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Abstract: In this paper, we first prove a new parameterized identity. Based on this identity we
establish some parametrized Simpson-like type symmetric inequalities, for functions whose first
derivatives are s-tgs-convex via Reimann-Liouville frational operators. Some special cases are
discussed. Applications to numerical quadrature are provided.

Keywords: Newton-Cotes quadrature; s-tgs-convex functions; P-functions; Holder inequality

1. Introduction

Symmetric inequalities often arise in various branches of mathematics, such as algebra,
analysis, and optimization. They have numerous applications and play a crucial role
in proving theorems and solving problems in areas like number theory, combinatorics,
and inequalities themselves. In the study of symmetric inequalities, techniques such
as rearrangement inequality, Cauchy-Schwarz inequality, and the method of Lagrange
multipliers are commonly employed to establish the validity of the inequalities and find
optimal solutions [1-3].

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders and their applications in different fields of sciences and en-
gineering. In real life, fractional calculus is generated from various fractional operators
such as Riemann-Liouville, Caputo, Hadamard, and so on; due to its widespread use in
different fields, this calculus has attracted many researchers. The most-used operator is
that of Riemann-Liouville given by the following definition

Definition 1 ([4]). For any integrable function L on [k, g] with k > 0, I,erE and I;,E are the
Riemann—Liouville fractional integrals of order ¢ > 0 given by

X

EL(x) = ﬁ/(x CATIL(A)A, x>k,
k
8

I L(x) = ﬁ/(/\ —0)IL(A)A, g > x,

X

respectively, where T(¢) = [ e MAS~YdA is the gamma function and
0

I L(x) = Ig,ﬁ(x) = L(x).
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The theory of convexity plays a central and attractive role in many fields of research.
This theory provides us with a powerful tool for solving a large class of problems that arise
in pure and applied mathematics, defined as follows:

Definition 2 ([5]). A function £ : 1 — R is said to be convex, if
LAx+(1—-A)y) <AL(x)+(1—-A)L(y)
holds for all x,y € I and all A € [0,1].
In [6], Awan et al. introduced the class of s-tgs-convex functions.

Definition 3 ([6]). We say that a function £ : I C R — R is s-tgs-convex on I, if
LAx+ (1= A)y) < A (1= AP (L(x) + L(y))
holds for all x,y € Iand A € [0,1], with s € [0,1].

Convexity has a close relation in the development of the theory of inequalities, of which
it plays an important role in the study of qualitative properties of solutions of ordinary,
partial, and integral differential equations as well as in numerical analysis, which is used
for establishing the estimates of the errors for quadrature rules; see [7-18].

The following Newton-Cotes inequality involving four points is known in the litera-
ture as the 3/8-Simpson inequality

oq

F(ct+3L(252) +3L(52) +£(g)) - 7 [ Llw)dw| < <36;8’<34HL<4>]

oo

.

where £ is a four-times continuously differentiable function on [k, g] and

HE(‘L)H = sup ‘£(4)(x)‘.
*® xelkg]

Recently, Mahmoudi and Meftah [19] discussed more general inequalities of four
points and gave the following results

Theorem 1. Let L : [k, g] — R be a differentiable function on [k, g] such that L' € L[k, g] with

0 <k < g If|L'| is s-convex in the second sense for some fixed s € (0,1], then we have

iz (L0 +pL(%53) + oL (F58) + £(9)) — g [ L(w)dw
k

< st (255 v2(B2) ) (20l + 1£@))
(- () 2(a) ) (|2 (25| +

where p is a positive number.

2(49)))
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Theorem 2. Let L : [k, g] — R be a differentiable function on [k, g] such that L' € L[k, g] with
0 <k < g If|L'|7is s-convex in the second sense for some fixed s € (0, 1], then we have

Al r28) () u7
k

k
- g—k 3p+1+ 2p p+1 ‘E’ 2 +g
— 18(p+1)p+] 1+p p+1

2k—+, k+2; q
(AL (3”“?55

o ()L ) q
s+1 ’

Theorem 3. Let L : [k, g] — R be a differentiable function on [k, ] such that L' € L[k, g] with
0 <k < g If|L'|"is s-convex in the second sense for some fixed s € (0, 1], then we have

where p is a positive number and q > 1 with % + % =1

8

s (L) +pL (253 ) + oL (K58) + £(9)) — g [ L(w)dw
k

< ] <<9§<(f-’ip>92>1_5 (2 +2(32) " Iy
() )
RICHORNICSINEEY
(stt) (et (o) e ()
(2 ea()ewr)),

where p is a positive number and q > 1.

Motivated by the above results, in this paper we first prove a new parameterized
identity. Based on this identity, we establish some new fractional Simpson-like type
inequalities for functions whose first derivatives are s-tgs-convex. We end this work with
some applications.

2. Main Results

Let us first recall some special functions (see [4]).
The incomplete beta function is given by

Bu(Z1,8) = / ABI(1 = A)EldA,

where §1,8 € Csuch that R(¢;) > 0, ®(¢2) > 0and 0 < m < 1. The case where m = 1
gives the classical beta function, i.e.,

1
B(¢1,62) = /Agl_l(l — A=A,
0
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The hypergeometric function is defined for R(c) > R(b) > 0 and |z| < 1, as follows

1
/Ah_l(l CAE(1 - 2A) A,
0

2F1(a,b,¢;2) = gy

where B(-, -) is the beta function.

Lemma 1. Let L : [k, g] — R be a differentiable function on [k, g] such that L' € L[k, g], then
the following equality holds

i (L) +0L(258) +0£(52) + £(g)) - T R (w, £)

(g—h)"
- ([l e
0

+

Toa—AM) e (1 - A2 o A2 gA
2 3 3

_I_

(ﬁ —(1- A)Ix)cf(a — A)"*% —|—Ag>dA) ,

where 0 is positive number, 0 < o < 1, and

R(w, L) = 1(@)_5(@ + IEQ@K)J("@%) + I’Ekéﬁyﬁ(g). 2)
Proof. Let
1
L o= /(A*—Zj’w)y(a—/\)uzx%%)d/\,
0
1
b= (3= (- a0+ AR
0
and

I = /(ﬁ — (1= A)) (1= A) 5 + Ag)da.
0

By using integration by parts in I;, we obtain

A=1

b= o sa)e(a-meentis) 1] g

1
f%//\“—lc(u — A)a+ AZEE)dA
0

_ 60—3 2k+,
= wiem(E

2k+g
3

—% / (u—a)* ' L (u)du

)+ Gt £

_ 2k+ 3T (a4-1) 7o
= L Sg)+(g—k)?z+ze>£(k)‘7(g_k(ﬁ+l)lzk3j*£(k)'
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Similarly, we obtain

A=1

o= Z(A-a-n)c(a-n2gE+a2)| @)

—37“/(1 — AL (- )B4 AR ) aA
0

= wnl("F) t et (%)

k+2g

. -1
— 3_“"‘ /(k?g—uy L(u)du

2k+g
3

_ 3 c(lﬁ%)Jr (3 E(Zk;—g)_g,ull"(a-&-l)la +£(k+%>

2(g—k) 2(g—k) (g—k)**1 (@)
and
I = ﬁ(zue (1_A)a)£<(1—/\)k+%+/\g)’2: ©)
— 2 1 (1- A)"‘_lﬁ((l — AR +Ag)dt
0

= o t® + e ()

N 7 (g = w)* ' L(u)du
b
= G t©) + it () - T () 8

Summing (3)—(5), and then multiplying the resulting equality by gT_k, we obtain the
desired result. [

Theorem 4. Assume that all the assumptions of Lemma 1 are satisfied. Moreover, if |L'| is
s-tgs-convex, then the following inequality holds

3 (L) +0£(252) + oL () 4 £(g)) - X LR, £)|

b
< 5K (pp(s+ 1,5+ L) (|L/(K)] + £ (9)])
(¢Z(S+1,s+1;06)+q09(s+1,s+1;ac))( ’(2"%)‘+ y(”%)‘))

where s € [0,1], R(a, L) is defined by (2),

(%, ;) = 1(0y) =B i)%(W) ()

W)

and
Po(x,y;0) = y2g00(x,y;0) — 39 (x + &, y; ). @)
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Proof. By Lemma 1, modulus, and the s-tgs-convexity of |£'|, we determine

IN

IN

wia (L0 +0£(252) + 02 () + £(g)) - ¥ VR (a, £)

(8=k)
1
2%
379(/ —rm El (I-Ak+A +g>’d1\
0

+/‘f— (1 A)"

1

+/‘2+29 (1-A)"

0

E’((l —NE +A"+%) ‘d/\

[/((1 A +Ag) ‘dA)

"(1 — 2| AT =AY (10 + £ (%5%)] )an

0
(e )

fli-o-
0

25 Jon

1
+ [ - a - ayaca - ay(|e(4)| + !£’<g>!>dA)
0
g9k(|£ 1 2+29 A*(1— A)dt
cf<2k+g>to
TN O
o)

AS(1—A) dt+/‘2+29 (1—A)®

A°(1—A) dA)

(0o

+|£'<g>|/\2+%9—<1—A>“
0

AS(1— A)SdA)

S (po(s + Ls + L) (| (0] + | (s)])
+(p2(s+Ls+ L)+ @o(s+1,5+ L“»(

()|l (552)1)-
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where s and ¢y are defined as in (6) and (7), respectively, and we have used the fact that

1
J A" = s |A( = AYdA = | — (1= A1 - AYaA
0

Bl—=

= 2+329<B , \1(s+Ls+1)-B 1(s+1,s+1)>
(i 1= ()"

1=(2m)
= sl +1s+1La) —sp(s+a+1s+1a)
= @o(s+1,5+ L) 8)

_<B , (5+tat+ls+1)—B 1(s+1,s+rx—|—1)>
(z%m)" ¢

and

7‘/\“ — 3[as - ayaa

EENCEVNRINCEVN

= (22(s+1,s+1;1x), )
which ends the proof. O
Corollary 1. Taking a = 1, Theorem 4 becomes
8
riz (L0 +0L(258) + 0L (4) + £(3)) — oy [ £(w)du
k

< S (pp(s+ 1,5+ L1)(|L/(K)] +]L(3)])
Vo et ) (2 () (49),

where
. _ 3
¢9(S+1,S+1,1) = mBZJ%e(S+1,S+1)*B2+%e(S+2,S+1)
+%B%(s+l,s+l)—B%(s—i-Z,s—i-l)
+
and

¢2(s+1,s+1;1) =Bi(s+1,s+1)—2Bi(s+2,5s+1).

N—

1
2

Corollary 2. Under the assumption of Theorem 4, and if | f'| is P-function, then we have

| (L) + 0 (25 ) +£(g)) - TR, L)

(g—k)"
£ (55) | (002 46) [ (£ | (202 2045) )
(1+6)? '

g—k
< %

( (262-20+5) | £/ (k) |+ (302+6)

Proof. Just replace s with 0 in Theorem 4. [J
Remark 1. In Corollary 2, choosing 8 = 3, we obtain the fractional Simpson’s 3/8 formula
2k k+2 3T (at1
5 (200 +3£(258) +30 (M) + £(9)) - TR (w, £)]

(8—k)"
25(g—k) [ 171/ ()1+33|2" (25%)|+38] e’ (53 | +171 ()
< g 5 _
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Remark 2. In Corollary 2, choosing 8 = 13, we obtain the fractional corrected Simpson’s 3/8
formula

& (00 +27(258) +27£(58) + £(9)) - T LR (e, £)|

(8—k)
2k+ k+2,
2401(g—k) (16015/(@ '(35) '(sg>+1601£’(3)|>
= 12400 9604 :

Corollary 3. In Corollary 2, if we take & = 1, then we have

i (L0 + 0L (258) + 0L (E38) + £(g)) - glzjﬁ(uﬂ”
k
)

(255 |+ (302 +6)
(1+6)?

gk [ (20°=20+5)|L'(k)|+(36°+6)
< %

S5 |+ (202 -2045) 1L/ (3) )

Corollary 4. Under the assumptions of Theorem 4, and if |L'| is tgs-function, then we have
k k a—1
P +9c(2ﬁ) +0L(52) + £(9)) - TR (w, £)
ek (27(1+49)+(29 )t (1K) +1£(3)))

(146)*
()

Proof. Just replace s with 1 in Theorem 4. O

IN

4(146)*427(14+40)+ (260—1)*
+ ( (1+6)* ) (

()

Corollary 5. Taking & = 1 in Corollary 4 gives

gk

o (L0 +0L(255) + 0L () + £(9)) - 175
k

IN

s (PO 11+ ' (9)]

(1+6)*
£(355)|+

4(146)*+27(14+46)+(26-1)*
+ ( (146)* ) (

().

Theorem 5. Assume that all the assumptions of Theorem 4 are satisfied. Moreover, if | L' |€ is
s-tgs-convex, where { > 1 with % + % = 1, then the following inequality

1
B(s+1,5s4+1))¢

\ (E(k) +oc(28) +oc (M) + £(g)) - wn(m)\
a(T+1) 24260

(g—k)*
( (ka)f)% (e erer))
(4 2)' (s o)) )

holds, where R (w, L) is defined by (2) B and »F; are beta and hypergeometric functions, respectively.

1

1 _ _ IN 7T

m) -+ B (414235 (291>w> i
2420
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Proof. By Lemma 1, modulus, Holder’s inequality, and the s-tgs-convexity of | £’ |€, we
obtain

|t (L) + 0 (258) + 02 (2) + £(3)) — 2 R (a, £)|

IN
oQ
o]
>
/——\ S
-~
O\»—\
>
2
|
N
+
N
Sl
A
>
N————
A=
O\»—l

o(o _A>k+A2k;g)|€dA)

1

1
£((1— )28+ A fdA) é)

1 T 1
Ji-a-ara) (]
0
TdA) ? (7 £((1- M)+ ag) ‘gdA) g)
0
T/
A”‘ﬁzerd/\) (/AS(lA)S(\ﬁ’(k)\§+ ﬁ’(z";«g)f)d/\)
0
1 T/ ?
({‘%—A“TdA) ({As(l—A)s< £’("+32g)’€)d1\)
1 N2 g %
(/ A% = 3] dA) (/As(l—A)s<£’<H32g)’ +]£’(g)]5)d/\) )
0 0

= KB +1,5+1))
T R 0,042,250 CNTELINT
X ((; m) B(&/T‘i_ 1) + 2 1( a(ril) 2+29) <%izé) >
1 1
((ewr+ o)) + (e + ewr) )
B(

(it (e e ) )

2T (T +1)

0
1
J]z - a-ny
0

i

1
4

IA

e ()

+

_I_

1

—_

( 3
£'(k))° +
lr

where we used

1

o 3 T
[|ax = 22| an
0
1
(im)? o T
- / (sz—/\”‘) dA + / (A“—ﬁ) dA
0 1
(m)"
T+11 1 T+l1 11
= () /19;—1(1%9)%19%(31—5;) /(1f19)T(1f§%;19) dt
0 0

_ 1(_3 H%B 1 1 L (20-1\Ts F(el 1 9.20-1
= a<2+29> (afT+ )+zx(r+1)<2+29> 2 1(Tf TF '2+29>
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and

1
1-(3)* . 1
- / (A=) -3)"aa+ / (3-(1-n))an
0 A
1-(3)
1 1 1 .
2T+1a/ % ) dx-l-zwl%“/x?*l(l—x)rdx
0 0
1 1 1
T 2Fl(“ Arz)+ AeB(nT ),

which ends the proof. O

Corollary 6. Tnking « = 1 in Theorem 5, it yields

i (200 +0£(258) oL (558) + £(9)) - glljﬁ(u)d“

IN

1 . %
S (Bs+1s+1) ()" (3“+<29—1>“)

2(1+9)T+1
< <(|£'<k>|§+

£’(k*fg)\gﬂc’(g)ﬁ)é)
e (ler

Corollary 7. Under the assumptions of Theorem 5, and if | L’ |§ is P-function, then we have

|t (£06) +0£(258) + 02 () + £(g)) - L LR (w, £)|

1

1 _ - N

< &k B(%’T+1) 3 T+E+2Fl(a‘71,1,1'+2;7%‘12é) -1\ e\ "
- 9 « 2+29 a(t11) 2420

X((If’(k)|§+ () +(

1
L (B( rl+1) n 2F1(°“X1,1,T+2;%)> T (

TR 27+ (741)

Proof. Just replace s with 0 in Theorem 5. [J
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Corollary 8. In Corollary 7, if we take & = 1, then we have
2k k+2
rizg (£0) +0£(255) 0L (5) + £(3)) - gy [ £(w)du
k
k o (3t ee-1)™! :
gk 1 37 -
S ® (TH) (( 2(1+6)7 "1 )

x ((\E’(k)\g+ c’(z";g)f)% +(
HEESIE

1
Corollary 9. Under the assumptions of Theorem 5, and if | L’

o) + 12w’ )

()’

s tgs-function, then we have

| (L) +0£(258) + 0L (E2) + £(g)) - 3“;;“;‘)*”7%(«,5)]

() ( (22 o) ™)
X((!ﬁ’(k I+ 5’(2"*5’)\5)% <£’ Ex) +{£’ |C> )
+<B(;,T+1)+2p1( 11742 ))1< k+32g)’5> )

2T 2tHa(T+1)

IN

E/ 2k+g

Proof. Just replace s with 1 in Theorem 5. [J

Corollary 10. In Corollary 9, if we take x = 1, then we have

ﬁ(ﬁ(k) +9£<2k+ ) +9£<k+2g) +E(g)> — gl_kjﬁ(u)du
k

1 TH (20— 1
6 2(146)°

IA
m\m




Fractal Fract. 2023, 7,772

12 0of 19

Remark 3. In Corollary 10, choosing 8 = 3, we obtain Simpson’s 3/8 formula

(et +3L(%5%) +3L(558) + L(g)) - 1ku

<g72k(é)é(rl+1)1<(37+1-§5”1);
X ((’ﬁ/(k)|§+ E/(Zk;g)‘g)é+<
+ <£/<2k;rg)’5+ E,(lw%zgﬂé)zl;)

Remark 4. In Corollary 10, choosing 6 = 13, we obtain the corrected Simpson’s 3/8 formula

.c’("*%) ‘g + |£’(g)\g> g)

1

w (L0 +27L(258) 1272 (M) + £(g)) - glkic(

é%"‘(fz)é(;l)%((wwy

(40)771T
o(5)f +lewr)’)

u)du

=

)
(e sleef))

Theorem 6. Assume that all the assumptions of Theorem 5 are satisfied. Moreover, if | L' |§ is
s-tgs-convex, where { > 1, then the following inequality

[t (L0 +62(P5%) oL (M) + £(9)) - FEH

(g—k)" ( ! )‘
< gk 20—3a—1 20 3 1 “1 ' %
9 (24+26) (a+1) a+1 (2 29)

((ewt o)) + (e cewr))
(1 a2l c/(k+2g>‘g>é>/

1
(pop(s+1,s4+1a))¢

=

2(a+1) ) 4’2(5+1/S+1;u¢))%(£’(2k3‘:‘8)‘

holds, where R(«, L) and ¢g are defined by (2) and (7), respectively.
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Proof. By Lemma 1, modulus, power mean inequality, and the s-tgs-convexity of | L’ |€,

we obtain

R)+0L(258) +oL (M) 4 £(g)) - T LR, £)|

(8—k)
-7 /1
3
w—mmg (AMZ%
0

N
-
/N

D
—

1

o (o _A>k+A2k;g)fdA)

IN
oQ
@“
b
/_\ D)
/
O\»—\

1

“Jler(a-a)ZE + Ak ‘%A)

1
)1€

|2 = (1= )| (1 - Ay +Ag)‘€d/\) C)

X
\»—\ o —0r o~~~
Nl—
|
3

X
~

IN

o

©‘|

=
~— N o~ ©
O\H

1

-}
A% ﬁ\d!\) <|ﬁ’<k>|§/

0

o
AT = 2+29

A°(1—A)dA

1

+|er(258) H‘A“ - 2+%‘/\5(1 - A)SdA) C

0

(fpve) (

1

k+2 ¢ [
He(=9)[ fli-a
0

1
+(/(2+329—A“d1\
0

o(%5) ‘/‘% (1= A)*|A%(1 = AydA

1

¢
YIAS(1—A) dA)

11
) g ( £/(55) “{7‘2329 — (1 A)YAS(1 = AdA

0

0

1
1 14
+1£'(g)] /‘2+29 (1-A)" As(lA)sdA) )
1-1
—k _3a— 141 4 1
=g9«£ﬁ@ﬁ£&&)) e+ 150

< c’ %Es ‘é>é (c’( 3)\ +|£’(g)|§>é>
(- “i;i‘ff) et (225 + e (2)f)' ),
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where we have considered (8) and (9). The proof is achieved. O

Corollary 11. In Theorem 6, if we take x = 1, then we have

ri (L) +0£(25%) + 0L (455) + £(3)) - 7 [ £(w)du
k

1
< & ((2f;§§)t5) C(go(s+1,5+11))
0\ ¢ Z
(1lwp e () + (e () +iewr) )
1
e(3)f «|e()f) )
Corollary 12. Under the assumptions of Theorem 6, and if | L’ ]g is P-function, then we have

[t (£ +0£(258) + 02 () + £(g)) - T LR (w, £)|

Nl=

1\ 17 :
+ 4) (p2(s+1,s4+1;1))¢

1

(et + () )
((ewr e ) « () +ewr))
g (e e ) )

(a+1)
Proof. Just replace s with 0 in Theorem 6. [J

IN

Corollary 13. In Corollary 12, if we take & = 1, then we have

st (£ +0£(%55) +0£(*5) + £() — gty [ £l
- ({3 o

k
(e leef) )

() + |£’<g>|§)‘()
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Corollary 14. Under the assumptions of Theorem 6, and if | L' |g is tgs-function, then we have

|t (L) +0L(%55) +0L(55) + £(9)) - %R(zx,c)‘
(ot 2(ota) )

1
(4 1?9)06&1;“ aiB) T a%(ﬁ)l% B %(ﬁ) i>é
<[ (12 \—c’(zk*g)!g)% e ewr))

-1 2
1— tx+a21“ ¢ 6—5a—a? «
2(a+1) 12(a+2)(a+3)

1
1-7

IN

X

+
T

+

() -t ())
(el sleer))

Proof. Just replace s with 1 in Theorem 6. [J

Corollary 15. In Corollary 14, if we take « = 1, then we have

rizp (£06) + 0L (255 ) + 0L(44) + £(3)) — gy [ L(w)du
k

o=

1
gk [ 202~ 29+5 (6-2)(1+6) L %6(46)-27 4
36\ (1+0)* \3(202-20+45) ' 8(202-20+5)(1+6)
x<(

£/ (k)

e E)f) + (f’(k?g)fﬂz'(gﬂg)é)
wé(\v«k:g)! le(#)f))

Let Y be the division of points k = ¢ < ¢ <...< ¢, = g of [k, g], and consider the
following formula for quadrature

=

3. Applications

8
/E(w)dw = A(L,Y) +R(L,Y),
k

where
Z ll’e+1 #’e ( l/)e) + 9£(2¢e+¢s+1) + 9£(¢e+2¢e+1) + £(¢€+1))

and R(L,Y) represents the associated approximation error.
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Proposition 1. Let £ be as in Lemma 1 and n € N. If |L'] is P-function, we have

i 1Pe+1 Ve) (292 2045

(1+6)? (’ﬁl lpe |‘i‘|£ 1Pe+1 |)
<2¢e+¢e+1)‘+

(5

Proof. Applying Corollary3on ¢, 1. 11] (e =0,1

362+6 (
+ (146)°

., — 1) of the partition Y, we determine

L(pe)+0L (72'””3"'6“ ) Y, (bwﬁl ) +L (Y 11) Yern

2120 1/)€+1 Pe _/£
_ 2
< e lpE(zeuffﬁ(lﬁ Yol + £ (Wern)])

2
+39 +6

(e (o) o 2 (3 ))

The desired inequality follows by multiplying the above inequality by (9e41
then adding the result over e =0, 1

- lpe);

.,n — 1 and using the triangle inequality. [
Proposition 2. Let L be as in Lemma 1 and n € N. If |L'| is tgs-convex, we have

IR(L,Y)]

n—1 PRY
I el (S ) 12 )

N <4(1+9)4+27(1+49)+(291)4) ( N E/(npg+23¢e+1) D)

IN

(146)*

r (21/16 +31Pe+1 ) ‘

Proof. Applying Corollary 5 on [, §_+1] (

=0,1,...,n — 1) of the partition Y, we obtain
cperoc( M ) ror (e Y s (yr) B
2¥20 T P Ve / L(w)dw
Pe

e+1—Pe 460)+ (26—
< M (27(1+(1)+e>2 (1€ ()| + 1€/ (gern)])

n <4(1+9)4+27(1+49)+(291)4> ( E,(zlpggwm)’ n El(l/]e"rélpyrl)’))‘

(1+e)*
The desired inequality follows by multiplying the above inequality by ({c+1

then adding the result over € =0, 1

- 17L7€ )/
., 1 — 1 and using the triangle inequality. O

Proposition 3. Let £ be as in Lemma 1 and n € N. If |£’|§ is P-convex where {, T > 1 with
%—i— % =1, we have

IN
-G
m
¥
H
~C‘\.
2/
/~
‘ﬂ
—
Al=

<<3T+1+(291)”1 )1

2(1+6)" 1

( £/ (ge) [+ | (R f)% " (\L’("’f%"’f*l )+ y£’<¢e+l>!§)
( 2¢6+‘/’e+1 ‘ + ‘cl (¢e+%¢e+1> F) é) )

i
N——
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Proof. Applying Corollary 8on (¢, ¢.41] (¢ =0,1,...,n — 1) of the partition Y, we determine

£(¢€)+9£<2¢e+3¢5+1>+GL<%+234J6+1>+£(¢6+1) 1 Per1
2428 T P Ve / L(w)dw
e

IN

teppt () (i
<((rewor e« (e -tevanr)')
(el s ey

The desired inequality follows by multiplying the above inequality by ({e+1 — ¥e),
then adding the result over € = 0, 1,...,n — 1 and using the triangle inequality. [

=

Proposition 4. Let L be as in Lemma 1 and n € N. If | L’ |§ is tgs-convex where {, T > 1 with
%4— % =1, we have

[R(f,Y)]

;‘;l/ﬂeﬂ te) ( )%(ri1)1<<W>i

( |L'( lﬁe ‘E <zwe+¢e+1)‘é>%+(‘£,<W>‘C+’£/(¢e+l)’g> )
(st o))

Proof. Applying Corollary 10 on [y, ¢.+1] (€ =0,1,...,n — 1) of the partition Y, we obtain

IN

T

£(¢€)+9£<2¢6+3¢g+1)+9£<¢€+23‘/]e+1>+[:(¢6+1) ) Pet1
2520 T PV / L(w)dw
Pe
1 1 1
< Pei1—Pe (l)z (L)? <<3r+1+(261)r+1> T
— 6 T+1 2(1+9)T+1

i

<((lewor e ) + (o) +levanr))
+(‘£/(2¢6ng’6“>‘ ‘El(¢e+2¢e+l)’g>}>.

The desired inequality follows by multiplying the above inequality by ({11 — ¥e),
then adding the result over € = 0, 1,...,n — 1 and using the triangle inequality. [

Let us consider the following means for arbitrary real numbers k, g

The Arithmetic mean: A(k, g,n) = W%
The Harmonic mean: H(k, g, 1) = +——
kTt

The Geometric means: G(k,g) = \/kg
gp+1 _kp+1

1
P
W) ,k,g >0,k # g,and p € R\{—1,0}.

The p-Logarithmic mean: L, (k,g) = (
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Proposition 5. Let k,g € Rwith 0 < k < g, then we have
1(24(g 72K ) + H g k) + H (g kK)) — 4G (k@) Li(K.g)
k(5 2k+ 2 k+2 2 5
< fzkg<g2+ (%) + (%) +k2)'

Proof. The assertion follows from Corollary 2 with « = 1 and 0 = 1, applied to the function
L(w) = w?® on E,%] O
Proposition 6. Let k, g € Rwith 0 < k < g, then we have

24 (12, 87) +342%(k k,g) +3A%(k,g,8) — 813 (K, g)|

<

1 1 1
V57(g—k) [ (13K2+4kg+g?) 2 + (K2 +4kg+13g2)2  (5k2+8kg+5g%)2
27 12 3v19

Proof. The assertion follows from Corollary 8 with @ = 3 and { = 2, applied to the function
L(w) = Jw? on [k, g], in which |£'(w) * = w? is P-function. [

4. Conclusions

In this study, we have considered the fractional Newton-Cotes type integral inequali-
ties involving four points via a Riemann-Liouville integral operator. We have established
for the first time a novel parametrized integral identity. Based on this equality, we have
derived several 3/8 Simpson-like type inequalities for functions whose first derivatives
belongs in the class of s-fgs-convex functions. Some special cases are discussed according
to the values of parameters. Some applications to numerical quadratures are presented.
The obtained results may lead to additional research in this fascinating field as well as
generalizations in other types of calculations, including multiplicative calculus and quan-
tum calculus.
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