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Abstract: Classical forbidden processes paved the way for the description of mechanical systems with
the help of complex Hamiltonians. Fractional integrals of complex order appear as a natural general-
ization of those of real order. We propose the complex fractional Euler-Lagrange equation, obtained
by finding the stationary values associated with the fractional integral of complex order. The complex
Hamiltonian obtained from the Lagrangian is suitable for describing nonconservative systems. We
conclude by presenting the conserved quantities attached to Noether symmetries corresponding to
complex systems. We illustrate the theory with the aid of the damped oscillatory system.
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1. Introduction

The reality we can observe and measure is limited to rational numbers. Complex
numbers are especially used in physics because of their beautiful properties, which translate
into a powerful mathematical tool designed to solve many real-world problems. For
example, the evaluation of a large class of real integrals is most easily performed by
embedding the problem in the complex plane [1].

To be able to take into account classical forbidden processes [2], it was necessary to in-
troduce complex Hermitian Hamiltonians. In the paper [3], the authors show that the Dirac
hermicity condition is not necessary and that it can be replaced by the physical condition of
space–time reflection symmetry. Since this work, the study of complex Hamiltonians, both
in the quantum and the classical system, has become of considerable theoretical interest,
without noticing much of its necessity on the experimental front. Recently, in the work [4],
the authors developed the Struckmeier and Riedel formalism in a complex phase space and
constructed invariants for some physical systems. Considering the importance of complex
dynamical systems, in the paper [5], the authors investigated the classical invariants for
some non-Hermitian anharmonic potentials in one dimension.

To study physical behavior, we need a suitable mathematical apparatus. Probably
the most well-known fractional differential operator is the Riemann–Liouville. One of
the remarkable properties of this operator is that the functions on which it acts do not
necessarily have to be continuous at the origin and do not have to be differentiable [6].
Being the first defined fractional operator, it was also a source of continuous inspiration
for other fractional operators. Due to the fact that when applied to a constant, it does not
produce the result zero, its applications in the real world are limited.

By far the most popular fractional differential operator is the Caputo one, and this is
mainly due to the fact that it presents initial conditions [7], making it perfect for modeling
physical phenomena. Unlike the Riemann–Liouville derivative, the Caputo derivative of a
constant is zero. The Caputo derivative is suitable for problems with nonlocal properties,
being able to preserve the history of the analyzed phenomenon.
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Both the derivatives in the Riemann–Liouville sense and those in the Caputo sense
have singular kernels. Wanting to introduce a class of fractional derivatives built on non-
singular kernels, Fabrizio proposed a new fractional differential [8]. The Caputo–Fabrizio
operator presents two of the most important properties of the Caputo operator: it presents
initial conditions, and the derivative of the constants is always zero [9].

Using the generalized Mittag–Leffler function, Atangana and Baleanu [10] introduced
a fractional derivative, using as in the case of the Caputo–Fabrizio derivative a nonsingular
kernel. The derivative also has nonlocal properties and preserves the good properties of
Caputo derivatives. Being based on Mittag–Leffler functions, the differential equations
based on these derivatives generalize the exponential behavior. By analytical continuity,
the Atangana–Baleanu derivatives can be extended to complex values.

All derivatives have pluses and minuses. For example, the Caputo derivative requires
that all the functions on which it operates are continuous and differentiable. On the other
hand, nonsingular kernels are not useful in describing problems that have nonzero initial
conditions. According to the latest studies, the differential equations described with the
help of nonsingular kernels can be equated with ordinary differential equations [11].

In this paper, we use fractional derivatives in the Caputo sense. The fractional differ-
ential of complex order appeared as a natural generalization of those with real order and
opened a way to fractional differential equations of complex order [12]. In this paper, we
propose the complex fractional Euler–Lagrange equation, obtained by finding the stationary
values associated with the fractional integral of complex order, intended for the description
of nonconservative systems. We further introduce the Hamiltonian for the situation where
the Lagrangian is not explicitly time dependent and conclude that it is not conservative.
We conclude the paper with the calculation of the conserved quantities associated with
nonconservative systems.

The paper is structured as follows: In Section 2, we introduce the definition of complex
fractional integrals and derive the complex fractional Euler–Lagrange equation, by finding
the stationary values associated with the fractional integral of complex order. We also study
the dynamics of damped oscillatory systems. In Section 3, we introduce the Hamiltonian
for the situation where the Lagrangian has no explicit time dependence, and in Section 4,
we establish the transformation criteria of the Noether symmetries and introduce the
conserved quantities.

2. Fractional Complex Euler–Lagrange Equation

For a function f that accepts the conditions f (x) = 0 for x ≤ 0, for a complex number
α with <(α) ≥ 0, we define the α-order integral of the function f by the relation [13]

Iα f (t) =
1

Γ(α)

∫ t

0
f (τ)(t− τ)α−1dτ . (1)

The integral Iα f (t) is absolutely convergent for α ∈ C and <(α) > 0.
In what follows, we aim to find the Euler–Lagrange equation by finding the stationary

values associated with Equation (1). For this, we define the following action

S(q) ≡ 1
Γ(α)

∫ t

0
L(q̇, q, τ)(t− τ)α−1dτ , (2)

where L(q̇, q, τ) is the Lagrangian of a system with N degrees of freedom, and q =
(q1 , . . . , qN).

It is easy to verify that

d
dτ

tα − (t− τ)α

Γ(1 + α)
≡ d

dτ
gt(τ) =

(t− τ)α−1

Γ(α)
,
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and then we can define the action as the Riemann–Stieltjes integral

S(q) =
1

Γ(α)

∫ t

0
L(q̇, q, τ)dgt(τ) .

Proposition 1. If the equations of motion support solutions with fixed boundary values, then the
Euler–Lagrange equation is written as

∂L
∂qk
− d

dτ

(
∂L
∂q̇k

)
=

1− α

t− τ

∂L
∂q̇k

, α ∈ C . (3)

Proof. We start by writing q(τ) = q0(τ) + Q(τ), with Q = (Q1 , . . . , QN), and then

S(q(τ)) =
1

Γ(α)

∫ t

0
L(q̇0(τ) + Q̇(τ), q0(τ) + Q(τ), τ)(t− τ)α−1dτ .

Keeping in the above expression only the first order of the Taylor expansion, we obtain

S(q(τ)) =
1

Γ(α)

∫ t

0
L(q̇0, q0, τ)(t− τ)α−1dτ

+
1

Γ(α) ∑
k

∫ t

0

(
∂L
∂q̇k

Q̇k(τ) +
∂L
∂qk

Qk(τ)

)
(t− τ)α−1dτ .

Using

Q̇k(t− τ)α−1 =
d

dτ

(
Qk(t− τ)α−1

)
+ (α− 1)Qk(t− τ)α−2

and integrating by parts we obtain

δS =
1

Γ(α) ∑
k

∫ t

0
Qk

(
∂L
∂qk
− d

dτ

(
∂L
∂q̇k

)
+

α− 1
t− τ

∂L
∂q̇k

)
(t− τ)α−1dτ ,

where we used the fact that the physical system is subject to fixed boundary conditions.
According to the principle of least action, δS = 0, the desired result is obtained.

Example 1. (Damped oscillatory system) We consider as a one-dimensional dynamical system a
pendulum of length l and mass m. For small oscillations around the equilibrium point, we have the
kinetic energy and potential energy given by the formulas [14]

K =
1
2

ml2θ̇2 , V =
1
2

mglθ2 ,

where θ is the angular coordinate and g the gravitational acceleration, and the derivative is obtained
with respect to τ. The Lagrangian is defined as L = K−V; i.e.,

L =
1
2

ml2θ̇2 − 1
2

mglθ2 ,

and making the notation T = t− τ and ω2 = g/l, from Equation (3), we obtain the differential
equation

θ̈(τ) +
α− 1

T
θ̇(τ) + ω2θ(τ) = 0 , (4)

where the derivative is made in relation to T.
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To solve this system of equations, we look for solutions of the form θ(τ) = Tρ ϕ(T). Since ω is
constant for a given problem, taking conveniently chosen units of measure, we set ω = 1 and obtain

T2 ϕ̈(T) + T ϕ̇(T)(2ρ + α− 1) + ϕ(T)
(

ρ(ρ + α− 2) + T2
)
= 0 .

By choosing 2ρ + α− 1 = 1, we obtain the Bessel differential equation [15]

T2 ϕ̈(T) + T ϕ̇(T) + ϕ(T)
(

T2 − ρ2
)
= 0 .

This equation admits two classes of solutions, called the Bessel function of the first kind Jρ(T)
and the Bessel function of the second kind Yρ(T), with ρ = (2− α)/2. The two solutions of
Equation (4) are

θ(τ) = Tρ Jρ(T) , (5)

and
χ(τ) = TρYρ(T) . (6)

The complex contribution of α appears in ρ and therefore in θ.
The most general solution is the linear combination of the two solutions. We can choose, for

example, the Hankel functions of the first H1
ρ(T) and the second kind H2

ρ(T), and we can write the
solutions of Equation (4) as π1(τ) = TρH1

ρ(T) and π2(τ) = Tρ H2
ρ(T).

In Figure 1, we have represented the solution (5) for the case where α ∈ R, and in
Figure 2, we have represented the same solution in the case of α ∈ C. In Figure 2, we plotted
θ(τ) for the situation where α = 0.5 + iα2, with different values of α2, concluding that the
graph of the function depends on the imaginary part of α. On the other hand, compared to
Figure 1, in Figure 2, all graphs for α = 0.5 + iα2 intersect the graph corresponding to the
real case, also outside the point T = 0.

0.2 0.4 0.6 0.8 1.0
τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ(τ)

Figure 1. θ(τ) for t = 1.1, α2 = 0, with α1 = 0.7 (dashed, opal), α1 = 0.8 (dotted, brown), α1 = 0.9
(dashed–dotted, blue), and α1 = 1 (continuous, purple).

0.2 0.4 0.6 0.8 1.0
τ

0.1

0.2

0.3

0.4

0.5

0.6

Re[θ(τ)]

Figure 2. <(θ(τ)) for t = 1.1, α1 = 0.5, with α2 = 0.9 (dashed, opal), α2 = 0.6 (dotted, brown),
α2 = 0.3 (dashed–dotted, blue), and α2 = 0 (continuous, purple).
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In Figure 3, we have represented the solution (6) for the case where α ∈ R, and in
Figure 4, we have represented the same solution in the case of α ∈ C. In Figure 2, we plotted
χ(τ) for the situation where α = 0.5 + iα2, with different values of α2, concluding that the
graph of the function depends on the imaginary part of α. The behavior of this solution is
very different from that of the solution (5), which is negative and not zero in T = 0. Also,
regardless of whether α is real real or complex, all graphs intersect the ordinary case where
α = 1.

0.2 0.4 0.6 0.8 1.0
τ

-0.8

-0.7

-0.6

-0.5

-0.4

Re[χ(τ)]

Figure 3. χ(τ) for t = 1.1, α2 = 0, with α1 = 0.7 (dashed, opal), α1 = 0.8 (dotted, brown), α1 = 0.9
(dashed–dotted, blue), and α1 = 1 (continuous, purple).

0.2 0.4 0.6 0.8 1.0
τ

-0.70

-0.65

-0.60

-0.55

Re[χ(τ)]

Figure 4. <(χ(τ)) for t = 1.1, α1 = 0.5, with α2 = 0.9 (dashed, opal), α2 = 0.6 (dotted, brown),
α2 = 0.3 (dashed–dotted, blue), and α2 = 0 (continuous, purple).

Next, we analyze the solutions expressed with the help of Hankel functions. When
α ∈ R, both the function π1(τ) and π2(τ) have graphs similar to the one represented in
Figure 1. When α ∈ C, the situation changes. For the same setup as the one in Figure 1,
in Figure 5 and in Figure 6, we have represented the solutions <

(
π1(τ)

)
and <

(
π2(τ)

)
,

respectively. In Figure 5, all graphs intersect the ordinary situation α = 1 but in Figure 6
none. We can conclude that with the help of the linear combination of the two solutions (5)
and (6) very different behaviors can be obtained, which can correspond to certain situations
existing in nature.

0.2 0.4 0.6 0.8 1.0
τ

0.1

0.2

0.3

0.4

0.5

0.6

Re[π1(τ)]

Figure 5. <
(
π1(τ)

)
for t = 1.1, α1 = 0.5, with α2 = 0.9 (dashed, opal), α2 = 0.6 (dotted, brown),

α2 = 0.3 (dashed–dotted, blue), and α2 = 0 (continuous, purple).
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0.2 0.4 0.6 0.8 1.0
τ

-0.5

0.5

Re[π2(τ)]

Figure 6. <
(
π2(τ)

)
for t = 1.1, α1 = 0.5, with α2 = 0.9 (dashed, opal), α2 = 0.6 (dotted, brown),

α2 = 0.3 (dashed–dotted, blue), and α2 = 0 (continuous, purple).

Remark 1. To see how the nature of α influences Equation (4), we approach another way of solving.
We make the notations α = α1 + iα2, with {α1, α2} ∈ R and θ = θ1 + iθ2, with {θ1, θ2} defined
on R, obtaining the system of equations{

θ̈1 +
α1−1

T θ̇1 − α2
T θ̇2 + ω2θ1 = 0 ,

θ̈2 +
α1−1

T θ̇2 +
α2
T θ̇1 + ω2θ2 = 0 ,

in which the solutions θ1 and θ2 are coupled. If in Equation (4) α ∈ R, (α2 = 0), we obtain a system
where the equations of motion for θ1 and θ2 are decoupled. Consequently, only the complex nature
of α connects this system of equations.

Remark 2. In Equation (4), the second term is the dissipative one and is a consequence of the
fractional calculation. If α = 1, the dissipative term is canceled. If in Equation (4), without a
dissipative term, we add a small imaginary contribution iε, i.e.,

θ̈ +
iε
T

θ̇ + ω2θ = 0 ,

then the solution of the equation coincides with the solution of the complex fractional theory where
ε = α2. This means that the Euler–Lagrange equation that is associated with a fractional derivative
with complex order corresponds to a complex situation.

3. Hamiltonian Dynamics

In this section, we analyze the situation where the Lagrangian does not have an explicit
time dependence, being able to define the Hamiltonian as

H(q, q̇) = ∑
k

q̇k
∂L
∂q̇k
− L(q, q̇) . (7)

Theorem 1. The Hamiltonian defined above is not a constant of motion; its derivative with respect
to time has the form

dH
dτ

=
α− 1
t− τ ∑

k
q̇k

∂L
∂q̇k

. (8)

We are interested in the real part of the Hamiltonian derivative above being zero, since the imaginary
part is not measurable. We obtain the condition

<
(

∑
k
(α− 1)q̇k

∂L
∂q̇k

)
= 0 . (9)
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Proof. Starting from Equation (7), we can write

dH
dτ

= ∑
k

(
q̈k

∂L
∂q̇k

+ q̇k
d

dτ

(
∂L
∂q̇k

))
− dL(q, q̇)

dτ
,

or

dH
dτ

= ∑
k

q̇k

(
d

dτ

(
∂L
∂q̇k

)
− ∂L

∂qk

)
,

which together with Equation (3), concludes the demonstration.
If we write the Hamiltonian of the system in the form H = H1 + iH2 and ask that the

time derivative of the real part of the Hamiltonian be canceled, we obtain Equation (9).

Remark 3. It is observed from Equation (8) that only if α ∈ C is condition (9) obtained. If α ∈ R,
then the only possibility for Equation (8) to be an equation of motion is the nonfractional situation
corresponding to α = 1.

Example 2. (Damped oscillatory system) For this case, we have only one variable, and Equation (9)
is written

<
(
(α− 1)θ̇

∂L
∂θ̇

)
= <

(
(α1 + iα2 − 1)(θ̇1 + iθ̇2)

2
)
= 0 ,

obtaining the condition

(α1 − 1)
(

θ̇2
1 − θ̇2

2

)
− 2α2θ̇1θ̇2 = 0 . (10)

The above equation together with solution (5) determines a spectrum of values for τ. The easiest
way to solve this equation is geometrically. From Equation (8), we know that we have an infinity of
solutions for α = 1, and from Equation (10), we obtain a discrete spectrum of solutions if α ∈ C. So
the joint spectrum of solutions is given by the intersection of the graphs α = 1 with α = α1 + iα2,
for a given α1 and α2.

In Figure 7, for the case where t = 1.1, we have represented with continuous (purple) α = 1
and with dashed–dotted (blue) α = 1 + i 0.1. The point of intersection gives us the solution of
Equation (10). Equation (10) does not always have a solution. In Figure 8, we have represented the
graphs of θ(τ) for α = 1 (continuous, purple) and for α = 0.5 + i 0.1 (dashed–dotted, blue), and it
can be seen that the two graphs do not intersect.

0.2 0.4 0.6 0.8 1.0
τ

0.2

0.4

0.6

Re[θ(τ)]

Figure 7. <(θ(τ)) for t = 1.1, with α = 1 + i 0.1 (dashed–dotted, blue), and α = 1 (continuous,
purple).
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0.2 0.4 0.6 0.8 1.0
τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re[θ(τ)]

Figure 8. <(θ(τ)) for t = 1.1, with α = 0.5 + i 0.1 (dashed–dotted, blue), and α = 1 (continuous,
purple).

Example 3. If the Lagrangian does not explicitly depend on the coordinates qk, we have ∂L
∂qk

= 0,
and then Equation (3) becomes

d
dτ

(
∂L
∂q̇k

)
+

1− α

t− τ

∂L
∂q̇k

= 0 ,

from which we obtain

ln
(

∂L
∂q̇k

)
= (1− α) ln(τ − t) + ln C ,

which gives

∂L
∂q̇k

= C ln(τ − t)(1−α) .

By entering this result in Equation (9), we obtain

<
(

C(α− 1)2 ln(τ − t)
)
= 0 ,

which translates to α1 = 1, which is an ordinary derivative. In conclusion, if the Lagrangian does
not explicitly depend on the coordinates qk, for the Hamiltonian to be a constant of motion, we must
have the condition <(α) = 1.

Example 4. In the situation where the Lagrangian does not explicitly depend on the coordinates
q̇k, it is directly seen from Equation (8) that dH

dτ = 0 , and therefore the Hamiltonian is a constant
of motion.

4. Complex Noether Symmetries

In this section, we establish the criteria for the transformation of Noether symme-
tries [16,17]. The first observation we make is that, according to Equation (3), we define the
generalized nonpotential force

Fk =
1− α

t− τ

∂L
∂q̇k

.

Definition 1. We say that Equation (2) is invariant to generalized quasi-infinitesimal transforma-
tions of the finite transformation group Gr

τ∗ = τ , q∗k (τ) = qk(τ) + εiξ
i
k(τ, q) ,
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if ∫ t

0
L(q̇, q, τ)(t− τ)α−1dτ =

∫ t

0
L(q̇∗, q∗, τ)(t− τ)α−1dτ

−
∫ t

0

(
d(εiGi)

dt
+ Fkδqk

)
(t− τ)α−1dτ , (11)

where εi, i = 1, r, Gi = Gi(τ, q, q̇), and where ξ i
k ∈ C are called the complex infinitesimal

generators of the transformation.

Proposition 2. The generalized quasi-invariant tranformations satisfy the following equation

∂L
∂q̇k

ξ̇ i
k +

∂L
∂qk

ξ i
k −

1− α

t− τ

∂L
∂q̇k

ξ i
k − Ġi = 0 . (12)

Proof. Considering the fact that

L(q̇∗, q∗, τ) = L(q̇k + εi ξ̇
i
k, qk + εiξ

i
k, τ) ,

differentiating both parts of Equation (11) to εi, and then making εi = 0, the required result
is obtained.

Definition 2. We call a function I(q̇, q, τ) a conserved quantity if

∂I(q̇, q, τ)

∂τ
= 0 .

Proposition 3. The generalized quasi-invariant tranformations given by Equation (12) preserve
the following quantity

Iα =
∂L
∂q̇k

ξ i
k − Gi . (13)

Proof. Equation (12) together with Equation (3)

∂L
∂q̇k

ξ̇ i
k +

d
dt

(
∂L
∂q̇k

)
ξ i

k − Ġi = 0 ,

or

d
dt

(
∂L
∂q̇k

ξ i
k − Gi

)
= 0 ,

and the demonstration is completed.

Example 5. (Damped oscillatory system) To calculate the conserved quantities associated with the
damped oscillatory system, we start from Equation (12)

ml2θ̇ξ̇ i
k + ml2θ̈ξ i

k − Ġ = 0 ,

or after rearrangement

θ̈ +
ξ̇

ξ
θ̇ − 1

ml2ξ
Ġ = 0 .
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Comparing this equation with Equation (4), we can make the identifications

ξ̇

ξ
=

α− 1
t− τ

, Ġ = −ml2ω2ξθ .

It is easy to calculate

ξ(τ) = (t− τ)(1−α) ,

a result that allows the analytical calculation of G(τ) in the case of α = 1, which is a result that
can be expressed with the help of the hypergeometric function. If α 6= 1, the integral can be solved
numerically. By inserting the values of ξ(τ) and G(τ) into Equation (13), the conserved quantity
is determined.

5. Conclusions

In this work we applied complex fractional calculus to obtain complex Euler–Lagrange
equations, specific to nonconservative systems. Next, we introduced the Hamiltonian for
the situation in which the Lagrangian does not explicitly depend on time, and we concluded
that when the Hamiltonian derivative with respect to time is zero, the fractional trajectory
intersects the classical trajectory, i.e., the one corresponding to α = 1. For example, we
considered the damped oscillatory system and learned that this behavior is specific to the
complex case described in Figure 8, and in the real case the trajectories do not intersect, as
illustrated in Figure 7. Finally, we calculated the quantities associated with the complex
fractional action.

Chaos is understood as the sensitivity of the solutions of a dynamic system to the initial
conditions. There is a close connection between chaos and fractional derivatives in the
Caputo sense, primarily due to the fact that the fractional derivatives in the Caputo sense
are sensitive to the initial conditions. Differential equations that use differential operators
in the Caputo sense have the advantage that they obtain ordinary dynamics when the
fractional parameter is one. There is a rule, called order, which clearly states that we cannot
obtain chaotic behavior with a system consisting of less than three differential equations.
The exception to this rule appears when the system contains fractional derivatives [18].
There is also the opposite procedure, in which the use of Caputo derivatives stabilizes the
chaotic behavior [19], for example, in optimal control problems. One of the basic reasons for
the introduction of new fractional derivatives consists in building operators that preserve
the history of interactions. On the other hand, in the paper [11], it was demonstrated
that only fractional operators containing singular kernels satisfy this property. Last but
not least, it should be stated that the solutions of the fractional equations are generally
expressed using the Mittag–Leffler functions Eα(t), where α is the fractional coefficient.
These functions are very sensitive to the variation of the dynamic parameter t. For example,
E0.25(3) ∼ 1035, E0.25(4) ∼ 10111, and E0.25(5) ∼ 10272. In this work, we use the Riemann–
Liouville integral operator, because it is the inverse operator of the fractional derivative in
the Caputo sense.

In general, the complexity seems to take into account new features of the data, and its
role is to introduce constraints into the analyzed problems. We are also familiar with the
fact that the laws of physics work well when studying closed systems, but the functionality
of the theory is questioned in the case of open systems. The complexity of a dynamic
system is a step forward in open systems accounting. Complex fractional calculus can also
be seen as a new tool for the study of open chaotic systems.

In general, complexification is conducted by rewriting the real differential equations in
complex form, and in the end, to describe the physical solution, the real part is considered.
Differential equations of motion can be modified by replacing ordinary derivatives with
complex fractional derivatives, characterized by a number of free parameters. In the
method proposed in this paper, a single free parameter α ∈ C appears.
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Mathematical models assume simplifications, and crucial factors can be found among
the omitted factors. In this context, the fractional calculus by means of the factional
parameter can bring significant corrections in the description of the dynamics of physical
systems. Considering the chaotic behavior around the equilibrium points, a similar analysis
can be extended beyond damped oscillatory systems. But we learned from this lesson that
the complex part of alpha consistently changes the dynamics of solutions, and the existence
of this wide range of behaviors can allow the identification of concrete situations existing
in nature. We also saw that there are situations where the fractional trajectory intersects the
classical trajectory.
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