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Abstract: The majority of fractals’ dynamical behavior is determined by escape criteria, which utilize
various iterative procedures. In the context of the Julia and Mandelbrot sets, the concept of “escape”
is a fundamental principle used to determine whether a point in the complex plane belongs to the
set or not. In this article, the fractals of higher importance, i.e., Julia sets and Mandelbrot sets, are
visualized using the Picard–Thakur iterative procedure (as one of iterative methods) for the complex
sine Tc(z) = asin(zr) + bz + c and complex exponential Tc(z) = aezr

+ bz + c functions. In order to
obtain the fixed point of a complex-valued sine and exponential function, our concern is to use the
fewest number of iterations possible. Using MATHEMATICA 13.0, some enticing and intriguing
fractals are generated, and their behavior is then illustrated using graphical examples; this is achieved
depending on the iteration parameters, the parameters ‘a’ and ‘b’, and the parameters involved in the
series expansion of the sine and exponential functions.

Keywords: algorithms; fractals; Julia set; Mandelbrot set; Picard–Thakur iteration; escape criterion;
iterative methods

MSC: 28A80; 37F10; 37C25

1. Introduction

Fractals are mathematical patterns that repeat themselves at different scales, creating
intricate and often beautiful shapes. They are found in many natural phenomena, such as
the branching of trees, the formation of snowflakes, and the patterns on a fern leaf. Fractals
can be generated using iterative schemes (or iterative methods), where a simple equation
or set of rules is repeated many times over to create complex and self-similar patterns.
The most famous example of such a scheme is the Mandelbrot set [1], which is generated
by iterating the function z = z2 + c, where c is a complex constant. Other fractals can be
generated using different iterative methods. For example, the Julia set [2] is generated by
iterating the equation z = z2 + c, where c ∈ C and z is initialized with a different value
for each point on the complex plane. The resulting plot shows which points on the plane
generate fractal patterns and which do not. In fractals, fixed point theory is a key idea, as it
provides a way through which to understand the iterative schemes that generate fractals. In
the context of fractals, the fixed points of an iterative scheme are the points in the fractal that
remain unchanged no matter how many times the scheme is iterated. These fixed points are
often called attractors as they “attract” nearby points in the fractal toward themselves. In
order to color and visualize fractals, the idea of “escape” is crucial. Often, a color is assigned
to a point that escapes to infinity quickly, but other colors are assigned to other points that
do not escape or escape more slowly. The Mandelbrot set’s rich and exquisite patterns can
be seen in the images that the escape time algorithm produces. The escape time algorithm
is affected by the maximum number of iterations required to determine whether or not
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the orbit sequence approaches infinity. This approach provides a helpful mechanism that
is used to illustrate some dynamic system characteristics when using an iterative process.
Initially, the Mandelbrot and Julia sets were obtained using a straightforward Picard
iterative technique for the polynomial Tc(z) = z2 + c, c ∈ C. By utilizing several iterative
techniques as the Mann [3–5], Ishikawa [6], Noor [7], Picard–Ishikawa [8], Jungck–CR [9]
iterations, certain fractals of a general character have also been constructed. Due to the
fact that iterative procedures are known to result in variations in form, size, color, and
other aspects for the same function, other researchers [10–14] have later employed various
iterative techniques (or iterative methods) to generate variations of these sets, as well as
sought to analyze their dynamics and pattern for various polynomials.

The Julia and Mandelbrot sets are typically associated with complex quadratic polyno-
mial iteration. However, comparable approaches can be used to investigate the behavior
of complex transcendental functions. Romera et al. [15] employed the Picard iterative
technique to study complex families, whereas Prasad et al. [16] adopted the Ishikawa
iterative scheme to obtain identical outcomes. Ref. [17] investigated the dynamics of a
new generalized entire transcendental function using Mann iteration. Qi et al. [18] used
different iterations to illustrate certain fixed point results for a sine function. In [19], com-
plex polynomials involving sine and cosine functions via the Picard–Mann orbit were
calculated. Ref. [20] used a four-step iteration with s-convexity to demonstrate the Julia and
Mandelbrot sets of complex cosine functions. Tassaddiq et al. [21] used DK iteration to pro-
duce the Julia and Mandelbrot sets with complex sine Tc(z) = sin(zr) + c and exponential
functions Tc(z) = ezr

+ c. Tanveer et al. [22] utilized the Mann and Picard–Mann iterations
for the function zp + logct to study the Mandelbrot set. In this research, the Picard–Thakur
iterative scheme was used to generate fractals using complex sine Tc(z) = asin(zr) + bz + c
and complex exponential functions Tc(z) = aezr

+ bz + c. It is worth mentioning that the
Julia and Mandelbrot sets associated with complex transcendental functions can display
beautiful and intricate fractal patterns that are similar to the conventional Julia and Mandel-
brot sets. Exploring these sets can provide beautiful visual representations of mathematical
concepts, as well as insights on the behavior of complex transcendental functions.

As the function Tc(z) contains a particular type of sine and exponential functions, all of
the fractals generated in this study were exceedingly novel, appealing, and pleasant. While
other iterative techniques (or iterative methods) like Mann [17], Picard–Mann [19], DK [21],
etc., require more iterations, the Picard–Thakur orbit only needs 10 iterations for a decent
approximation of fractals. In [23], the author introduced the concept of the embedding of
memory in complex maps and fractal generation, which typically refers to the way in which
previous iterations are stored and influence subsequent iterations. Embedding memory
can also involve modeling the fractal generation process as a dynamical system.

The fractals generated in this work provide a visual representation of how complex
sine and exponential functions behave under iteration, which can be valuable for under-
standing their dynamics. Fractals can also be used as a basis for creating digital art, antenna
design [24], image compression [25], image encryption [26], and even music
composition [27].

The rest of the article is structured as follows. In Section 2, several key definitions
of the Mandelbrot and Julia sets, as well as the proposed iteration, are provided. In the
generation of fractals for complex sine and exponential functions, Section 3 offers some
fixed point results. In Section 4, using suggested algorithms, we discuss how the Julia and
Mandelbrot sets behave with various parameters. In Section 5, we draw the conclusions of
this article.

2. Preliminaries

Definition 1 (The Picard orbit [28]). Consider Y to be a non-empty set and h : Y→ Y. Picard’s
orbit for any initial point z0 ∈ Y can be defined as the set of all iterates of z0, i.e.,

O(h, z0) = {zn : zn = h(zn−1), n = 1, 2, 3, . . . }.
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Definition 2 (The filled Julia set [28]). For the function Tc(z) = zr + c, the filled in Julia set is
defined as

K(Tc) = {z ∈ C : Ti
c(z) does not approach to ∞}

where Ti
c(z) is the i-th iterate of function Tc, and the Julia set for polynomial Tc(z) = zr + c is the

boundary of K(Tc), that is,
J(Tc) = ∂K(Tc).

Definition 3 (The Mandelbrot set [28]). The Mandelbrot set M is made up of all the parameter
values c ∈ C for which the filled in Julia set of Tc is connected, i.e.,

M = {c ∈ C : K(Tc(0)) is connected}.

Equivalently,
M = {c ∈ C : Ti

c(0) 6→ ∞ as i → ∞}.

Definition 4 (The Picard–Thakur orbit [29]). Let K stand as a subset of complex numbers, and
Tc : K→ K is a mapping. For the initial point z0 ∈ K, the Picard–Thakur orbit is defined as

zn+1 = Tc(un),
un = (1− α1) Tc(wn) + α1Tc(vn),
vn = (1− β1) wn + β1Tc(wn),
wn = (1− γ1) zn + γ1Tc(zn),

(1)

where α1, β1, and γ1 ∈ (0, 1). For simplicity, we take z0 = z, u0 = u, v0 = v, and w0 = w. The
above sequence of iterates given by Equation (1) is known as the Picard–Thakur orbit, which can be
written as PTO(Tc, z0, α1, β1, γ1).

3. Main Results

In this section, we prove the general escape criterion for transcendental complex
functions, Tc(z) = asin(zr) + bz + c and Tc(z) = aezr

+ bz + c where r ≥ 2, c ∈ C.

3.1. Escape Criterion for Tc(z) = asin(zr) + bz + c

Since,

|sin(zr)| =
∣∣∣ ∞

∑
m=0

(−1)mzr(2m+1)

(2m + 1)!

∣∣∣
≥ |zr|

∣∣∣ ∞

∑
m=1

(−1)mz2mr

(2m + 1)!

∣∣∣
≥ |zr||τ1|

where |τ1| ∈ (0, 1] and |τ1| ≤
∣∣∣ ∑∞

m=1
(−1)mz2mr

(2m+1)!

∣∣∣.
Similarly,

|sin(wr)| ≥ |wr||τ2|, where |τ2| ∈ (0, 1] and |τ2| ≤
∣∣∣ ∑∞

m=1
(−1)mw2mr

(2m+1)!

∣∣∣,
|sin(vr)| ≥ |vr||τ3|, where |τ3| ∈ (0, 1] and |τ3| ≤

∣∣∣ ∑∞
m=1

(−1)mv2mr

(2m+1)!

∣∣∣,
|sin(ur)| ≥ |ur||τ4|, where |τ4| ∈ (0, 1] and |τ4| ≤

∣∣∣ ∑∞
m=1

(−1)mu2mr

(2m+1)!

∣∣∣.
Theorem 1. Let Tc(z) = asin(zr) + bz+ c be a function. Consider |z| ≥ |c| > max

{( 2+|b|
γ1|a||τ1|

) 1
r−1 ,( 2+|b|

β1|a||τ2|
) 1

r−1 ,
( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1

}
, where 0 < α1, β1, γ1 < 1, and c ∈ C. Define
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zn+1 = Tc(un),
un = (1− α1) Tc(wn) + α1Tc(vn),
vn = (1− β1) wn + β1Tc(wn),
wn = (1− γ1) zn + γ1Tc(zn),

(2)

then |zn| → ∞ as n→ ∞.

Proof. For Tc(z) = asin(zr) + bz + c and n = 0,

|w| = |(1− γ1) z + γ1Tc(z)|
= |(1− γ1) z + γ1(asin(zr) + bz + c)|
≥ |γ1(asin(zr) + bz) + (1− γ1)z| − |γ1c|
≥ γ1|a||sin(zr)| − γ1|b||z| − |z|+ γ1|z| − γ1|c|.

Now, by using |z| ≥ |c|, we have

|w| ≥ γ1|a||zr||τ1| − γ1|b||z| − |z|
≥ γ1|a||zr||τ1| − |b||z| − |z|
= |z|

(
γ1|a||zr−1||τ1| − |b| − 1

)
.

Since |z| >
( 2+|b|

γ1|a||τ1|
) 1

r−1 implies γ1|a||zr−1||τ1| > 2 + |b|, so

γ1|a||zr−1||τ1| − |b| − 1 > 1.

Therefore,

|w| > |z|. (3)

Now, in the second step of (2), we have

|v| = |(1− β1) w + β1Tc(w)|
= |(1− β1) w + β1(asin(wr) + bw + c)|
≥ |β1(asin(wr) + bw) + (1− β1)w| − |β1c|
≥ |β1(asin(wr) + bw)| − (1− β1)|w| − |β1c|
≥ β1|a||wr||τ2| − β1|b||w| − |w|+ β1|w| − β1|c|.

By using (3), we obtain

|v| ≥ β1|a||zr||τ2| − β1|b||z| − |z|
≥ β1|a||zr||τ2| − |b||z| − |z|
= |z|

(
β1|a||zr−1||τ2| − |b| − 1

)
.

Since |z| >
( 2+|b|

β1|a||τ2|
) 1

r−1 implies β1|a||zr−1||τ2| > 2 + |b|, so

β1|a||zr−1||τ2| − |b| − 1 > 1.

Hence,
|v| > |z|. (4)

In the third step of (2), we have
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|u| = |(1− α1) Tc(w) + α1Tc(v)|
= |(1− α1) (asin(wr) + bw + c) + α1(asin(vr) + bv + c)|
≥ α1|asin(vr) + bv| − α1|c| − (1− α1)|asin(wr) + bw| − (1− α1)|c|
≥ α1|a||sin(vr)| − α1|b||v| − α1|c| − (1− α1)|a||sin(wr)| − (1− α1)|b||w| − (1− α1)|c|
≥ α1|a||sin(vr)| − α1|b||v| − α1|c| − |a||sin(wr)|+ α1|a||sin(wr)| − |b||w|+ α1|b||w| − |c|+ α1|c|.

By neglecting α1|a||sin(wr)| and using Equations (3) and (4) and |z| ≥ |c|, we obtain

|u| ≥ α1|a||zr||τ3| − α1|b||z| − α1|z| − |a||zr||τ2| − |b||z|+ α1|b||z| − |z|+ α1|z|
= α1|a||zr||τ3| − |a||zr||τ2| − |b||z| − |z|
= |z|(α1|a||zr−1||τ3| − |a||zr−1||τ2| − |b| − 1).

Since |z| >
( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 implies |zr−1||a|(α1|τ3| − |τ2|) > 2 + |b|, so

α1|a||zr−1||τ3| − |a||zr−1||τ2| − |b| − 1 > 1.

Thus,
|u| > |z|.

Now in the last step, for zn+1 = Tc(un), we have

|z1| = |Tc(u)|
= |asin(ur) + bu + c|
≥ |asin(ur) + bu| − |c|
≥ |a||ur||τ4| − |b||u| − |z|
≥ |a||zr||τ4| − |b||z| − |z|
≥ |z|(|a||zr−1||τ4| − |b| − 1).

When applying similar arguments repeatedly, we obtain

|z2| ≥ |z|(|a||zr−1||τ4| − |b| − 1)2

|z3| ≥ |z|(|a||zr−1||τ4| − |b| − 1)3

.

.

.

|zn| ≥ |z|(|a||zr−1||τ4| − |b| − 1)n.

Since |z| >
( 2+|b|
|a||τ4|

) 1
r−1 implies |a||z|r−1|τ4| > 2 + |b| and therefore

|a||zr−1||τ4| − |b| − 1 > 1, hence we have |zn| → ∞ as n→ ∞.

Corollary 1. Assume that |zj| > max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,( 2+|b|

|a||τ4|
) 1

r−1
}

. Then, |zj+1| ≥ (1 + λ1)
k|zj| and |zj+1| → ∞ as k→ ∞.

3.2. Escape Criterion for Tc(z) = aezr
+ bz + c

For r ≥ 2 and c ∈ C, the series expansion for the exponential function is as follows:



Fractal Fract. 2023, 7, 768 6 of 17

|ezr | =
∣∣∣1 + zr +

z2r

2!
+

z3r

3!
+

z4r

4!
+ . . .

∣∣∣
>

∣∣∣zr +
z2r

2!
+

z3r

3!
+

z4r

4!
+ . . .

∣∣∣
= |zr|

∣∣∣1 + zr

2!
+

z2r

3!
+

z3r

4!
+ . . .

∣∣∣
> |zr||τ1|,

where |τ1| ∈ (0, 1], so that |τ1| <
∣∣∣1 + zr

2! +
z2r

3! + z3r

4! + . . .
∣∣∣.

Similarly,

|ewr | > |wr||τ2|, where |τ2| ∈ (0, 1], so that |τ2| <
∣∣∣1 + wr

2! +
w2r

3! + w3r

4! + . . .
∣∣∣,

|evr | > |vr||τ3|, where |τ3| ∈ (0, 1], so that |τ3| <
∣∣∣1 + vr

2! +
v2r

3! + v3r

4! + . . .
∣∣∣,

|eur | > |ur||τ4|, where |τ4| ∈ (0, 1], so that |τ4| <
∣∣∣1 + ur

2! +
u2r

3! + u3r

4! + . . .
∣∣∣.

Theorem 2. Let Tc(z) = aezr
+ bz + c be a function. Consider

|z| ≥ |c| > max
{( 2+|b|

γ1|a||τ1|
) 1

r−1 ,
( 2+|b|

β1|a||τ2|
) 1

r−1 ,
( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1

}
,

where 0 < α1, β1, γ1 < 1, and c ∈ C. Define

zn+1 = Tc(un),
un = (1− α1) Tc(wn) + α1Tc(vn),
vn = (1− β1) wn + β1Tc(wn),
wn = (1− γ1) zn + γ1Tc(zn),

(5)

then |zn| → ∞ as n→ ∞.

Proof. For Tc(z) = aezr
+ bz + c and n = 0, we have

|w| = |(1− γ1) z + γ1Tc(z)|
= |(1− γ1) z + γ1(aezr

+ bz + c)|
≥ |γ1(aezr

+ bz) + (1− γ1)z| − |γ1c|
≥ γ1|a||ezr | − γ1|b||z| − |z|+ γ1|z| − γ1|c|.

By using |z| ≥ |c|, we have

|w| ≥ γ1|a||zr||τ1| − γ1|b||z| − |z|
≥ γ1|a||zr||τ1| − |b||z| − |z|
= |z|

(
γ1|a||zr−1||τ1| − |b| − 1

)
.

Since |z| >
( 2+|b|

γ1|a||τ1|
) 1

r−1 implies γ1|a||zr−1||τ1| > 2 + |b|, we obtain

γ1|a||zr−1||τ1| − |b| − 1 > 1.

Therefore,
|w| > |z|. (6)

Similarly, in the second step of (5), we have
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|v| = |(1− β1) w + β1Tc(w)|
= |(1− β1) w + β1(aewr

+ bw + c)|
≥ |β1(aewr

+ bw) + (1− β1)w| − |β1c|
≥ |β1(aewr

+ bw)| − (1− β1)|w| − |β1c|
≥ β1|a||wr||τ2| − β1|b||w| − |w|+ β1|w| − β1|z|.

By using (6), we obtain

|v| ≥ β1|a||zr||τ2| − β1|b||z| − |z|
≥ β1|a||zr||τ2| − |b||z| − |z|
= |z|

(
β1|a||zr−1||τ2| − |b| − 1

)
.

Since |z| >
( 2+|b|

β1|a||τ2|
) 1

r−1 implies β1|a||zr−1||τ2| > 2 + |b| so

β1|a||zr−1||τ2| − |b| − 1 > 1.

Therefore,
|v| > |z|. (7)

Similarly, in the third step of (5), we obtain

|u| = |(1− α1) Tc(w) + α1Tc(v)|
= |(1− α1) (aewr

+ bw + c) + α1(aevr
+ bv + c)|

≥ α1|aevr
+ bv| − α1|c| − (1− α1)|aewr

+ bw| − (1− α1)|c|
≥ α1|a||evr | − α1|b||v| − α1|c| − (1− α1)|a||aewr | − (1− α1)|b||w| − (1− α1)|c|
≥ α1|a||evr | − α1|b||v| − α1|c| − |a||ewr |+ α1|a||aewr | − |b||w|+ α1|b||w| − |c|+ α1|c|.

By neglecting α1|a||aewr |, and by using Equation (7) and |z| ≥ |c|, we obtain

|u| ≥ α1|a||zr||τ3| − α1|b||z| − α1|z| − |a||zr||τ2| − |b||z|+ α1|b||z| − |z|+ α1|z|
= α1|a||zr||τ3| − |a||zr||τ2| − |b||z| − |z|
= |z|(α1|a||zr−1||τ3| − |a||zr−1||τ2| − |b| − 1).

Since |z| >
( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 implies |zr−1||a|(α1|τ3| − |τ2|) > 2 + |b|, we obtain

α1|a||zr−1||τ3| − |a||zr−1||τ2| − |b| − 1 > 1.

As such, we have
|u| > |z|. (8)

Now, in the final step for zn+1 = Tc(un) and n = 0, we have

|z1| = |Tc(u)|
= |aeur

+ bu + c|
≥ |aeur

+ bu| − |c|
≥ |a||ur||τ4| − |b||u| − |z|.

By using (8) and |z| ≥ |c|, we obtain

|z1| ≥ |a||zr||τ4| − |b||z| − |z|
≥ |z|(|a||zr−1||τ4| − |b| − 1).

By applying similar arguments repeatedly, we obtain
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|z2| ≥ |z|(|a||zr−1||τ4| − |b| − 1)2

|z3| ≥ |z|(|a||zr−1||τ4| − |b| − 1)3

.

.

.

|zn| ≥ |z|(|a||zr−1||τ4| − |b| − 1)n.

Since |z| >
( 2+|b|
|a||τ4|

) 1
r−1 implies |a||z|r−1|τ4| > 2 + |b|, we therefore have

|a||zr−1||τ4| − |b| − 1 > 1. Hence, |zn| → ∞ as n→ ∞.

Corollary 2. Assume that |zj| > max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,( 2+|b|

|a||τ4|
) 1

r−1
}

. Then, |zj+1| ≥ (1 + λ1)
k|zj| and |zj+1| → ∞ are as k→ ∞.

4. Algorithms

We present algorithms to create some fascinating fractals in this section. Using al-
gorithms, we create source programs in MATHEMATICA 13.0 to generate the Julia and
Mandelbrot sets (see Appendix A).

Remark 1. Jet colormap, which used to be the default colormap in MATLAB, has been widely
utilized in the literature for coloring fractals. In this work, we have made use of the Rainbow
ColorFunction (a predefined ColorFunction in MATHEMATICA), which converts numerical values
into a spectrum of colors—from red to violet to a variety of rainbow shades.

Remark 2. The Julia sets and Mandelbrot sets are both related to complex numbers and fractal
geometry, but they are also distinct mathematical constructs with some key differences that can
be clearly seen in Algorithms 1 and 2. In Algorithm 1, for the Mandelbrot set, we have a starting
point/initial iteration of z0 = 0. Meanwhile, in Algorithm 2, the Julia sets are typically studied by
varying the initial values of z0 for a given c to see which points remain bounded and which escape
to infinity.

Algorithm 1 The Mandelbrot set.
1. Setup:
Take a complex number c = u + iv.
Initialize the variables α1, β1, γ1, τ1, τ2, τ3, τ4, a, b.
Set z = c.
2. Iterate:
zn+1 = Tc(kn);
kn = (1− α1) Tc(mn) + α1Tc(ln);
ln = (1− β1)mn + β1Tc(mn)
mn = (1− γ1) zn + γ1Tc(zn); n ≥ 0,
where Tc(z) = asin(zr) + bz + c or Tc(z) = aezr

+ bz + c, r = 2, 3, 4, . . . , 0 < α1, β1, γ1 < 1,
0 < τ1, τ2, τ3, τ4 ≤ 1.
3. Stop:

|zn| >Escape radius= max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1 }

4. Count:
The number of iterations undertaken to escape.
5. Color:
Assign a color to each point based on the number of iterations needed to escape.
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Algorithm 2 The Julia set.
1. Setup:
Take a complex number c = u + iv.
Initialize the variables α1, β1, γ1, τ1, τ2, τ3, τ4, a, b.
Consider first iteration z0 = x + iy.
2. Iterate:
zn+1 = Tc(kn);
kn = (1− α1) Tc(mn) + α1Tc(ln);
ln = (1− β1)mn + β1Tc(mn)
mn = (1− γ1) zn + γ1Tc(zn); n ≥ 0,
where Tc(z) = asin(zr) + bz + c or Tc(z) = aezr

+ bz + c, r = 2, 3, 4, . . . , 0 < α1, β1, γ1 < 1,
0 < τ1, τ2, τ3, τ4 ≤ 1.
3. Stop:

|zn| >Escape radius= max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1 }

4. Count:
Number of iterations undertaken to escape.
5. Color:
Based on the number of iterations needed to escape.

Remark 3. One of the most evident symmetries in the Mandelbrot set is the symmetry with respect
to the real axis. This means if there is a point (a1, b1) where a1 = Re(c) and b1 = Im(c) belong
to the Mandelbrot set, then so does the point (a1,−b1). Similarly, if a point (a1, b1), belongs to
the Mandelbrot set, so is (−a1, b1), which leads to vertical symmetry. In summary, the x-axis and
y-axis symmetries of the Mandelbrot set arise from the fact that the Mandelbrot iteration depends
on the magnitude of complex numbers rather than their individual components (both real and
imaginary parts).

4.1. Mandelbrot Sets for asin(zr) + bz + c

In this subsection, we use the escape time approach to construct the Mandelbrot sets
for the sine-associated function, which has a maximum of 10 iterations based on different
input parameters. In Algorithm 1, the algorithm for creating Mandelbrot sets is described.

Case (i): For Tc(z) = asin(zr) + bz + c, the parameter values vary, as given in Table 1:

Table 1. The parameters employed in Figure 1a–f.

Figure r τ1 τ2 τ3 τ4 a b α1 β1 γ1

Figure 1a 2 0.8 0.5 0.7 0.7 0.4 0.4 0.2 0.2 0.2
Figure 1b 2 0.08 0.05 0.07 0.07 0.4 0.4 0.8 0.8 0.8
Figure 1c 2 0.8 0.5 0.7 0.7 1 0 0.2 0.2 0.2
Figure 1d 3 0.08 0.05 0.07 0.07 1.14 0.9 0.9 0.9 0.9
Figure 1e 4 0.08 0.05 0.07 0.07 0.0014 0.0009 0.009 0.009 0.009
Figure 1f 6 0.08 0.05 0.07 0.07 0.0014 0.0009 0.009 0.009 0.009

In Figure 1a–c, quadratic Mandelbrot sets are presented, and we notice the change in
shape by varying only the parameters τ1, τ2, τ3, and τ4, as well as by keeping the rest of them
fixed. The resulting Mandelbrot sets are symmetrical along the x-axis, and they contain
two main lobes. In Figure 1d, the Mandelbrot set is visualized for the polynomial sinzr + c,
and we keep all the parameters that are involved in the four-step feedback procedure equal.
In addition, we noticed that the resulting Mandelbrot set was symmetrical to both the axes.
In Figure 1e,f, for the polynomials of degree ‘r’, we obtained 2r attractors at an angle of
mπ

r (where ‘m’ represents each attractor’s position relative to the standard attractor). The
parameters utilized in Figure 1a–f are listed in Table 1.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Effect of parameters on Mandelbrot set for sine function in PTO.

Case (ii): When a and b are complex numbers.
When complex values are assigned to the parameters ‘a’ and ‘b’, the quadratic Man-

delbrot set, as shown in Figure 2a,b, resembles the classical Mandelbrot set, which has one
bigger lobe and number of small lobes attached to it. Figure 2c,d represents two different
versions of cubic Mandelbrot sets that have different shapes and sizes. In Figure 2e,f, we
observed that, if only the parameter ‘a’ is complex, then the number of bunches are (r− 1),
and if both ‘a’ and ‘b’ are complex, then the number of bunches remains the same. The
parameters utilized in Figure 2a–f are listed in Table 2.

Table 2. The parameters employed in Figure 2a–f.

Figure r τ1 τ2 τ3 τ4 a b α1 β1 γ1

Figure 2a 2 0.08 0.05 0.07 0.07 2.02 + 0.002i 0.002i 0.9 0.9 0.8
Figure 2b 2 0.8 0.5 0.7 0.7 1.0002i 0.009i 0.002 0.002 0.002
Figure 2c 3 0.08 0.05 0.07 0.07 0.014i 0.009i 0.09 0.09 0.09
Figure 2d 3 0.08 0.05 0.07 0.07 3.14 + 0.005i 0.09 0.9 0.9 0.9
Figure 2e 6 0.08 0.05 0.07 0.07 1.14i 0.9 0.9 0.9 0.9
Figure 2f 11 0.01 0.01 0.01 0.01 −1.14i −0.9i 0.002 0.004 0.006

(a) (b) (c)

Figure 2. Cont.
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(d) (e) (f)

Figure 2. Effect of complex values of parameters a and b on Mandelbrot set for sine function.

4.2. Mandelbrot Sets for aezr
+ bz + c

Here, the Mandelbrot sets for exponential functions are generated using the escape
criteria. A variety of input parameters, as shown in Tables 2 and 3, were used for generating
the fractals.

Case (i): When parameters a and b are real numbers.

Table 3. The parameters employed in Figure 3a–f.

Figure r τ1 τ2 τ3 τ4 a b α1 β1 γ1

Figure 3a 2 0.08 0.05 0.07 0.07 1.02 1.2 0.9 0.9 0.8
Figure 3b 3 0.08 0.05 0.07 0.07 1.02 1.2 0.2 0.2 0.2
Figure 3c 6 0.08 0.05 0.07 0.07 1.02 1.2 0.2 0.2 0.2
Figure 3d 2 0.000812 0.000575 0.000786 0.000775 1.02 1.2 0.9 0.9 0.8
Figure 3e 3 0.000812 0.000575 0.000786 0.000775 1.02 1.2 0.2 0.2 0.2
Figure 3f 6 0.000812 0.000575 0.000786 0.000775 1.02 1.2 0.2 0.2 0.2

In Figure 3a–f, we noticed a change in behavior in the Mandelbrot set corresponding to
the exponential-associated function by varying the parameters involved in the Maclaurin’s
expansion of the exponential function. We observed that, by decreasing the values of these
parameters, a noticeable change appeared in the color of Mandelbrot sets, while the shape
remained unchanged. Also, by decreasing the value increases, the images’ vibrancy and
clarity similarly reduced. There are an ‘r’ number of bunches, as well as the same number
of Mandelbrot set junctions for a given value of ‘r’. The values listed in Table 3 correspond
to the parameters used in Figure 3a–f.

(a) (b) (c)

Figure 3. Cont.
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(d) (e) (f)

Figure 3. Effect of various parameters on Mandelbrot set for exponential function in PTO.

Case (ii): When a and b are complex numbers.
In Figure 4a–c, by keeping all the parameters fixed and choosing ‘a’ and ‘b’ as the

complex numbers, we observe that, for a given value of ‘r’, we obtain ‘r’ copies of the
pyramid-shaped Mandelbrot sets, which are joined end to end. The values listed in Table 4
correspond to the parameters used in Figure 4a–c.

Table 4. The parameters employed in Figure 4a–c.

Figure r τ1 τ2 τ3 τ4 a b α1 β1 γ1

Figure 4a 2 0.000814 0.000545 0.000721 0.000748 0.004i 1.3 + 0.004i 0.09 0.08 0.06
Figure 4b 3 0.000814 0.000545 0.000721 0.000748 0.004i 1.3 + 0.004i 0.09 0.08 0.06
Figure 4c 4 0.000814 0.000545 0.000721 0.000748 0.004i 1.3 + 0.004i 0.09 0.08 0.06

(a) (b) (c)

Figure 4. Effect of complex values of parameters a and b on Mandelbrot set for exponential function.

4.3. Julia Sets for asin(zr) + bz + c

The change in behavior in the Julia sets for the sine-associated function is illustrated
in this subsection. In Algorithm 2, the algorithm for creating the Julia sets is described.

In Figure 5a, we observed, for r = 2, there are four attractors at an angle of mπ
2 ,

where half of them are symmetric to the x-axis while remaining in the y-axis. As shown in
Figure 5b,c, we slightly increased the respective values of the parameters ‘a’ and ‘b’, and
we observed a tremendous change in the corresponding sets. As shown in Figure 5d–f, we
noticed the effect of the varying parameters α1, β1, and γ1 on the cubic Julia sets. We saw,
by increasing the value of the said parameters, the number of bunches decrease, and, for
α1 = β1 = γ1 = 0.9, it took the shape of a six-armed starfish. As shown in Figure 5g, the
quadratic Julia set resembled a butterfly, whereas alluring graphics were obtained—again,
as shown in Figure 5h,i—for r = 4 and r = 8, respectively. The values listed in Table 5
correspond to the parameters used in Figure 5a–i.
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Table 5. The parameters employed in Figure 5a–i.

Figure r τ1 τ2 τ3 τ4 a b c α1 β1 γ1

Figure 5a 2 0.06 0.07 0.08 0.09 1 0 −0.007i 0.01 0.02 0.03
Figure 5b 2 0.06 0.07 0.08 0.09 1 0.5 −0.007i 0.01 0.02 0.03
Figure 5c 2 0.06 0.07 0.08 0.09 1.7 0 −0.007i 0.01 0.02 0.03
Figure 5d 3 0.6 0.7 0.8 0.9 0.8 0.02 0.0007 − 0.0007i 0.03 0.03 0.03
Figure 5e 3 0.6 0.7 0.8 0.9 0.8 0.02 0.0007 − 0.0007i 0.5 0.5 0.5
Figure 5f 3 0.6 0.7 0.8 0.9 0.8 0.02 0.0007 − 0.0007i 0.9 0.9 0.9
Figure 5g 4 0.6 0.7 0.8 0.9 0.2 1.2 0.0008888 0.07 0.05 0.08
Figure 5h 4 0.6 0.7 0.8 0.9 2.2 1.2 −0.00088 − 0.00088i 0.07 0.05 0.08
Figure 5i 8 0.6 0.7 0.8 0.9 1.2 1.2 −0.0008i 0.07 0.05 0.08

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Effect of parameters on Julia set for sine function in PTO.

4.4. Julia Sets for aezr
+ bz + c

The Julia sets corresponding to the transcendental exponential function for different
input values are illustrated in this subsection.

Here, for r = 2, exponential function had two bunches, and the distance between them
decreased as we increased the values of α1, β1, and γ1, as seen in Figure 6a,b. Figure 6c
shows that the Julia set became more amazing and vivid as we reduced the values of the
τ1, τ2, τ3, and τ4 parameters. In Figure 6d–f, the number of bunches increased by increasing
the value of r. The values listed in Table 6 correspond to the parameters used in Figure 6a–f.
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Table 6. The parameters employed in Figure 6a–f.

Figure r τ1 τ2 τ3 τ4 a b c α1 β1 γ1

Figure 6a 2 0.5 0.7 0.4 0.7 1 0 −0.5i 0.5 0.7 0.7
Figure 6b 2 0.5 0.7 0.4 0.7 1 0 −0.5i 0.9 0.9 0.9
Figure 6c 2 0.000580 0.000745 0.000456 0.000714 0.05 1.2 0.45 − 0.08i 0.5 0.7 0.9
Figure 6d 3 0.7 0.9 0.3 0.5 −1 0.001 0.4i 0.4 0.4 0.4
Figure 6e 4 0.7 0.9 0.3 0.5 −1 0.0001 2 0.0001 0.0001 0.0001
Figure 6f 6 0.07 0.09 0.03 0.05 −1 0.0001 2 0.09 0.09 0.09

(a) (b) (c)

(d) (e) (f)

Figure 6. Effect of parameters on Julia set for exponential function in PTO.

5. Conclusions

In this study, by using the Picard–Thakur iteration, escape conditions were provided by
examining the complex sine Tc(z) = asin(zr) + bz+ c and exponential Tc(z) = aezr

+ bz+ c
functions. These findings were used in algorithms to depict the Julia and Mandelbrot sets.
We used MATHEMATICA 13.0 to generate the appealing fractals and to explore the various
regions of the complex plane, as well as to study the intricate patterns that form within the
Julia set by altering the parameter c. It was observed that the parameters τ1, τ2, τ3, and τ4
had a significant impact on the color variation of the Julia sets for exponential functions.
Also, for the complex values of the variation parameters, the sine function’s quadratic
Mandelbrot sets took the structure of regular Mandelbrot sets; meanwhile, in the case of the
exponential functions, the complex parameters added more complexity to the Mandelbrot
sets. In the future, we will try to generate fractals for complex cosine functions, as well as
functions of the type zr + ect

, by introducing metrics like generation time and ANI while
using a fixed-point iterative process.
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Appendix A

Appendix A.1. Source Program to Generate the Julia Sets

iter[x, y, lim] = Block[{c, z, ct, a, b, α, β, γ, τ1, τ2, τ3, τ4},
c = m + nI;
z = x + yI;
τ1 = 0.8;
τ2 = 0.5;
τ3 = 0.7;
τ4 = 0.7;
α1 = 0.9;
β1 = 0.8;
γ1 = 0.75;
a = 0.4;
b = 0.4;
ct = 0;
m = 0.01;
n = 0.01;

While[(Abs[z] < max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1 }&&

(ct <= lim),++ ct;
g = a ∗ Sin[zr] + b ∗ z + c;
w = (1− γ) ∗ z + γ ∗ g;
f = a ∗ Sin[wr] + b ∗ w + c;
v = (1− β) ∗ w + β ∗ f ;
d = a ∗ Sin[vr] + b ∗ v + c;
u = (1− α) ∗ f + α ∗ d;
z = a ∗ Sin[ur] + b ∗ u + c; ];
Return[ct];
]
DensityPlot [−iter [x, y, no.o f iterations], {x, xmin, xmax}, {y, ymin, ymax}, PlotPoints →
200, Mesh→ False,
ColorFunction→ “Rainbow′′, PlotLegends→ Automatic]

Appendix A.2. Source Program to Generate Mandelbrot Sets

iter[x, y, lim] = Block[{c, z, ct, a, b, α, β, γ, τ1, τ2, τ3, τ4},
c = x + yI;
z = c;
τ1 = 0.8;
τ2 = 0.5;
τ3 = 0.7;
τ4 = 0.7;
α1 = 0.9;
β1 = 0.8;
γ1 = 0.75;
a = 0.4;
b = 0.4;
ct = 0;

While[(Abs[z] < max
{
|c|,

( 2+|b|
γ1|a||τ1|

) 1
r−1 ,

( 2+|b|
β1|a||τ2|

) 1
r−1 ,

( 2+|b|
|a|(α1|τ3|−|τ2|)

) 1
r−1 ,

( 2+|b|
|a||τ4|

) 1
r−1 }&&

(ct <= lim),++ ct;
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g = a ∗ Sin[zr] + b ∗ z + c;
w = (1− γ) ∗ z + γ ∗ g;
f = a ∗ Sin[wr] + b ∗ w + c;
v = (1− β) ∗ w + β ∗ f ;
d = a ∗ Sin[vr] + b ∗ v + c;
u = (1− α) ∗ f + α ∗ d;
z = a ∗ Sin[ur] + b ∗ u + c; ];
Return[ct];
]
DensityPlot [−iter [x, y, no.o f iterations], {x, xmin, xmax}, {y, ymin, ymax}, PlotPoints →
200, Mesh→ False,
ColorFunction→ “Rainbow′′, PlotLegends→ Automatic]
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