 0], (1)
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in which xı = (xı1, xı2, . . . , xın)
T ∈ Rn expresses the state vector of the ı-th bus stops,

xı,0 ∈ Cb
F0
([−ε, 0];Rn). Γı(xı(t), xı(t− ε), t) represents the dynamics of the ı-th bus stops,

Φ(m)
ı denotes the m-th weight of the direct route between the ı-th bus stop and the -th bus

stop. Bm ∈ Rp×p is the inner coupling matrix of bus stops with respect to the m-th weight,
ε represents the time delay of bus operation, P = {1, 2, . . . , p}, Q = {1, 2, . . . , q}.

Consider the influences of weather, road conditions, traffic control, and other stochastic
disturbances on the dynamics of the drive system. By adding an adaptive controller, the ac-
tual operating state of the bus stop is constructed as the corresponding
response system

dyı(t) =

[
Γı(yı(t), yı(t− ε), t) +

q

∑
m=1

p

∑
=1

Φ(m)
ı Bmy(t− ε) + uı(t)

]
dt

+
q

∑
m=1

[
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

]
dW(t), ı ∈ P, t > 0,

yı(t) = yı,0(t), t ∈ [−ε, 0], (2)

where yı = (yı1, yı2, . . . , yın)
T ∈ Rn represents the response vector of the ı-th bus stop,

yı,0 ∈ Cb
F0
([−ε, 0];Rn). uı(t) is an appropriate controller for the ı-th bus stop designed.

∑
q
m=1

[
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

]
denotes the intensity function of

the m-th environmental influence factor for the ı-th bus stop, and W(t) is one-dimensional
Brownian motion.

Assume that the coefficients of the drive system (1) and the response system (2) satisfy
the local Lipschitz condition and the linear growth condition. According to the exis-
tence and uniqueness theorem [21], for any given initial value x0, y0 ∈ Cb

F0
([−ε, 0];Rnp),

the drive system (1) and the response system (2) have a unique solution, which can be

expressed as x(t) =
(

xT
1 (t), xT

2 (t), . . . , xT
p(t)

)T
and y(t) =

(
yT

1 (t), yT
2 (t), . . . , yT

p(t)
)T

, re-
spectively. Define eı(t) = yı(t)− xı(t), eı(t− ε) = yı(t− ε)− xı(t− ε), ı ∈ P. The error
system is characterized by the following:

deı(t) =

[
Γı(yı(t), yı(t− ε), t)− Γı(xı(t), xı(t− ε), t) +

q

∑
m=1

p

∑
=1

Φ(m)
ı Bme(t− ε) + uı(t)

]
dt

+
q

∑
m=1

[
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

]
dW(t), ı ∈ P, t > 0

eı(t) = eı,0(t), t ∈ [−ε, 0]. (3)

Therein, eı,0 ∈ Cb
F0
([−ε, 0];Rn). Therefore, the synchronization of the drive–response

system (1) and (2) is equivalent to the stability of the zero solution of the error system (3).
Define a differential operator L acting on Vı ∈ C2,1(Rn ×R+;R+) associated with

Equation (3) by

LVı(eı, t) =
∂Vı(eı, t)

∂t
+

∂Vı(eı, t)
∂eı

[
Γı(yı(t), yı(t− ε), t)− Γı(xı(t), xı(t− ε), t) +

q

∑
m=1

p

∑
=1

Φ(m)
ı Bme(t− ε) + uı(t)

]

+
1
2

(
q

∑
m=1

[
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

])T(
∂2Vı(eı, t)

∂(eı)2

)

×
(

q

∑
m=1

[
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

])
, (4)

where ∂Vı(eı ,t)
∂eı

=

(
∂Vı(eı ,t)

∂eı1
, ∂Vı(eı ,t)

∂eı2
, . . . , ∂Vı(eı ,t)

∂eın

)
, ∂2Vı(eı ,t)

∂(eı)2 =

(
∂2Vı(eı ,t)

∂eıa∂eıb

)
n×n

.
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Lemma 1 ([22]). Assume that there exist functions V ∈ C2,1(R+ ×Rnp;R+), h̄ ∈ L1(R+;R+)
(L1(R+;R+) is the family of all functions ζ : R+ → R+ such that

∫ ∞
0 ζ(t)dt < ∞) and continuous

functions κ1, κ2 ∈ (Rnp;R+), such that

LV(t, θ, ϑ) ≤ h̄(t)− κ1(θ) + κ2(ϑ), (t, θ, ϑ) ∈ R+ ×Rnp ×Rnp,

κ1(θ) > κ2(θ), ∀θ 6= 0,

lim
‖θ‖→∞

inf
0≤t≤∞

V(t, θ) = ∞.

Then, for every initial value θ0 ∈ Cb
F0
([−ε, 0];Rnp)

lim
t→∞

θ(t; θ0) = 0, a.s.

3. Main Results

This section mainly designs appropriate adaptive controller and updating laws, so
that the drive–response systems can realize synchronization. To interpret it in another way,
the actual running state of the bus stop is synchronized with the ideal running state to
achieve the equilibrium of the urban public transportation system.

First of all, introduce the following definition and hypotheses.

Definition 1 ([23]). Drive–response networks (1) and (2) realize synchronization with probability
one if it holds that

lim
t→∞
|yı(t)− xı(t)| = 0, ı ∈ P, a.s.

Hypothesis 1 ([22]). Assume that Γı is continuous and there exist nonnegative constants φı and
ϕı for each ı ∈ P, such that

|Γı(ŷı, x̂ı, t)− Γı(yı, xı, t, )| ≤ φı(|ŷı − yı|) + ϕı(|x̂ı − xı|), ŷı, x̂ı, yı, xı ∈ Rn, t ∈ R+.

Hypothesis 2 ([22]). There exist nonnegative constants δ
(m)
ı and η

(m)
ı , such that

|Ψ(m)
ı (ȳı, x̄ı, t)−Ψ(m)

ı (yı, xı, t)| ≤ δ
(m)
ı (|ȳı − yı|) + η

(m)
ı (x̄ı − xı), ȳı, x̄ı, yı, xı ∈ Rn, t ∈ R+,

for each ı ∈ P, m ∈ Q.

Consider the following adaptive controller and updating laws

uı(t) = −dı(t)eı(t), (5)

ḋı(t) = γıeT
ı (t)eı(t), (6)

in which γı > 0, ı ∈ P is an arbitrary constant.

Denote
(

Dı
)

p×p as Dı = max1≤m≤q

{
Φ(m)

ı

∣∣∣λmax

(
Bm+(Bm)T

2

)∣∣∣} , ı,  ∈ P.

Theorem 1. Under Hypotheses 1 and 2, assume
(
G,
(

Dı
)

p×p

)
is strongly connected. Then, the

response network (2) and the drive network (1) can realize synchronization with the controller
(5) and updating laws (6).

Proof. First, define the vertex Lyapunov function

Vı(t, eı) =
1
2

eT
ı eı +

1
2γı

(dı(t)− d∗ı )
2, ı ∈ P,

in which d∗ı is a large enough positive constant.
Based on Hypotheses 1 and 2 and inequality (a1 + a2 + . . . + ah)

2 ≤ h
(
a2

1 + a2
2 + . . . + a2

h
)
,

one can obtain
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LVı(t, eı(t)) =eT
ı (t)

[
Γı(yı(t), yı(t− ε), t)− Γı(xı(t), xı(t− ε), t) +

q

∑
m=1

p

∑
=1

Φ(m)
ı Bme(t− ε)

− dı(t)eı(t)
]
+

dı(t)− d∗ı
γı

ḋı(t)

+
1
2

trace

{[ q

∑
m=1

(
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

)]T

×

[ q

∑
m=1

(
Ψ(m)

ı (yı(t), yı(t− ε), t)−Ψ(m)
ı (xı(t), xı(t− ε), t)

)]}

≤φı|eı(t)|2 + ϕı|eı(t)||eı(t− ε)|+
q

∑
m=1

p

∑
=1

Φ(m)
ı eT

ı (t)Bme(t− ε)− dı(t)|eı(t)|2

+ (dı(t)− d∗ı )|eı(t)|2 + q
q

∑
m=1

(
δ
(m)
ı

)2
eT

ı (t)eı(t) + q
q

∑
m=1

(
η
(m)
ı

)2
eT

ı (t− ε)eı(t− ε)

≤φı|eı(t)|2 + ϕı|eı(t)||eı(t− ε)|+
q

∑
m=1

p

∑
=1

Φ(m)
ı eT

ı (t)Bme(t− ε)

− d∗ı |eı(t)|2 + q2δ2
ı |eı(t)|2 + q2η2

ı |eı(t− ε)|2

=
(

φı − d∗ı + q2δ2
ı

)
|eı(t)|2 + ϕı|eı(t)||eı(t− ε)|

+
q

∑
m=1

p

∑
=1

Φ(m)
ı eT

ı (t)Bme(t− ε) + q2η2
ı |eı(t− ε)|2,

in which δı = max1≤m≤q

{
δ
(m)
ı

}
, ηı = max1≤m≤q

{
η
(m)
ı

}
, ı ∈ P.

Define the global Lyapunov function

V(t, e) =
p

∑
ı=1

µıVı(t, eı),

where µı is the cofactor of the ı-th diagonal element of the Laplacian matrix of
(
G,
(

Dı
)

p×p

)
.

It can be calculated as

LV(t, e(t)) ≤
p

∑
ı=1

µı

(
φı − d∗ı + q2δ2

ı

)
|eı(t)|2 +

q

∑
m=1

p

∑
ı=1

p

∑
=1

µıΦ
(m)
ı eT

ı (t)Bme(t− ε)

+
p

∑
ı=1

µı ϕı|eı(t)||eı(t− ε)|+
p

∑
ı=1

µıq2η2
ı |eı(t− ε)|2

≤
p

∑
ı=1

µı

(
φı − d∗ı + q2δ2

ı

)
|eı(t)|2 +

q

∑
m=1

p

∑
ı=1

p

∑
=1

µıDı|eı(t)||e(t− ε)|

+
p

∑
ı=1

µı ϕı

(
|eı(t− ε)|2

2
+
|eı(t)|2

2

)
+

p

∑
ı=1

µıq2η2
ı |eı(t− ε)|2

≤
p

∑
ı=1

µı

(
φı − d∗ı + q2δ2

ı

)
|eı(t)|2 + q

p

∑
ı=1

p

∑
=1

µıDı

(
|eı(t)|2

2
+
|e(t− ε)|2

2

)

+
p

∑
ı=1

µı ϕı

(
|eı(t− ε)|2

2
+
|eı(t)|2

2

)
+

p

∑
ı=1

µıq2η2
ı |eı(t− ε)|2
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=
p

∑
ı=1

µı

(
φı − d∗ı + q2δ2

ı +
ϕı

2

)
|eı(t)|2 + q

p

∑
ı=1

p

∑
=1

µıDı

(
|eı(t)|2

2
+
|eı(t− ε)|2

2

)

+ q
p

∑
ı=1

p

∑
=1

µıDı

(
|e(t− ε)|2

2
− |eı(t− ε)|2

2

)
+

p

∑
ı=1

µı

(
q2η2

ı +
ϕı

2

)
|eı(t− ε)|2

=
p

∑
ı=1

µı

(
φı − d∗ı + q2δ2

ı +
ϕı

2
+

p

∑
=1

q
2

Dı

)
|eı(t)|2

+
p

∑
ı=1

µı

(
p

∑
=1

q
2

Dı + q2η2
ı +

ϕı

2

)
|eı(t− ε)|2

+ q
p

∑
ı=1

p

∑
=1

µiDı

(
|e(t− ε)|2

2
− |eı(t− ε)|2

2

)
,− κ1(e(t)) + κ2(e(t− ε)) + κ3(e(t− ε)),

where κ1(e(t)) , ∑
p
ı=1 µı

(
d∗ı − φı − q2δ2

ı −
ϕı
2 −∑

p
=1

q
2 Dı

)
|eı(t)|2, κ2(e(t− ε))

, ∑
p
ı=1 µı

(
∑

p
=1

q
2 Dı + q2η2

ı +
ϕı
2

)
|eı(t − ε)|2, κ3(e(t− ε)) , q ∑

p
ı=1 ∑

p
=1 µıDı(

|e(t−ε)|2
2 − |eı(t−ε)|2

2

)
.

According to Kirchhoff’s matrix-tree theorem in reference [15],

κ3(e(t− ε)) = q
p

∑
ı=1

p

∑
=1

µıDı

(
|e(t− ε)|2

2
− |eı(t− ε)|2

2

)

= ∑
Q∈Q

W(Q) ∑
($,σ)∈E(CQ)

(
q|eσ(t− ε)|2

2
−

q|e$(t− ε)|2

2

)
= 0.

Then, it obtains

LV(t, e(t)) ≤− κ1(e(t)) + κ2(e(t− ε)).

One can choose d∗ı large enough to satisfy that

d∗ı > φı + q2δ2
ı + ϕı + q

p

∑
=1

Dı + q2η2
ı .

So for any e 6= 0, it holds that

κ1(e) > κ2(e).

In addition, one can obtain

lim
‖e‖→∞

inf
0≤t<∞

V(t, e) = ∞.

Applying Lemma 1, it yields

lim
t→∞

e(t) = 0, a.s.

Therefore, via the adaptive controller (5) and the updating laws (6), the zero solution
of the error system (3) is stable. That is, the drive–response systems (1) and (2) realize
synchronization.

Remark 1. The existence of time delay and stochastic disturbances has caused great resistance
in the operation of the urban public transportation system, which often leads to traffic congestion.
The traffic scheduling can be adjusted according to the real-time situation of the bus station to ensure
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the balanced operation of the urban public transportation system. When the passenger flow of the
bus station is too large or too small, the bus routes passing the bus station, the frequency of bus
departure, and the bus station of some bus routes can be adjusted to achieve a balance of the bus
station. Thus, the urban public transport system can achieve balance. In this case, the bus runs with
the shortest delay and the passengers complete the trip with the shortest waiting time. This can
effectively alleviate traffic congestion and save the travel time of residents, and further ensure the
orderly operation of urban traffic.

Remark 2. In the literature, references [9–13] investigate the synchronization of complex networks
and apply it to a traffic network. It is worth noting that there are some differences between this paper
and the literature. On the one hand, the network models in references [11–13] are with single weight.
In references [9,10], the network model does not consider the impacts of time delay and stochastic
disturbances. In this paper, the network model contains not only multiple weights, but also time
delay and stochastic disturbances, which is more general than references [9–13]. On the other hand,
the synchronization criteria in references [9–13] have been obtained using the Lyapunov method.
Different from these articles, the synchronization criterion in this paper is derived by means of the
graph-theoretic method.

Remark 3. The most obvious feature of the Lyapunov method is that it needs to construct a global
Lyapunov function. In this paper, the global Lyapunov function is constructed indirectly using the
graph-theoretic method. The novelty of this method is to indirectly construct the global Lyapunov
function by combining the Lyapunov functions of vertex systems and Kirchhoff’s matrix-tree
theorem. That is V(t, e) = ∑

p
ı=1 µıVı(t, eı), where µı is the cofactor of the ı-th diagonal element of

the Laplacian matrix of
(
G,
(

Dı
)

p×p

)
. Hence, it avoids the difficulty of directly constructing the

global Lyapunov function. This method is a systematic way of constructing the global Lyapunov
function, which has a wider range of applications.

Remark 4. The adaptive controller (5) is continuous and can be changed to a periodically inter-
mittent controller to reduce control costs. Moreover, the strong connectedness of

(
G,
(

Dı
)

p×p

)
is

needed in Theorem 1. This condition ensures that weights µı(ı ∈ P) in equality
V(t, e) = ∑

p
ı=1 µıVı(t, eı) are positive. In fact, this condition is not necessary. If

(
G,
(

Dı
)

p×p

)
is

not strongly connected, one can collapse each strongly connected component into a vertex, then the
corresponding condensed digraph can be constructed. The synchronization for the networks with
periodically intermittent control and without strong connectedness can be investigated.

Particularly when the effect of stochastic disturbances in the actual traffic networks is
not considered, the response system is as follows:

ẏı(t) = Γı(yı(t), yı(t− ε), t) +
q

∑
m=1

p

∑
=1

Φ(m)
ı Bmy(t− ε) + uı(t), ı ∈ P. (7)

Using a similar argument, one can prove the following corollary.

Corollary 1. Under Hypothesis 1, assume
(
G,
(

Dı
)

P×P

)
is strongly connected. Then, the re-

sponse network (7) and the drive network (1) can realize synchronization with the controller
(5) and updating laws (6).

Remark 5. It is worth mentioning that Corollary 1 is about the synchronization of a multi-weighted
urban public transportation system with time delay. References [9,10] study the synchronization of
a multi-weighted urban public transportation system. In the absence of time delay, references [9,10]
can be seen as a special case of the result of Corollary 1. Compared with references [9,10], the results
in this paper are more general.
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In model (1), the vertex function Γı is nonlinear, so it can also be applied to some
higher-order networks. In the high-order case, Hypothesis 1 is not satisfied. In order to
enhance the control performance of the higher order terms, we can design another different
adaptive controller, which is provided in the following corollary.

Corollary 2. Under Hypothesis 2, assume that
(
G,
(

Dı
)

P×P

)
is strongly connected. Then, the

response network (2) and the drive network (1) can realize synchronization with the following
controller and updating laws (6).

uı(t) = −dı(t)eı(t)− Γı(yı(t), yı(t− ε), t) + Γı(xı(t), xı(t− ε), t). (8)

This proof is similar to the proof of Theorem 1, thus the detailed proof is omitted
for brevity. With this novel designed closed-loop controller, it is possible to obtain the
synchronization results for higher-order complex networks.

4. Numerical Examples

In this section, several numerical examples are presented to demonstrate the validity
of the theoretical results. Consider a stochastic multi-weighted urban public transportation
system with the form of system (1), which consists of 20 vertices and three weights be-
tween vertices (i.e., passenger flow, departure frequency, and congestion degree). Therein,
bus stops and bus routes are selected as vertices and edges of the system, respectively.
Section 4.1 displays the equilibrium problem for a stochastic multi-weighted urban public
transportation system with time delay. The effects of time delay, multiple weights, stochas-
tic disturbances, and adaptive controller on the synchronization of the considered system
are presented in Sections 4.2–4.5.

4.1. Equilibrium Problem for the Stochastic MUPTS

When the model of MUPTS consists of multiple weights, stochastic disturbances, and
time delay, the drive system is expressed as

ẋı(t) = Γı(xı(t), xı(t− ε), t) +
20

∑
=1

Φ(1)
ı B1x(t− ε)

+
20

∑
=1

Φ(2)
ı B2x(t− ε) +

20

∑
=1

Φ(3)
ı B3x(t− ε), ı = 1, 2, . . . , 20, t > 0,

xı(t) = xı,0(t), t ∈ [−ε, 0], (9)

the response system is

dyı(t) =
[

Γı(yı(t), yı(t− ε), t) +
20

∑
=1

Φ(1)
ı B1y(t− ε) +

20

∑
=1

Φ(2)
ı B2y(t− ε)

+
20

∑
=1

Φ(3)
ı B3y(t− ε) + uı(t)

]
dt +

[
Ψ(1)

ı (yı(t), yı(t− ε), t)

+ Ψ(2)
ı (yı(t), yı(t− ε), t) + Ψ(3)

ı (yı(t), yı(t− ε), t)−Ψ(1)
ı (xı(t), xı(t− ε), t)

−Ψ(2)
ı (xı(t), xı(t− ε), t)−Ψ(3)

ı (xı(t), xı(t− ε), t)
]

dW(t), ı = 1, 2, . . . , 20, t > 0,

yı(t) = yı,0(t), t ∈ [−ε, 0]. (10)

Taking the following controller and updating laws

uı(t) = −dı(t)eı(t), ı = 1, 2, . . . , 20. (11)

ḋı(t) = γıeT
ı (t)eı(t), ı = 1, 2, . . . , 20. (12)
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xı(t) and yı(t) are three-dimensional state vectors, respectively, representing the ideal
running state and the actual running state of the ı-th bus stop. Γı(xı(t), xı(t − ε), t) =
Kxı(t) + h1(xı(t)) + h2(xı(t− ε)), Γı(yı(t), yı(t− ε), t) = Kyı(t) + h1(yı(t)) + h2(yı(t− ε)),

h1(xı(t)) =
(
− 1

2 α(m1 −m2)(|xı1(t) + 1| − |xı1(t)− 1|), 0, 0
)T

, h2(xı(t − ε)) =

(0, 0,−βνsin(ϑxı1(t− ε)))T. dı(0) = 0.01, γı = 0.0001. K = (K1, K2, K3)
T, where K1 =

(−α(1 + m2), α, 0), K2 = (1,−1, 1), K3 = (0,−β,−w), α = 10, β = 19.53, w = 0.1636,
m1 = −1.4325, m2 = −0.7831, ν = 0.5, ϑ = 0.2, ε = 0.02. U(m) =

(
Φ(m)

ı

)
20×20

(m = 1, 2, 3)

is the weighted matrix. Since the Chua system is a typical chaotic system with time delay,
this section takes the Chua system as a vertex system. The Chua system has a bounded
attractor, thus Hypothesis 1 is satisfied.

Since only qualitative analysis is done in this paper, Φ(1)
ı may be set as the hourly

passenger flow between the ı-th bus stop and the -th bus stop. When the passenger flow
exceeds 200 people per hour, the directed edge is connected between the two bus stops,
and the value of Φ(1)

ı is 1, otherwise it is 0. Φ(2)
ı represents whether there is congestion

between the ı-th bus stop and the -th bus stop. In the case of congestion, the directed edge
is connected between the two bus stops, and the value of Φ(2)

ı is 1, otherwise it is 0. Φ(3)
ı

denotes the departure frequency between the ı-th bus stop and the -th bus stop. When the
departure frequency is less than every 10 minutes, the directed edge is connected between
the two bus stops, and the value of Φ(3)

ı is 1, otherwise it is 0.
By means of analyzing the urban public transportation system, one can know that

the urban public transportation system conforms to the characteristics of an NW small-

world network [24]. The parameters for
(
G, U(1)

)
are given by H = 3 and j = 0.3,

H = 4 and j = 0.4 for
(
G, U(2)

)
, H = 5 and j = 0.5 for

(
G, U(3)

)
. That is to say,

every node is connected to H neighboring nodes and adds every edge with probability
j. Ψ(1)

ı (x̃ı, ỹı, t) = 0.0005sinx̃ı + 0.0005sinỹı, Ψ(2)
ı (x̃ı, ỹı, t) = 0.0005cosx̃ı + 0.0005cosỹı,

Ψ(3)
ı (x̃ı, ỹı, t) = 0.0005sinx̃ı + 0.0005cosỹı, so Hypothesis 2 is satisfied. The values of the

internal coupling matrices B1, B2, B3 of the bus stop are

B1
12 = B1

13 = B1
21 = B1

23 = B1
31 = B1

32 = 0, B1
11 = 0.001, B1

22 = 0.001, B1
33 = 0.001,

B2
12 = B2

13 = B2
21 = B2

23 = B2
31 = B2

32 = 0, B2
11 = 0.0001, B2

22 = 0.002, B2
33 = 0.0001,

B3
12 = B3

13 = B3
21 = B3

23 = B3
31 = B3

32 = 0, B3
11 = 0.0001, B3

22 = 0.0001, B3
33 = 0.001.

To sum up, all the assumptions in Theorem 1 are satisfied. Thus, the drive-response
systems (9) and (10) realize synchronization via the controller (11) and updating laws (12).

In Figure 1, the subgraph(a) displays the topological structures of the MUPTS with
20 bus stops and three weights are selected. Subgraph(b), (c) and(d) represent the

topological structures of three subsystems, i.e.,
(
G, (Φ(1)

ı )20×20

)
,
(
G, (Φ(2)

ı )20×20

)
, and(

G, (Φ(3)
ı )20×20

)
. Here, Φ(1)

ı , Φ(2)
ı , and Φ(3)

ı describe passenger flow, congestion degree,
and the departure frequency, respectively.

Figure 2 shows a sample path of the drive–response systems (9) and (10) with time
delay ε = 0.02. In order to see the trend of the image more clearly, a group of corresponding
components are selected from each graph. In Figure 2a, the red and blue lines are the first
components of the drive and response systems, respectively. In Figure 2b, the red and
green lines are the second components of the drive and response systems, respectively.
In Figure 2c, the red and pink lines are the third components of the drive and response
systems, respectively. Unless otherwise stated in this article, the lines in the other figures
represent the same meaning. In Figure 2, we observe that the image of the response system
is consistent with the image of the drive system within a certain period of time. It indicates
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that the drive–response systems realize synchronization within a certain time under the
action of the controller and updating laws. That is to say, in the actual bus system, through
the bus scheduling, the actual operation of the bus stop can reach the ideal running state to
achieve balance in a certain period of time. In this case, the time delay of bus operation
and the waiting time of passengers can be minimized, thus ensuring the normal travel of
residents and the balanced operation of the urban public transportation system.

(b) (c) (d)

(a)

Figure 1. Topological structures of the urban public transportation system (a) and its subsystems(
G, (Φ(1)

ı )20×20

)
(b),

(
G, (Φ(2)

ı )20×20

)
(c),

(
G, (Φ(3)

ı )20×20

)
(d).
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Figure 2. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive-response systems (9) and (10) with time delay
ε = 0.02.

Figure 3 provides the synchronization errors of the drive–response systems (9) and
(10). It can be clearly seen from Figure 3 that the sample path of the synchronization errors
eı1(t), eı2(t), and eı3(t) finally approach 0, which further proves that the actual operation of
the bus stop finally reaches the ideal operation state.
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Figure 3. Sample path ofthe first component in subfigure (a), second component in subfigure (b) and
third component in subfigure (c) for the error system eı(t) .

4.2. The Effect of Time Delay for the MUPTS

In this subsection, the model of MUPTS considers two different time delays (ε = 0.012
and ε = 0.003) to explore the effect of time delay on synchronization. Figures 4 and 5 display
the sample path of the drive–response systems (9) and (10) with time delay ε = 0.012 and
ε = 0.003, respectively. Comparing Figure 2 with Figures 4 and 5, the synchronization time
in Figure 2 is greater than t = 2, the synchronization time in Figure 4 is between t = 1 and
t = 2, and the synchronization time in Figure 5 is less than t = 1. That is to say, the time
delay can affect the synchronization performance.
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Figure 4. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive-response systems (9) and (10) with time delay
ε = 0.012.



Fractal Fract. 2023, 7, 767 12 of 17

0 1 2 3 4 5
t

-0.5

0

0.5

1

1.5

2

2.5

3

b

0 0.5 1 1.5 2 2.5 3 3.5 4
t

-6

-4

-2

0

2

4

c

0 1 2 3 4 5
t

-0.5

0

0.5

1

-0.5

0

(t)

0 5

0

t)t

0

((tx82

0

5

000

(t)(t)ty
82

0 1 2 3 4t

0

2

4

2

4

18,3(t)

2

4

1818,333(x

(t)(t)ty
73

0

2

4

1yyy
,

t
x

0

2

yy 1yyy
,

t

1.

2

2.

0

  =
1

,2
,.

..
,2

yyyyyy  2
,
yyy 2yyyy

,
t

xx
 

t
xxx

2
t

0

0

0

0

yy 2
,

x
t

0.

0.

0.

-

2
,

x
t

x

0.

0.

0.

-

y 2
,

-

x
t

0

2

40

  =
1

,2
,.

..
,2

y

-2

yy  3
, -

yy 3yy
,

t
x -x

 
t

--xxxx
3

t

0

yy 3y
,

x
t

x

0

2

4

6

-

yy 3y
,

x
t

x

0

2

4

6

-

yy 3y
,

x
t

y 1yy
,

t
x

4

0 1 2 3 4 5
t

-3

-2

-1

0

1

2

3

a

0 1 2 3 4 5
t

-2

0

2

4

(t)(t)ty
71

-2
x (t)51

0

  =
1

,2
,.

..
,2

yyyyy  1
t

,
yyyy 1yyyyy

,
t

x
t

xxx
 1

Figure 5. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive-response systems (9) and (10) with time delay
ε = 0.003.

4.3. The Effect of Multiple Weights for the MUPTS

In this subsection, in order to show the effect of multiple weights on synchronization,
the synchronization of three models with single weights are considered. Therein, the single
weight is, respectively, Φ(1)

ı , Φ(2)
ı and Φ(3)

ı . Figures 6–8 show the sample path of the
drive–response systems (9) and (10) with three different single weights. As shown in
Figures 6–8, the drive–response systems (9) and (10) with the first weight can realize
synchronization, while the drive–response systems (9) and (10) with the second and third
weights cannot. However, when the model considers the three weights at the same time,
the drive-response systems (9) and (10) can realize synchronization, which can be clearly
seen from Figure 2. It indicates that the consideration of multiple weights can lead to the
synchronization of the asynchronous model, so it makes sense to consider multiple weights
in the model.

4.4. The Effect of Stochastic Disturbances for the MUPTS

In this subsection, the model of MUPTS does not consider the effect of stochastic
disturbances so as to verify the Corollary 1. We still view network (9) as the drive system,
and the response system is described as follows:

ẏı(t) = Γı(yı(t), yı(t− ε), t) +
20

∑
=1

Φ(1)
ı B1y(t− ε) +

20

∑
=1

Φ(2)
ı B2y(t− ε)

+
20

∑
=1

Φ(3)
ı B3y(t− ε) + uı(t), ı = 1, 2, . . . , 20, t > 0,

yı(t) = yı,0(t), t ∈ [−ε, 0]. (13)

Without a loss of generality, the initial values, functions, and parameters are the same
as Section 4.1. Hence, it can be concluded from Corollary 1 that drive–response systems
(9) and (13) realize synchronization. Figure 9 shows the sample path of the drive–response
systems (9) and (13). By simple observing Figure 9, it can be obtained that the drive–
response systems (9) and (13) realize synchronization, which proves the correctness of
Corollary 1. Therefore, the MUPTS restores a balanced operation.
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Figure 6. The trajectories of the first component (a), second component (b) and third component
(c) for the drive-response systems (9) and (10) with the first weight.
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Figure 7. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive–response systems (9) and (10) with the
second weight.
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Figure 8. The trajectories of the first component in subfigure (a), second component in subfigure (b)
and third component in subfigure (c) for the drive-response systems (9) and (10) with the third weight.

0 0.5 1 1.5 2
t

-3

-2

-1

0

1

2

3

0 1.5 2
-3

-2

-1

0
(t)(tx21

0.5 1
t

15,1(t)
2

1515,111(y

a

0 0.5 1 1.5 2
t

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2t

-0.4

-0.2

0

0.2

0.4

16,216,222(t)x

(t)(t)ty
52

b

0 0.5 1 1.5 2
t

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2t

0

2

4

(t)t)t((tx73

(t)(t)ty
83

c

0

1

2

3

0

  =
1

,2
,.

..
,2

y

-

yyyy  1
t

,
yyyy 1yyyy

,
t

x
t

xxxx
 1

-0.5

0

0.5

0

  =
1

,2
,.

..
,2

y

0.

yyyyyyyyy  2
,
yyyyyy 2yyyyyyyy

,,
t

xx
 

tt
xxx

2
t

0

1

2

3

4

0

  =
1

,2
,.

..
,2

yyy  3
,
yy 3yy

,
t

xx
 

t
xx

3
t

Figure 9. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive-response systems (9) and (13) with time delay
ε = 0.02.
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Compare Figures 2 and 9, the synchronization time in Section 4.1 is longer than
Section 4.4. In detail, the synchronization time in Figure 2 is greater than t = 2 and the
synchronization time in Figure 9 is less than t = 1. It indicates that stochastic disturbances
can impede the operation of MUPTS, which adversely affect it and extend the restoration
of the balanced operation of the actual transportation system.

4.5. The Effect of Adaptive Controller for MUPTS

Note that we still view network (9) as the drive system in this part; the response
system without a controller is denoted by

dyı(t) =
[

Γı(yı(t), yı(t− ε), t) +
20

∑
=1

Φ(1)
ı B1y(t− ε) +

20

∑
=1

Φ(2)
ı B2y(t− ε)

+
20

∑
=1

Φ(3)
ı B3y(t− ε)

]
dt +

[
Ψ(1)

ı (yı(t), yı(t− ε), t)

+ Ψ(2)
ı (yı(t), yı(t− ε), t) + Ψ(3)

ı (yı(t), yı(t− ε), t)−Ψ(1)
ı (xı(t), xı(t− ε), t)

−Ψ(2)
ı (xı(t), xı(t− ε), t)−Ψ(3)

ı (xı(t), xı(t− ε), t)
]

dW(t), ı = 1, 2, . . . , 20, t > 0,

yı(t) = yı,0(t), t ∈ [−ε, 0]. (14)

Likewise, the initial values, functions, and parameters are the same as Section 4.1.
Figure 10 shows the sample path of the drive–response systems (9) and (14).

As shown in Figure 10, the image of the response system is not consistent with the
image of the drive system. In other words, without a controller, the drive–response systems
(9) and (14) cannot realize synchronization. This means that MUPTS needs bus scheduling
to restore a balanced operation. From the numerical simulation, the effect of bus scheduling
on MUPTS can be clearly seen.
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Figure 10. The trajectories of the first component in subfigure (a), second component in subfigure
(b) and third component in subfigure (c) for the drive-response systems (9) and (14).
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5. Conclusions

This paper studies the equilibrium problem of a stochastic multi-weighted urban
public transportation system with time delay. A mathematical model of the ideal and actual
states of bus stop operation is constructed with bus stops as vertices and bus routes as
edges. The model considers multiple weights, stochastic disturbances, and time delay
at the same time, which is more consistent with the actual situation of an urban traffic
network. In addition, the method adopted in this paper is the graph-theoretic method. So
both the model and method in this paper are novel. Combined with the graph-theoretic
method, the drive–response systems realize synchronization under appropriate controller
and updating laws. In other words, the bus stop can still operate in the ideal situation
when considering the effects of time delay and stochastic disturbances such as weather and
road conditions. As a result, the time delay of the bus operation and the waiting time of
passengers at bus stops are minimized, thereby bus stops run in a balanced manner. Thus,
the transportation system of the whole city is balanced. Finally, numerical examples are
used to verify the accuracy and validity of the theoretical results. Therein, the effects of
time delay, multiple weights, stochastic disturbances, and an adaptive controller of the
synchronization of the considered system are clearly presented. The controller used in this
paper is continuous. In order to reduce the cost of control, we will utilize an intermittent
controller to study the equilibrium problem of the urban public transportation system in
the future.

Author Contributions: Conceptualization, H.Y. and C.Z.; Methodology, H.Y. and C.Z.; Validation,
R.L. and H.C.; Formal analysis, H.C.; Investigation, R.L.; Writing—original draft, H.Y. and C.Z.;
Writing—review & editing, C.Z., R.L. and H.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Sichuan Province (No.
2022NSFSC1794) and the Fundamental Research Funds for the Central Universities
(No. 2682023ZTPY018).

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, K.; Hao, X.; Liu, J.; Liu, P.; Shen, F. Online reconstruction of complex networks from streaming data. IEEE Trans. Cybern. 2022,

52, 5136–5147. [CrossRef] [PubMed]
2. Vadivel, R.; Hammachukiattikul, P.; Vinoth, S.; Chaisena, K.; Gunasekaran, N. An extended dissipative analysis of fractional-order

fuzzy networked control systems. Fractal Fract. 2022, 6, 591. [CrossRef]
3. Wang, J.; Wang, L.; Wu, H. Synchronization for complex networks with multiple state or delayed state couplings under recoverable

attacks. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 38–48. [CrossRef]
4. Zhang, L.; Wen, H.; Lu, J.; Lei, D.; Li, S. Comparing the time-varying topology-based dynamics between large-scale bus transit

and urban rail transit networks from a mesoscopic perspective. Nonlinear Dyn. 2021, 106, 657–680. [CrossRef]
5. Pu, H.; Li, Y.; Ma, C. Topology analysis of Lanzhou public transport network based on double-layer complex network theory.

Phys. A 2022, 592, 126694. [CrossRef]
6. Meng, Y.; Tian, X.; Li, Z.; Zhou, W.; Zhou, Z.; Zhong, M. Comparison analysis on complex topological network models of urban

rail transit: A case study of Shenzhen metro in China. Phys. A 2020, 559, 125031. [CrossRef]
7. Yan, L.; Hu, W.; Hu, S. SALA: A self-adaptive learning algorithm-towards efficient dynamic route guidance in urban traffic

networks. Neural Process. Lett. 2019, 50, 77–101. [CrossRef]
8. Shin, Y.; Yoon, Y. Incorporating dynamicity of transportation network with multi-weight traffic graph convolutional network for

traffic forecasting. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2082–2092. [CrossRef]
9. An, X.; Zhang, L.; Li, Y.; Zhang, J. Synchronization analysis of complex networks with multi-weights and its application in public

traffic network. Phys. A 2014, 412, 149–156. [CrossRef]
10. Du, W.; Li, Y.; Zhang, J.; Yu, J. Synchronisation between two different networks with multi-weights and its application in public

traffic network. Int. J. Syst. Sci. 2019, 50, 534–545. [CrossRef]
11. Pang, M.; Yang, M. Coordinated control of urban expressway integrating adjacent signalized intersections based on pinning

synchronization of complex networks. Transp. Res. Pt. C Emerg. Technol. 2020, 116, 102645. [CrossRef]

http://doi.org/10.1109/TCYB.2020.3027642
http://www.ncbi.nlm.nih.gov/pubmed/33147156
http://dx.doi.org/10.1109/TSMC.2022.3164792
http://dx.doi.org/10.1007/s11071-021-06810-8
http://dx.doi.org/10.1016/j.physa.2021.126694
http://dx.doi.org/10.1016/j.physa.2020.125031
http://dx.doi.org/10.1007/s11063-018-9870-0
http://dx.doi.org/10.1109/TITS.2020.3031331
http://dx.doi.org/10.1016/j.physa.2014.06.033
http://dx.doi.org/10.1080/00207721.2018.1563223
http://dx.doi.org/10.1016/j.trc.2020.102645
http://dx.doi.org/10.1155/2016/8920764


Fractal Fract. 2023, 7, 767 17 of 17

12. Du, W.; Zhang, J.; An, X.; Qin, S.; Yu, J. Outer synchronization between two coupled complex networks and its application in
public traffic supernetwork. Discrete Dyn. Nat. Soc. 2016, 2016 Pt 2, 8920764. [CrossRef]

13. Wang, D.; Che, W.; Yu, H.; Li, J. Adaptive pinning synchronization of complex networks with negative weights and its application
in traffic road network. Int. J. Control Autom. Syst. 2018, 16, 782–790. [CrossRef]

14. Luo, C.; Huang, C.; Cao, J.; Lu, J.; Huang, W.; Guo, J. Short-term traffic flow prediction based on least square support vector
machine with hybrid optimization algorithm. Neural Process. Lett. 2019, 50, 2305–2322. [CrossRef]

15. Li, M.Y.; Shuai, Z. Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 2010, 248,
1–20. [CrossRef]

16. Yao, X.; Xia, D.; Zhang, C. Topology identification of multi-weighted complex networks based on adaptive synchronization:
A graph-theoretic approach. Math. Meth. Appl. Sci. 2021, 44, 1570–1584. [CrossRef]

17. Chen, H.; Zhang, C.; Xu, Q.; Feng, Y. Graph-theoretic method on topology identification of stochastic multi-weighted complex
networks with time-varying delayed coupling based on adaptive synchronization. Neural Process. Lett. 2022, 54, 181–205.
[CrossRef]

18. Rostami, M.; Forouzandeh, S.; Berahmand, K.; Soltani, M.; Shahsavari, M.; Oussalah, M. Gene selection for microarray data
classification via multi-objective graph theoretic-based method. Artif. Intell. Med. 2022, 123, 102228. [CrossRef]

19. Wu, Y.; Shen, B.; Ahn, C.; Li, W. Intermittent dynamic event-triggered control for synchronization of stochastic complex networks.
IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2639–2650. [CrossRef]

20. Singh, D.; Nigam, S.P.; Agrawal, V.P.; Kumar, M. Modelling and analysis of urban traffic noise system using algebraic graph
theoretic approach. Acoust. Aust. 2016, 44, 249–261.

21. Mao, X. Stochastic Differential Equations with Markovian Switching; Imperial College Press: London, UK, 2006. [CrossRef]
22. Mao, X. A note on the LaSalle-type theorems for stochastic differential delay equations. Automatica 2002, 268, 125–142. [CrossRef]
23. Wang, J.; Wu, H. Synchronization criteria for impulsive complex dynamical networks with time-varying delay. Nonlinear Dyn.

2012, 70, 13–24. [CrossRef]
24. Xu, Z.; Sui, D. Small-world characteristics on transportation networks: A perspective from network autocorrelation. J. Geogr. Syst.

2007, 9, 189–205.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12555-017-0161-8
http://dx.doi.org/10.1007/s11063-019-09994-8
http://dx.doi.org/10.1016/j.jde.2009.09.003
http://dx.doi.org/10.1002/mma.6857
http://dx.doi.org/10.1007/s11063-021-10625-4
http://dx.doi.org/10.1016/j.artmed.2021.102228
http://dx.doi.org/10.1109/TCSI.2021.3071034
http://dx.doi.org/10.1007/s40857-016-0058-3
http://dx.doi.org/10.1006/jmaa.2001.7803
http://dx.doi.org/10.1007/s11071-012-0427-x
http://dx.doi.org/10.1007/s10109-007-0045-1

	Introduction 
	Preliminaries
	Notations
	Model Formulation

	Main Results
	Numerical Examples
	Equilibrium Problem for the Stochastic MUPTS 
	The Effect of Time Delay for the MUPTS
	The Effect of Multiple Weights for the MUPTS
	The Effect of Stochastic Disturbances for the MUPTS
	The Effect of Adaptive Controller for MUPTS

	Conclusions
	References

