
Citation: Akimova, E.N.;

Sultanov, M.A.; Misilov, V.E.;

Nurlanuly, Y. Parallel Algorithm for

Solving the Inverse Two-Dimensional

Fractional Diffusion Problem of

Identifying the Source Term. Fractal

Fract. 2023, 7, 801. https://doi.org/

10.3390/fractalfract7110801

Academic Editors: Haci Mehmet

Baskonus, Boying Wu and Xiuying Li

Received: 11 August 2023

Revised: 14 October 2023

Accepted: 30 October 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Parallel Algorithm for Solving the Inverse Two-Dimensional
Fractional Diffusion Problem of Identifying the Source Term
Elena N. Akimova 1,2 , Murat A. Sultanov 3,* , Vladimir E. Misilov 1,4 and Yerkebulan Nurlanuly 3

1 Ural Branch of RAS, Krasovskii Institute of Mathematics and Mechanics, S. Kovalevskaya Street 16,
Ekaterinburg 620108, Russia; aen15@yandex.ru

2 Department of Information Technologies and Control Systems, Institute of Radioelectronics and Information
Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia

3 Department of Mathematics, Faculty of Natural Science, Khoja Akhmet Yassawi International Kazakh-Turkish
University, Turkistan 160200, Kazakhstan; yerkebulan.nurlanuly@ayu.edu.kz

4 Department of High Performance Computing Technologies, Institute of Natural Sciences and Mathematics,
Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia; v.e.misilov@urfu.ru

* Correspondence: murat.sultanov@ayu.edu.kz

Abstract: This paper is devoted to the development of a parallel algorithm for solving the inverse
problem of identifying the space-dependent source term in the two-dimensional fractional diffusion
equation. For solving the inverse problem, the regularized iterative conjugate gradient method is
used. At each iteration of the method, we need to solve the auxilliary direct initial-boundary value
problem. By using the finite difference scheme, this problem is reduced to solving a large system
of a linear algebraic equation with a block-tridiagonal matrix at each time step. Solving the system
takes almost the entire computation time. To solve this system, we construct and implement the
direct parallel matrix sweep algorithm. We establish stability and correctness for this algorithm. The
parallel implementations are developed for the multicore CPU using the OpenMP technology. The
numerical experiments are performed to study the performance of parallel implementations.

Keywords: time-fractional diffusion equation; Caputo fractional derivative; inverse problems; source
term identification; finite-difference scheme; block-elimination method; parallel matrix sweep method;
parallel computing

1. Introduction

Numerous physical phenomena exhibit the characteristics of memory retention and
nonlocal effects [1]. The formulation of mathematical frameworks to describe these phe-
nomena often involves the utilization of fractional calculus [2]. Various fractional derivative
operators possess distinct definitions and inherent properties. The fractional differential
equation may be applied to a wide range of fields such as anomalous diffusion [3–5],
viscoelasticity [6], ferroelectric media [7], fractional multi-pole and neuron modelling [8],
and fractional Lèvy motion [9]. The review paper [10] presents a comprehensive survey
on real-world applications of fractional calculus in various fields, namely, physics; control,
signal and image processing; mechanics and dynamic systems; biology; environmental
science; material studies; economics; and engineering.

The solution to direct and inverse problems for differential equations with fractional
derivatives typically incurs substantial computational costs due to their nonlocal character-
istics. Different numerical techniques are available for solving approximate initial-boundary
problems for fractional differential equations [11–14], for example, the finite difference
method. An established approach to enhance computational efficiency involves the utiliza-
tion of parallel computing [15–17]. The problems for fractional differential equations may
be solved using various original parallel algorithms [18,19].

Additionally, while forward problems are usually well developed, the inverse prob-
lems may present significant challenges to achieve the stable solutions [20]. Here, by

Fractal Fract. 2023, 7, 801. https://doi.org/10.3390/fractalfract7110801 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7110801
https://doi.org/10.3390/fractalfract7110801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-4462-5817
https://orcid.org/0000-0002-0068-0996
https://orcid.org/0000-0002-5565-0583
https://orcid.org/0000-0003-1557-6857
https://doi.org/10.3390/fractalfract7110801
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7110801?type=check_update&version=1

Fractal Fract. 2023, 7, 801 2 of 21

direct problems, we mean the classical initial boundary problem of finding the unknown
function from equation and additional boundary and initial conditions. Inverse problems
include identifying unknown coefficients of an equation or unknown boundary or initial
conditions [21]. In this case, a priori information is used to ensure the uniqueness of the
solution. Such tasks are often incorrect. Regularization methods are used to achieve correct-
ness. Hence, the development and implementation of parallel algorithms aimed at solving
inverse problems emerging from fractional differential equations is of great importance.

In [22], an algorithm for solving the inverse problem of identifying the space-dependent
source is constructed on the base of regularized Landweber iterative method. An itera-
tive algorithm on the basis of the conjugate gradient method is constructed in [23]. For
smoothing the values, the authors used the Savitzky–Golay filter.

In [24], existence, uniqueness, and stability estimates are established for the inverse
source problem of the recovery of a space-dependent source term for a generalized sub-
diffusion equation. The Tikhonov regularization method was proposed for solving the
problem of reconstruction of a time-dependent source term in a time-fractional diffusion-
wave equation [25]. Convergence estimates and parameted choice rules for Tikhonov
regularization for the inverse source problem for a time fractional diffusion equation were
proposed in [26].

In our previous works [27,28] parallel algorithms for solving direct and inverse prob-
lems for one-dimensional time-fractional diffusion equation are constructed on the basis
of the parallel sweep method for solving the systems of linear algebraic equations with
tridiagonal matrices.

The goal of our work is to construct and implement an efficient algorithm for solving
the inverse problem of identifying the stationary source term for the two-dimensional
time-fractional diffusion equation. To solve the inverse problem, we apply the regularized
iterative conjugate gradient method. It requires solving the auxilliary direct subproblem
at each iteration. By using the finite difference scheme, we reduce the direct problem to
solving a series of systems of linear algebraic equations (SLAE) with block tridiagonal
matrices. Note that solving these SLAEs for the two-dimensional fractional diffusion
problem takes most of the computation time (up to 99% of the total computational time).
We construct and establish the stability and correctness of the direct parallel matrix sweep
method for solving such systems. We have developed a parallel algorithm and a parallel
code for solving the inverse problem. The code is intended for multicore processors and is
implemented using C++17 and OpenMP 4.0 extension. In order to evaluate the validity
of developed numerical methods and the performance of parallel algorithms, numerical
experiments are conducted. In the future, we plan to use our algorithm and code for
solving applied problems.

Below is a breakdown of the article’s structure. In Section 2, we formulate the direct
and inverse problems and introduce the discretization and difference scheme for solving
the direct initial-boundary value problem. We demonstrate the block-tridiagonal structure
of the coefficient matrix of the SLAE. In Section 3, we describe the direct methods for
solving SLAEs with the block-tridiagonal matrix. We establish the stability and correctness
of the parallel matrix sweep algorithm. In Section 4, we describe the conjugate gradient
algorithm for solving the inverse problem. Section 5 describes the development of the
parallel code that implements the numerical algorithms described above. Section 6 presents
the results of the performed numerical experiments. In Section 7, we discuss these results.
Section 8 concludes our work.

2. Problem
2.1. Statement of the Problem

Consider the basis time-fractional elliptic partial differential equation in the following
form:

∂αU
∂tα

+ LU = ψ(x)η(x, t), x ∈ Ω, 0 < t ≤ T. (1)

Fractal Fract. 2023, 7, 801 3 of 21

Here, x = (x1, x2, . . . , xd) ∈ Ω =
d

∏
i=1

[0, γi], 0 < α < 1, q(x, t) 6= 0 and L is an

elliptic operator

LU = −
d

∑
i=1

∂

∂xi

(
ki(x, t)

∂U
∂xi

)
, xi ∈ (0, γi), 0 < t ≤ T.

The boundary condition is

U(x, t) = 0, x ∈ δΩ. (2)

The initial condition is

U(x, 0) = g0(x), x ∈ Ω. (3)

where g0(x) is the given functions.
For simplicity, we have formulated our fractional diffusion equation with homo-

geneous Dirichlet boundary conditions. Note that the problem with inhomogeneous
boundary conditions may be reduced to a problem with homogeneous conditions. To
do this, we need to represent function U as the sum of a some function U0 that satisfies
the inhomogeneous boundary conditions (for example, found by solving the Dirichlet
problem for the Laplace’s equation) plus a remainder function V that will satisfy the
homogeneous conditions U(x, t) = U0(x, t) + V(x, t). The algorithms and approaches pre-
sented below may be utilized for more general formulations with the Neumann or mixed
boundary conditions.

For this study, we consider the Caputo fractional derivative with order α in the
form [29]

Dα f (x) =
1

Γ(m− α)

x∫
0

f (m)(t)
(x− t)α−m+1 dt,

with α ∈ (m− 1, m) , m ∈ N, x > 0.
Assuming that the solution U(x, t) exists and satisfies the Dirichlet boundary condi-

tions, for the case of 0 < α < 1 (m = 1) we can consider the following formula for the
Caputo fractional partial derivative:

∂αU(x, t)
∂tα

=
1

Γ(1− α)

t∫
0

∂U(x, s)
∂s

(t− s)−αds. (4)

The direct initial boundary problem consists in finding the unknown function U(x, t)
when all other components of Equation (1) are known.

In the present work, we study the inverse problem of restoring the space-dependent
right-hand part ψ(x). Thus, the problem consists in finding the pair of unknown functions
[U(x, t), ψ(x)]. Additional information for the inverse problem is given in the form of
final overdetermination

U(x, T) = ϕ(x), x ∈ Ω. (5)

Conditions for the uniqueness of the solution of this inverse problem for a general
multi-dimensional equation are formulated in [30].

2.2. Discretization of Equation and Difference Scheme

In this paper, for simplicity, we will consider the case of d = 2 and k1 = k2 = 1. For
an arbitrary elliptic operator, the general structure of the coefficient matrix of the SLAE
remains the same, and the methods and algorithms presented below will be applicable.

Fractal Fract. 2023, 7, 801 4 of 21

Equation (1) will take the following form:

∂αU(x1, x2, t)
∂tα

=
∂2U(x1, x2, t)

∂x2
1

+
∂2U(x1, x2, t)

∂x2
2

+ ψ(x1, x2)η(x1, x2, t), (6)

where U(x1, x2, t) and ψ(x1, x2) are the sought functions; a(x1, x2), b(x1, x2), c(x1, x2),
η(x1, x2, t) are the given functions; and 0 < α < 1 is the the order of the fractional
derivative.

The problem is considered for the area Ω : 0 ≤ x1 ≤ γ1, 0 ≤ x2 ≤ γ2 and time interval
0 ≤ t ≤ T.

To discretize Equation (6), we construct the partitioning on the solution domain.
On intervals [0, γ1], [0, γ2], we introduce the grid with n and N points. The steps are
h1 = ∆x1 = γ1/n and h2 = ∆x2 = γ2/N. For the time interval [0, T], we use the uniform
grid of Ñ points. The step is τ = ∆t = T/Ñ. We denote the nodes as x1,i1 = i1h1, x2,i2 =

i2h2, i1 ∈ {0, 1, . . . , n}, i2 ∈ {0, 1, . . . , N}, and tj = jτ, j ∈
{

0, 1, . . . , Ñ
}

. The values of
discretized functions U and others are denoted as Ui1,i2,j = U(x1,i1 , x2,i2 , tj).

In this work, the Grunwald–Letnikov formula [2] is used for approximating the Caputo
fractional derivative in Equation (6)

Dα
t Ui1,i2,j

∼= σα,τ

j

∑
`=1

w(α)
` (Ui1,i2,j−`+1 −Ui1,i2,j−`),

σα,τ =
1

Γ(1− α)(1− α)τα
, w(α)

` = `1−α − (`− 1)1−α.

(7)

The implicit two-step finite difference scheme is used for approximating Equation (6).
For the grid point (xi1 , xi2) at time layer tj, the difference equation has the form

σα,τ

j

∑
`=1

w(α)
` (Ui1,i2,j−`+1 −Ui1,i2,j−`) =

=
Ui1−1,i2,j − 2Ui1,i2,j + Ui1+1,i2,j

h2
1

+
Ui1,i2−1,j − 2Ui1,i2,j + Ui1,i2+1,j

h2
2

+ ψi1,i2 ηi1,i2,j .

(8)

2.3. Constructing the SLAE

Let us apply the following transformations:

σα,τ(Ui1,i2,j −Ui1,i2,j−1) + σα,τ

j

∑
`=2

w(α)
` (Ui1,i2,j−`+1 −Ui1,i2,j−`) =

= ri1,i2Ui1,i2−1,j + pi1,i2Ui1−1,i2,j + (−2pi1,i2 − 2qi1,i2)Ui1,i2,j+

+ pi1,i2Ui1+1,i2,j + ri1,i2Ui1,i2+1,j + ψi1,i2 ηi1,i2,j ;

− ri1,i2Ui1,i2−1,j − pi1,i2Ui1−1,i2,j + qi1,i2Ui1,i2,j − pi1,i2Ui1+1,i2,j − ri1,i2Ui1,i2+1,j =

= σα,τ

(
Ui1,i2,j−` −

j

∑
`=2

w(α)
` (Ui1,i2,j−`+1 −Ui1,i2,j−`)

)
+ ψi1,i2 ηi1,i2,j ,

where
pi1,i2 =

1
h2

1
, ri1,i2 =

1
h2

2
, qi1,i2 = σα,τ + 2pi1,i2 + 2qi1,i2 .

Let us denote

fi1,i2,j = σα,τ

(
Ui1,i2,j−` −

j

∑
`=2

w(α)
` (Ui1,i2,j−`+1 −Ui1,i2,j−`)

)
+ ψi1,i2 ηi1,i2,j , j > 1,

fi1,i2,1 = σα,τUi1,i2,0 + ψi1,i2 ηi1,i2,0 .

(9)

Fractal Fract. 2023, 7, 801 5 of 21

The difference equation will take the form

−ri1,i2Ui1,i2−1,j − pi1,i2Ui1−1,i2,j + qi1,i2Ui1,i2,j − pi1,i2Ui1+1,i2,j − ri1,i2Ui1,i2+1,j = fi1,i2,j . (10)

Note that the values U0,i2,j, Un,i2,j, i2 ∈ {0, 1, . . . , N} and Ui1,0,j, Ui1,N,j, i1 ∈ {0, 1, . . . , n}
at the boundaries are given. Then, for all inner points (xi1 , xi2), i1 ∈ {1, 2, . . . , n− 1},
i2 ∈ {1, 2, . . . , N − 1}, difference Equation (10) constitutes an SLAE

AY = F , (11)

where A is the block-tridiagonal matrix of dimension (n− 2)(N − 2)× (n− 2)(N − 2)

A =



C1 −B1

−A2 C2 −B2

.

−Ai2 Ci2 −Bi2

.

−AN−2 CN−2 −BN−2

−AN−1 CN−1



,

i2 ∈ {1, 2, . . . , N − 1}.

Blocks Ai2 , Bi2 , Ci2 of dimension (n− 2)× (n− 2) are defined as

Ai2 = Bi2 =



r1,i2

r2,i2

. . .

ri1,i2

. . .

rn−2,i2

rn−1,i2



,

i1 ∈ {1, 2, . . . , n− 1},

Fractal Fract. 2023, 7, 801 6 of 21

Ci2 =



q1,i2 −p1,i2

−p2,i2 q2,i2 −p2,i2

.

−pi1,i2 qi1,i2 −pi1,i2

.

−pn−2,i2 qn−2,i2 −pn−2,i2

−pn−1,i2 qn−1,i2



,

i1 ∈ {1, 2, . . . , n− 1}.

The sought vector consists of values Ui1,i2,j collapsed in a row-major order

Y =
[
Y1, Y2, . . . , YN−1

]ᵀ
,

Y1 =
[
U1,1,j, U2,1,j, . . . , Un−2,1,j, Un−1,1,j

]
;

Y2 =
[
U1,2,j, U2,2,j, . . . , Un−2,2,j, Un−1,2,j

]
;

. . .

YN−1 =
[
U1,N−1,j, U2,N−1,j, . . . , Un−1,N−1,j

]
.

Right-hand vector is constructed similarly, taking into account the boundary points

F =
[

F1, F2, . . . , FN−1

]ᵀ
;

F1 =
[

F1,1,j + r1,1U1,0,j + p1,1U0,1,j, F2,1,j + r2,1U2,0,j, . . . ,

Fn−2,1,j + rn−2,1Un−2,0,j, Fn−1,1,j + rn−1,0Un−2,0,j + pn−1,1Un,1,j

]
;

F2 =
[

F1,2,j + p1,2U0,2,j, F2,2,j, . . . , Fn−1,2,j, Fn−1,2,j + pn−1,2Un,2,j

]
;

. . .

FN−1 =
[

F1,N−1,j + r1,N−1U1,N,j + p1,N−1U0,N−1,j, F2,N−1,j + r2,N−1U2,N,j, . . . ,

Fn−1,N−1,j + rn−1,N−1Un−1,N,j + pn−1,N−1Un,N−1,j

]
.

To numerically solve the initial boundary problem, we need to solve system (11) at
each subsequent time level j = 1, . . . , Ñ.

Fractal Fract. 2023, 7, 801 7 of 21

3. Numerical Methods for Solving the SLAE

To solve the SLAEs with various matrix structures, different numerical methods may
be used. In this work, for solving the block-tridiagonal SLAE (11) we will use the block-
elimination method [31] and parallel matrix sweep method [32].

3.1. Block-Elimination Method

Let us consider an SLAE with a block tridiagonal matrix in the following form:
C0Y0 − B0Y1 = F0 , i = 0,

−AiYi−1 + CiYi − BiYi+1 = Fi , i = 1, 2, . . . , N − 1,
−ANYN−1 + CNYN = FN , i = N,

(12)

where Yi are the sought vectors of the n dimension; Fi are the given right-hand vectors of
the n dimension; and Ai, Bi, Ci are the square matrices of the n× n dimension.

The direct block elimination (or matrix sweep) method is intended for solving the
SLAE with block tridiagonal matrix. The auxilliary coefficients αi (matrices of n × n
dimension) and βi (vectors of n dimension) are found by the reccurent formulae (the
forward elimination phase)

α0 = C−1
0 B0, αi = (Ci − Aiαi)

−1Bi, i = 1, 2, . . . , N − 1,

β0 = C−1
0 F0, βi = (Ci − Aiαi)

−1(Fi + Aiβi−1), i = 1, 2, . . . , N.
(13)

Solution vectors Yi are found by formulae (the backward substitution phase)

YN = βN , Yi = αiYi+1 + βi, i = N − 1, N − 2, . . . , 1, 0. (14)

Remark 1. The algorithms (13) and (14) are correct if matrices C0 and (Ci− Aiαi) are nonsingular
for i = 1, 2, . . . , N. The algorithm is stable if ‖αi‖ ≤ 1 for i = 1, 2, . . . , N.

The stability condition for this algorithm is the following.

Lemma 1. If matrices Ci, i = 0, 1, . . . , N are nonsingular, matrices Ai, Bi, i = 1, . . . , N − 1 are
non-null, and conditions

‖C−1
0 B0‖ ≤ 1, ‖C−1

N AN‖ ≤ 1, ‖C−1
i Ai‖+ ‖C−1

i Bi‖ ≤ 1, i = 1, . . . , N − 1, (15)

are satisfied where at least one of the inequalities is strict; then, the algorithms (13) and (14) are stable
and correct.

Remark 2. The coefficients αi, βi are dependent on the previous ones αi−1, βi−1. Thus, we cannot
distribute these calculations to independent workers. Thus, the parallelization is limited to operations
of matrix inversion and multiplication.

3.2. Parallel Matrix Sweep Method

To construct a direct parallel algorithm, let us split the interval i = 0, 1, . . . , N into L
subintervals of length M such as N = L×M. Consider the unknown values YK, K = 0,
M, . . . , N as parameters.

Now, let us construct the reduced SLAE for YK. To do this, consider the following
problems for the interval (K, K + M)

−AiU
1
i−1 + CiU

1
i − BiU

1
i+1 = 0 , U1

K = (10. . . 0) , U1
K+M = (00. . . 0),

.

.
−AiU

n
i−1 + CiU

n
i − BiU

n
i+1 = 0 , Un

K = (00. . . 1) , Un
K+M = (00. . . 0),

(16)

Fractal Fract. 2023, 7, 801 8 of 21


−AiV

1
i−1 + CiV

1
i − BiV

1
i+1 = 0 , V1

K = (00. . . 0) , V1
K+M = (10. . . 0),

.

.
−AiV

n
i−1 + CiV

n
i − BiV

n
i+1 = 0 , Vn

K = (00. . . 0) , Vn
K+M = (00. . . 1),

(17)

{
−AiWi−1 + CiWi − BiWi+1 = Fi , WK = (00. . . 0) , WK+M = (00. . . 0), (18)

where i = K + 1, . . . , K + M− 1.

Theorem 1. If U1
i , . . . , Un

i are solutions of auxilliary problem (16); V1
i , . . . , Vn

i are solutions of
problem (17); Wi are solutions of problem (18); and Yi are solutions of the basic problem (12) for
interval (K, K+M), then

Yi = (U1
i U2

i . . . Un
i)YK + (V1

i V2
i . . . Vn

i)YK+M + Wi. (19)

Proof. Consider system (12) for the inner subinterval (K, K + M):

−AiYi−1 + CiYi − BiYi+1 = Fi, i = K + 1, . . . , K + M− 1. (20)

This system contains the parameters YK and YK+M.
Let us rewrite (20) in the form

CK+1YK+1 − BK+1YK+2 = AK+1YK + FK+1,
−AiYi−1 + CiYi − BiYi+1 = Fi , i = K + 2, . . . , K + M− 2,
−AK+M−1YK+M−2 + CK+M−1YK+M−1 = BK+M−1YK+M + FK+M−1.

(21)

In this system (21), AK+1YK and BK+M−1YK+M have the following form:

AK+1YK =

 A11
K+1 . . . A1N

K+1
.

AN1
K+1 . . . ANN

K+1

 Y1
K

. . .
YN

K

 =

=

 A11
K+1
. . .

AN1
K+1

Y1
K + · · ·+

 A1N
K+1
. . .

ANN
K+1

YN
K =

= A1
K+1Y1

K + A2
K+1Y2

K + · · ·+ AN
K+1YN

K ; (22)

BK+M−1YK+M =

 B11
K+M−1 . . . B1N

K+M−1
.

BN1
K+M−1 . . . BNN

K+M−1

 Y1
K+M
. . .

YN
K+M

 =

=

 B11
K+M−1

. . .
BN1

K+M−1

Y1
K+M + · · ·+

 B1N
K+M−1

. . .
BNN

K+M−1

YN
K+M =

= B1
K+M−1Y1

K+M + B2
K+M−1Y2

K+M + · · ·+ BN
K+M−1YN

K+M.

Here, the line over the symbol denotes the vector column of corresponding matrix.
Taking into account the formulae (22), SLAEs (21) have the following form:

CK+1 −BK+1
−AK+2 CK+2 −BK+2

.
−AK+M−1 CK+M−1




YK+1
YK+2

. . .
YK+M−1

 =

Fractal Fract. 2023, 7, 801 9 of 21

=


FK+1
FK+2
. . .

FK+M−1

+


A1

K+1
0

. . .
0

Y1
K + · · ·+


AN

K+1
0

. . .
0

YN
K + (23)

+


0

. . .
0

B1
K+M−1

Y1
K+M + · · ·+


0

. . .
0

BN
K+M−1

YN
K+M.

System (23) is equivalent to the following one:

ΛY = F + A1Y1
K + · · ·+ ANYN

K + B1Y1
K+M + · · ·+ BNYN

K+M, (24)

where Λ is the submatrix of the basic block tridiagonal matrix of system (12) that corre-
sponds to the interval (K, K + M).

If matrix Λ is inversible, then

Y = Λ−1F + Λ−1 A1Y1
K + · · ·+ Λ−1 ANYN

K + Λ−1B1Y1
K+M + · · ·+ Λ−1BNYN

K+M.

From this, it follows that

Y = U1Y1
K + · · ·+ UNYN

K + V1Y1
K+M + · · ·+ VNYN

K+M + W, (25)

where
U1 is a solution of ΛU1

= A1, . . . ,

UN is a solution of ΛUN
= AN ,

V1 is a solution of ΛV1
= B1, . . . , (26)

VN is a solution of ΛVN
= BN ,

W is a solution of ΛW = F.

Let us rewrite U1, . . . , UN , V1, . . . , VN , W in a more detailed manner.

U1
=

 U1
K+1
. . .

U1
K+M−1

, . . . , UN
=

 UN
K+1
. . .

UN
K+M−1

, V1
=

 V1
K+1
. . .

V1
K+M−1

, . . . ,

VN
=

 VN
K+1
. . .

VN
K+M−1

, W =

 WK+1
. . .

WK+M−1

. (27)

Taking into account (23) and (27), problems (26) are equivalent to following:
CK+1U1

K+1 − BK+1U1
K+2 = A1

K+1,
. . .

−AK+M−1U1
K+M−2 + CK+M−1U1

K+M−1 = 0.

.. .
CK+1UN

K+1 − BK+1UN
K+2 = AN

K+1;
. . .

−AK+M−1UN
K+M−2 + CK+M−1UN

K+M−1 = 0;

Fractal Fract. 2023, 7, 801 10 of 21


CK+1V1

K+1 − BK+1V1
K+2 = 0;

. . .
−AK+M−1V1

K+M−2 + CK+M−1V1
K+M−1 = B1

K+M−1;
(28)

.. .
CK+1VN

K+1 − BK+1VN
K+2 = 0;

. . .
−AK+M−1VN

K+M−2 + CK+M−1VN
K+M−1 = B1

K+M−1;
CK+1WK+1 − BK+1WK+2 = FK+1;

. . .
−AK+M−1WK+M−2 + CK+M−1WK+M−1 = FK+M−1.

Systems (28) for intervals (K, K + M), K = 0, M, . . . , N are equivalent to
problems (16)–(18).

Thus, the original solution (25) on interval (K, K + M) has the form

Yi = (U1
i U2

i . . . Un
i)YK + (V1

i V2
i . . . Vn

i)YK+M + Wi, i = K + 1, . . . , K + M− 1.

Remark 3. Matrices Ui, Vi and vector Wi can be obtained by the block elimination methods (13)
and (14). For arbitrary L block elimination formulae for intervals (K, K + M), K = 0, M, . . . , N
have the following form.

The forward phase for Equations (16)–(18) is as follows:

αK+1 = C−1
K+1BK+1, βK+1 = C−1

K+1 AK+1, γK+1 = C−1
K+1FK+1,

αi = [Ci − Aiαi−1]
−1Bi, βi = [Ci − Aiαi−1]

−1 Aiβi−1,

γi = [Ci − Aiαi−1]
−1(Fi + Aiγi−1), i = K + 2, . . . , K + M− 1.

(29)

The backward phase for Equations (16)–(18) is as follows:

UK+M−1 = βK+M−1, VK+M−1 = αK+M−1, WK+M−1 = γK+M−1,

Ui = αiUi+1 + βi, Vi = αiVi+1, Wi = αiWi+1 + γi, i = K + M− 2, . . . , K + 1.
(30)

When we substitute expression (19) for indices K = 0, M, . . . , N into the basic sys-
tem (12), we will obtain a reduced SLAE for the parametric unknown values (vectors YK).
This system has a similar structure to (12) but has a smaller size.

[C0 − B0U1]Y0 − [B0V1]YM = F0 + B0W1, K = 0,

−[AKUK−1]YK−M+[CK−AKVK−1−BKUK+1]YK−[BKVK+1]YK+M =

= FK + AKWK−1 + BKWK+1, K = M, . . . , N −M,

−[ANUN−1]YN−M + [CN − ANVN−1]YN = FN + ANWN−1, K = N,

(31)

where UK and VK are matrices of dimension n× n.
Problem (31) is solved by the block-elimination method (13) and (14) in the single-

threaded mode or on a single node of a cluster. Auxilliary problems (16)–(18) are solved
independently for each of the L intervals. Thus, this workload can be distributed between
L threads or processes. After obtaining YK, the rest of the unknown values are found by
formula (19). This work also can be performed independently for each of the L intervals.

The parallel matrix sweep algorithm for solving system (12) is presented in Listing 1.

Fractal Fract. 2023, 7, 801 11 of 21

Listing 1. Parallel matrix sweep algorithm for solving SLAE.

1. Find values Ui, Vi, Wi from problems (16)–(18) for inner points i ∈ (K, K + M) of
each subinterval K = 0, M, 2M, . . . , N. Methods (29) and (30) are used to solve the
subproblems independently on each of the subintervals.

2. Calculate the coefficients for reduced system (31). The coefficients may be calculated
independently for each K, but to solve the resulting reduced system, we need to
transfer these coefficients to a single process. This requires synchronization or gather-
type communication.

3. Find values YK from the reduced system (31). Compared to the basic system (12), its
dimension is much smaller. It is solved by the block elimination algorithms (13) and
(14) in serial mode. The computed values YK must be transmitted to processors. This
step requires synchronization or communication.

4. Use formula (19) to calculate the sought values Yi, i ∈ (K, K + M). These computa-
tions may be performed independently for each subinterval K.

Thus, steps 1, 2, and 4 of this algorithm may be parallelized, while step 3 must be
performed in serial mode.

To establish the stability (see Remark 1) of the parallel matrix sweep algorithm, let us
prove the following theorems.

Theorem 2. If original system (12) satisfies the condition

‖Ci‖ ≥ ‖Ai‖+ ‖Bi‖+ δ, δ > 0,

then reduced system (31) also satisfies this condition in the form

‖CK − AKVK−1 − BKUK+1‖ ≥ ‖AKUK−1‖+ ‖BKVK+1‖+ δ.

Proof.

‖CK − AKVK−1 − BKUK+1‖ ≥ ‖CK‖ − ‖AKVK−1‖ − ‖BKUK+1‖ ≥
≥‖CK‖ − ‖AK(I −UK−1)‖ − ‖BK(I −VK+1)‖ ≥
≥‖CK‖ − ‖AK‖+ ‖AKUK−1‖ − ‖BK‖+ ‖BKVK+1‖ ≥
≥‖AKUK−1‖+ ‖BKVK+1‖+ ‖CK‖ − ‖AK‖ − ‖BK‖ ≥
≥‖AKUK−1‖+ ‖BKVK+1‖+ δ,

since ‖UK‖+ ‖VK‖ ≤ 1.

Theorem 3. If basic system (12) satisfies the stability conditions of the matrix sweep method
(Lemma 1), then these conditions are sufficient for the stability of the matrix sweep method for
reduced system (31) for YK.

Proof. Let us construct a proof by the mathematical induction method.
We will utilize the following statement [31]. If square matrix S satisfies ‖S‖ ≤ q ≤ 1,

then matrices (E− S)−1 and ‖(E− S)−1‖ ≤ 1/(1− q) must exist.
Let α̃1, . . . , α̃K, . . . , α̃N be the elimination coefficients for the matrix sweep method for

system (31).
1. Let us demonstrate that ‖α̃1‖ ≤ 1.

‖C−1
0 B0U1‖ ≤ ‖C−1

0 B0‖ · ‖U1‖ < 1,

therefore, there are (E− C−1
0 B0U1)

−1 and

‖α̃1‖ = ‖(C0 − B0U1)
−1B0V1‖ ≤ ‖C−1

0 (E− C−1
0 B0U1)

−1B0V1‖ ≤

Fractal Fract. 2023, 7, 801 12 of 21

≤ ‖(E− C−1
0 B0U1)

−1‖ · ‖C−1
0 B0‖ · ‖V1‖ ≤

1
1− ‖C−1

0 B0‖ · ‖U1‖
· ‖C−1

0 B0‖ · ‖V1‖ ≤

≤ ‖V1‖
1− ‖U1‖

≤ ‖V1‖
‖V1‖

= 1, since ‖U1‖+ ‖V1‖ ≤ 1.

2. Assume ‖α̃K‖ ≤ 1. Let us demonstrate that ‖α̃K+1‖ ≤ 1.

‖α̃K+1‖ = ‖(CK − AKVK−1 − BKUK+1 − AKUK−1α̃K)
−1 · BKVK+1‖.

Consider,

‖(C−1
K AKVK−1 + C−1

K BKUK+1 + C−1
K AKUK−1α̃K)

−1‖ ≤

≤ ‖C−1
K AK‖ · ‖VK−1‖+ ‖C−1

K BK‖ · ‖UK+1‖+ ‖C−1
K AK‖ · ‖UK−1‖ ≤

≤ ‖C−1
K AK‖+ ‖C−1

K BK‖ · ‖UK+1‖ ≤ 1− ‖C−1
K BK‖+ ‖C−1

K BK‖ · ‖UK+1‖ ≤

≤ 1− ‖C−1
K BK‖ · (1− ‖UK+1‖) ≤ 1− ‖C−1

K BK‖ · ‖VK+1‖ < 1,

since
‖UK+1‖+ ‖VK+1‖ ≤ 1.

Therefore, there are

(E− C−1
K AKVK−1 + C−1

K BKUK+1 + C−1
K AKUK−1α̃K)

−1 and

‖α̃K+1‖ ≤ ‖(E− C−1
K AKVK−1 + C−1

K BKUK+1 + C−1
K AKUK−1α̃K)

−1‖×

×‖C−1
K BKVK+1‖ ≤

1
‖C−1

K BK‖ · ‖VK+1‖
· ‖C−1

K BK‖ · ‖VK+1‖ = 1.

3. Let us demonstrate that ‖α̃N‖ ≤ 1.

‖C−1
N ANVN−1‖ ≤ ‖C−1

N AN‖ · ‖VN−1‖ < 1,

therefore, there are
(E− C−1

N ANVN−1)
−1.

Consider
‖α̃N‖ = ‖(C− ANVN−1)

−1 ANUN−1‖ ≤

≤ ‖(E− C−1
N ANVN−1)

−1‖ · ‖C−1
N AN‖ · ‖UN−1‖ ≤

≤ 1
‖C−1

N AN‖ · ‖VN−1‖
· ‖C−1

N AN‖ · ‖UN−1‖ ≤
‖UN−1‖

1− ‖VN−1‖
≤ 1,

since ‖UN−1‖+ ‖VN−1‖ ≤ 1.

4. Numerical Method for Solving the Inverse Problems

To solve the inverse problems (1)–(3) and (5), we use the iterative conjugate gradient
method [23,33]. Consider that additional information ϕ may contain a random perturbation
ϕδ = ϕ · (1+ rand(−δ, δ)). To overcome this, we will regularize the inverse problems using
the Lavrentyev scheme [34].

The resulting algorithm for solving the inverse problems is presented in Listing 2,
where ε > 0 is the regularization parameter.

Fractal Fract. 2023, 7, 801 13 of 21

Listing 2. Regularized conjugate gradient algorithm for solving the inverse problems.

Initialization:
1. Set s = 0 as the iterative step.
2. Set the initial approximation ψ0(x), for example, ψ0(x) = 0.
3. Solve the initial boundary problems (1)–(3) by substituting the right-hand part ψ with

ψ0; obtain U0
T = U(x, T)

∣∣∣
ψ0

.

4. Calculate the initial residual r0(x) = ϕ(x)− (U0
T + εψ0) and initial estimation p0(x) =

r0(x), where ε > 0 is the regularization parameter.
Iterations:
5. Set s = s + 1.
6. Solve the initial boundary problems by substituting the right-hand part with ps(x);

obtain Us
T = U(x, T)

∣∣∣
ps

.

7. Calculate the coefficient αs = (rs, rs)/(ps, (Us
T + εps)).

8. Calculate the estimation and residual for next step ψs+1 = ψs + αs ps, rs+1 = rs −
αs(Us

T + εps).
9. Calculate the coefficient βs = (rs+1, rs+1)/(rs, rs).
10. Calculate ps+1 = rs+1 + βs ps.
11. Check the stopping rule ‖rs‖/‖ϕ‖ < µ, 0 < µ < 1. If not met, go to step 5.

5. Parallel Implementation of Algorithms for Solving the Inverse Problem

The numerical solution to the problems related to the fractional differential equation
is an expensive task that requires a lot of computing time.

The most time-consuming subroutine of the regularized conjugate gradient algorithm
(see Listing 2) is solving the auxiliary initial boundary problem at each iteration. In turn,
this procedure consists in forming and solving SLAEs (11) at each subsequent time step.

5.1. Efficient Computation of the Right-Hand Parts

Forming SLAE requires the calculation of the right-hand parts using formula (9). In
our earlier work [27], when solving one-dimensional problems, the fraction of time spent to
calculate the right-hand part was up to 70% of the total time. To optimize this procedure, we
implemented the logarithmic memory approach. It consists of using the non-uniform time
grid when computing the approximation of the fractional derivative. The fine time step is
used for the latest history part. For the more distant history, successively larger time steps
are used. This approach allowed us to reduce the computing time for the one-dimensional
case by up to 1.5 times.

This approach may also be utilized for the ctwo-dimensional problem. For solving
system (11), a modified variant of formula (9) takes the form

fi1,i2,1 = σα,τUi1,i2,0 + ψi1,i2 ηi1,i2,0 ,

fi1,i2,j = σα,τUi1,i2,j−1 − ∑
(`,k)

σ
(`,k)
α,τ w(α)

`,k (Ui1,i2,j−`+1 −Ui1,i2,j−k) + ψi1,i2 ηi1,i2,j , j > 1, (32)

(`, k) ∈
{
(2, 2 + θ0), (2 + θ0, 2 + θ1), (2 + θ1, 2 + θ2), . . . , (2 + θblogθ jc, j)

}
,

σ
(`,k)
α,τ =

1
Γ(1− α)(1− α)θk−`τα

, w(α)
`,k = (k)1−α − (`− 1)1−α, 0 < α < 1,

where θ ∈ N is the stretching coefficient and blogθ nc is the floor function (integer part).
Note that approach has complexity O(Ñ · log Ñ) in contrast of O(Ñ2) of the uniform
time grid.

In the next section, we will explore the usefulness of this approach for the case of a
two-dimensional problem.

Fractal Fract. 2023, 7, 801 14 of 21

5.2. Parallel Implementation of the SLAE Solver

To speed up SLAE solving, we implement the parallel matrix sweep Algorithm (see
Listing 1). For comparison, we also implemented the serial block-elimination methods (13)
and (14).

The parallel algorithm for solving the inverse problem of finding the source term of
the time-fractional diffusion equation was implemented for the multicore processor using
OpenMP technology [35] and the Intel MKL library [36]. The parallelization is performed
as follows.

1. The workload of calculating the right-hand parts (9) and (32) is distributed to OpenMP
threads utilizing to the same subinterval decomposition that is used for parallel matrix
sweep algorithm.

2. The matrix operations and the inversion of the matrix blocks are performed with MKL
routines (gemv, gemm, getrf, and getri).

3. In the parallel matrix sweep algorithm (Listing 1), steps 1, 2, and 4 are performed by
the individual OpenMP threads on their corresponding subintervals. To perform step
3, thread synchronization is required. This is performed by the ‘#pragma omp barrier’
directive. Note that this synchronization requires additional time.

6. Numerical Experiments

In this section, we present the numerical experiments of solving the direct and inverse
problems for the two-dimensional fractional diffusion equation. The experiments were
performed using the developed code on the Intel i9-12900k CPU, which has 8 P-cores. The
goal is to study the validity of the proposed numerical methods, as well as the efficiency of
the parallel code.

6.1. Problem 1

Consider the two-dimensional equation

∂αU(x1, x2, t)
∂tα

=
∂2U(x1, x2, t)

∂x2
1

+
∂2U(x1, x2, t)

∂x2
2

+

(
2

Γ(3− α)
t2−α + 2t2

)
sin(x1) sin(x2) (33)

with initial and boundary conditions

U(x1, x2, 0) = 0,

U(x1, 0, 0) = 0, U(x1, π, 0) = 0,

U(0, x2, 0) = 0, U(π, x2, 0) = 0,

and area
0 ≤ x1, x2 ≤ γ1 = γ2 = π, 0 ≤ t ≤ T = 1,

for order
0 < α < 1.

Paper [37] presents the exact solution for this equation

U(x1, x2, t) = t2 sin(x1) sin(x2).

6.1.1. Experiment 1

Experiment 1 consists of solving the forward (initial boundary) problem for Equa-
tion (33) on the various grids n = N = {128; 256; 512}, Ñ = {64; 128; 256} and various
parameters α = {0.5; 0.8; 0.95}. It was solved using the difference scheme described in
Section 2.2. For solving the SLAE, two methods were applied, namely, the classical serial
block-elimination method (13) and (14) and parallel matrix sweep method (see Listing 1).

Figure 1 shows the exact solution U(x1, x2, 1) = t2 sin(x1) sin(x2) and approximate
solution Ũ(x1, x2, 1) for Problem 1 obtained by the parallel matrix sweep algorithm for grid

Fractal Fract. 2023, 7, 801 15 of 21

size n = N = 512, Ñ = 256, and the order of fractional derivative α = 0.5. The approximate
solutions obtained by the matrix sweep and parallel matrix sweep methods coincide with
each other up to the machine precision (10−15, as we used the double precision format).

(a) (b)
Figure 1. Results of Experiment 1 for Problem 1: (a) exact solution U(x1, x2, T); (b) approximate
solution Ũ(x1, x2, T) obtained by the parallel sweep algorithm.

Table 1 contains the relative error of the solutions
∥∥∥U − Ũ

∥∥∥/‖U‖ for various grid
sizes and parameters α. The experiments show that taking a finer grid either for space
or time reduces the relative error of the resulting solution. For the time grid, the rate of
convergence is close to linear (increasing the number of grid points twofold reduces the
error approximately by two times). As parameter α approaches 1, the error of the solution
increases. To achieve higher accuracy, we need to use a finer grid.

Table 2 presents the total computing time TL of solving the direct problem. For the
parallel matrix sweep method, the computing time for various numbers L of OpenMP
threads are presented. Total time TL consists of time TSLAE spent on solving the SLAEs
plus time TRight spent on computing the right-hand part for these SLAEs using formula (9).
The table shows that for the case of two-dimensional problem solving SLAE with a more
complex matrix structure (block-tridiagonal), the time spent on solving the SLAE is up to
600 times larger than the time spent on computing the right-hand part. Thus, utilizing the
optimized approach for computing the fractional derivative is less relevant as it would
bring a miniscule speedup.

Table 1. Results of Experiment 1 for Problem 1: relative error of solving the direct problem.

Grid Size Ñ = 64 Ñ = 128 Ñ = 256

α = 0.5
n = N = 128 3.64× 10−4 1.48× 10−4 7.07× 10−5

n = N = 256 3.45× 10−4 1.26× 10−4 4.93× 10−5

n = N = 512 3.40× 10−4 1.21× 10−4 1.98× 10−5

α = 0.8
n = N = 128 2.25× 10−3 9.44× 10−4 4.23× 10−4

n = N = 256 2.13× 10−3 9.25× 10−4 4.04× 10−4

n = N = 512 2.12× 10−3 9.20× 10−4 4.02× 10−4

α = 0.95
n = N = 128 5.14× 10−3 2.48× 10−3 1.20× 10−3

n = N = 256 5.12× 10−3 2.46× 10−3 1.18× 10−3

n = N = 512 5.11× 10−3 2.45× 10−3 1.18× 10−3

Fractal Fract. 2023, 7, 801 16 of 21

Table 2. Results of Experiment 1 for Problem 1: computing time of solving the direct problem.

Method Number L of OpenMP
Threads TL (Minutes) TSLAE TRight

Matrix Sweep (13) and (14) Serial 28.6 28.5 0.13
Parallel Matrix Sweep

(Listing 1) 2 30.7 30.63 0.06

Parallel Matrix Sweep 4 16.3 16.26 0.03
Parallel Matrix Sweep 8 10.1 10.08 0.016
Parallel Matrix Sweep 16 10.5 10.48 0.017

6.1.2. Experiment 2

Experiment 2 consists of solving the inverse problem for Equation (33). We assume
that η(t) =

(
2

Γ(3−α)
t2−α + 2t2

)
and ϕ(x1, x2) = sin(x1) sin(x2). Thus, we need to solve

the inverse problem of finding unknown [U(x1, x2, T), ψ(x1, x2)]. For this experiment, we
introduce the varying level δ of random perturbation to the a priori data ϕδ = ϕ · (1 +
rand(−δ, δ)).

Remark 4. Note that this level corresponds to an error in the infinity norm, i.e.,
δ ≈

∥∥ϕ− ϕδ
∥∥

∞/‖ϕ‖∞. In the rest of the paper, the norm is implied to be L2-norm. In tables, we
provide the corresponding δ2 =

∥∥ϕ− ϕδ
∥∥/‖ϕ‖.

The inverse problem was solved by the regularized conjugate gradient method
Algorithm (see Listing 2). For solving the SLAEs, the parallel matrix sweep method
was used. The grid size was n = N = 256, Ñ = 256.

Figure 2 shows the exact solution ψ(x1, x2) = sin(x1) sin(x2) and the approximate
solution ψ̃(x1, x2) for Problem 1 for the noise level δ = 0.02.

(a) (b)

Figure 2. Results of Experiment 2 for Problem 1: (a) exact solution ψ(x1, x2); (b) approximate solution
ψ̃(x1, x2) obtained by the regularized conjugate gradient method with noise level δ = 0.02.

Table 3 presents the results of Experiment 2 for varying levels of noise δ, δ2. It contains
the values of regularization parameter ε, the threshold µ for the stopping criterion (we
used µ = δ2 for experiments), number of iterations S, and the relative error of the resulting
solution.

Fractal Fract. 2023, 7, 801 17 of 21

Table 3. Results of Experiment 2 for Problem 1: solving the inverse problem.

Noise Level δ Noise Level δ2
Regularization

Parameter ε
Stopping Rule µ

Number of
Iterations S

Error of Solution∥∥ψ− ψ̃
∥∥/‖ψ‖

0 0 0 0.001 3 5 × 10−5

0.01 0.006 0.1 0.006 2 0.1
0.02 0.01 0.1 0.01 2 0.14
0.05 0.03 0.2 0.03 1 0.16

6.2. Problem 2

Consider the two-dimensional equation [22]

∂αU(x1, x2, t)
∂tα

=
∂2U(x1, x2, t)

∂x2
1

+
∂2U(x1, x2, t)

∂x2
2

+ sin(x1) sin(x2) + sin(2x1) sin(2x2) (34)

with initial and boundary conditions

U(x1, x2, 0) = 0,

U(x1, 0, 0) = 0, U(x1, π, 0) = 0,

U(0, x2, 0) = 0, U(π, x2, 0) = 0,

and area
0 ≤ x1, x2 ≤ π, 0 ≤ t ≤ 1,

for order
0 < α < 1.

The numerical experiment consists of solving the inverse problem for Equation (34).
We assume that η(x1, x2, t) = 1. Additional data ϕ(x1, x2) = U(x1, x2, 1) are obtained by
solving the direct problem substituting exact ψ(x1, x2) = sin(x1) sin(x2)+ sin(2x1) sin(2x2).
They are shown in Figure 3.

Figure 3. A priori data ϕ(x1, x2) for Problem 2.

Table 4 presents the results of experiments for Problem 2 for varying levels of noise
δ, δ2. It contains the values of the regularization parameter ε, the threshold µ for the
stopping criterion (we used µ = δ2 for experiments), the number of iterations S, and the
relative error of the resulting solution. The grid size was n = N = 256, Ñ = 256, and order
α = 0.5.

Fractal Fract. 2023, 7, 801 18 of 21

Table 4. Results of experiments for Problem 2: solving the inverse problem.

Noise Level δ Noise Level δ2
Regularization

Parameter ε
Stopping Rule µ

Number of
Iterations S

Error of Solution∥∥ψ− ψ̃
∥∥/‖ψ‖

0 0 0 0.001 3 3.2 × 10−4

0.01 0.006 0.02 0.006 3 0.13
0.02 0.01 0.02 0.01 3 0.19
0.05 0.03 0.05 0.03 1 0.23

Figure 4 shows the approximate solutions ψ̃(x1, x2) for Problem 2 for various
noise levels.

(a) (b)

(c) (d)

Figure 4. Results of experiments for Problem 2: approximate solution ψ̃(x1, x2) obtained by the
regularized conjugate gradient method with noise level (a) δ = 0.00; (b) δ = 0.01; (c) δ = 0.02; and
(d) δ = 0.05.

7. Discussion

According to the experiments, the relative error of the direct problem solution de-
creases with finer grid size. This indicates the experimental confirmation of convergence of
the finite difference scheme.

In the case of two-dimensional problem solving, SLAE takes a significantly larger
time (up to 600) than computing the right-hands part for SLAE. This makes the parallel
implementation of the SLAE solver more important than the optimization of the procedures
for computing the fractional derivative.

Experiments show that the parallel matrix sweep method for solving the SLAE has
good parallel efficiency. The minimal computing time is achieved by using eight OpenMP
threads on an eight-core processor.

Fractal Fract. 2023, 7, 801 19 of 21

The parallel code performance is mainly limited by memory bandwidth. Adding
more than eight threads does not reduce the computing time. The largest speed up is only
three-fold for 512× 512 spatial grid. Figure 5 presents the roofline analysis performed
by the Intel Advisor tool. Most subroutines of the parallel code lie primarily below and
near the slanted line that represents DRAM bandwidth. This indicates that the code is
memory-bound.

Figure 5. Roofline analysis for various subroutines (represented by dots) of parallel code for 16
OpenMP threads.

Several approaches can be used to overcome this limitation. Computing hardware
with large memory bandwidth, such as graphics processors (GPU), can be used. Central
processors with DDR4 or DDR5 RAM can achieve up to 100 GB/s, while modern GPUs
have a bandwidth of 1000 GB/s or higher. Another option is to use massive distributed
memory systems. Since each node works independently, the memory speed of individual
node is effectively summed. Moreover, it enables larger problems to be solved with data
that cannot be accommodated in the memory of a single computing node.

The experiments in Tables 3 and 4 show that for the model problems, the regularized
conjugate gradient method allows us to solve the inverse problem even with noised data.
The results are comparable with other works in terms of accuracy (for example, see [23],
Table 3).

We also note that while this work is devoted to the case of the two-dimensional
equation, the results may be extended to three-dimensional elliptic equations. The structure
of matrix A in Equation (11) will remain block tridiagonal, but the inner structure of the
blocks will be more complex.

8. Conclusions

In this work, we construct the parallel algorithm for solving the inverse problem of
finding the space-dependent component of a source term in a two-dimensional fractional
diffusion equation. The considered inverse problem is solved by the iterative conjugate
gradient method. At each iteration, it is necessary to solve an auxiliary direct initial-
boundary value problem. Applying the finite difference scheme, we reduce the initial-
boundary value problem to solving an SLAE with block tridiagonal matrices at each
subsequent time level. For the efficient solution of such SLAEs, we construct and implement
the direct parallel matrix sweep method. Stability and correctness for the parallel matrix
sweep method are established. In the two-dimensional case, computing the fractional
derivative (the right-hand part of the SLAE) takes little time in comparison with solving
the SLAE.

Fractal Fract. 2023, 7, 801 20 of 21

The algorithm is implemented for the multicore processors using the OpenMP tech-
nology. In the numerical experiments, we investigated the validity of numerical methods
and the efficiency and speedup of the parallel algorithm. The utilization of the parallel
sweep algorithm reduces the computing time by up to three times on a eight-core processor.
Using Lavrentyev regularization method allows us to solve the inverse problem with a
disturbed data.

In future, the authors plan to implement a similar approach to solving the retrospective
inverse problem (identifying the initial value) for a fractional differential equation. The
developed algorithms may be utilized for real applications. The parallel algorithms will be
implemented on graphics processors.

Author Contributions: Conceptualization, E.N.A., M.A.S. and V.E.M.; methodology, E.N.A., M.A.S.
and V.E.M.; validation, E.N.A., M.A.S., V.E.M. and Y.N.; formal analysis, E.N.A., M.A.S., V.E.M.
and Y.N.; investigation, E.N.A., V.E.M. and Y.N.; resources, E.N.A., M.A.S. and V.E.M.; writing—
original draft preparation, E.N.A., M.A.S. and V.E.M.; writing—review and editing, E.N.A., M.A.S.,
V.E.M. and Y.N.; supervision, E.N.A. and M.A.S.; project administration, V.E.M.; and funding acquisi-
tion, M.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: The second author (M.A.S.) and fourth author (Y.N.) were financially supported by the
Ministry of Science and Higher Education of the Republic of Kazakhstan (project AP09258836). The
first author (E.N.A.) and third author (V.E.M.) received no external funding.

Data Availability Statement: The data presented in this study are the model data. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Machado, J.T.; Galhano, A.; Trujillo, J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013,

16, 479–500. [CrossRef]
2. Podlubny, I. Fractional differential equations. Math. Sci. Eng. 1999, 198, 41–119.
3. Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-

ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [CrossRef]
[PubMed]

4. Tateishi, A.A.; Ribeiro, H.V.; Lenzi, E.K. The Role of Fractional Time-Derivative Operators on Anomalous Diffusion. Front. Phys.
2017, 5, 52. [CrossRef]

5. Yegenova, A.; Sultanov, M.; Brener, A. Nonlinear Wave Model for Transport Phenomena in Media with Non-local Effects. Chem.
Eng. Trans. 2021, 86, 1201–1206. [CrossRef]

6. Li, X.; Han, X.; Wang, X. Numerical modeling of viscoelastic flows using equal low-order finite elements. Comput. Methods Appl.
Mech. Eng. 2010, 199, 570–581. [CrossRef]

7. Maslovskaya, A.; Moroz, L. Time-fractional Landau–Khalatnikov model applied to numerical simulation of polarization switching
in ferroelectrics. Nonlinear Dyn. 2023, 111, 4543–4557. [CrossRef]

8. Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res.
2000, 36, 1403–1412. [CrossRef]

9. Laskin, N.; Lambadaris, I.; Harmantzis, F.; Devetsikiotis, M. Fractional Lévy motion and its application to network traffic
modeling. Comput. Netw. 2002, 40, 363–375. [CrossRef]

10. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science
and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]

11. Diethelm, K.; Ford, N.; Freed, A.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput.
Methods Appl. Mech. Eng. 2005, 194, 743–773. [CrossRef]

12. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore,
2012; Volume 3.

13. Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019.
14. Sultanov, M.A.; Durdiev, D.K.; Rahmonov, A.A. Construction of an Explicit Solution of a Time-Fractional Multidimensional

Differential Equation. Mathematics 2021, 9, 2052. [CrossRef]
15. Gong, C.; Bao, W.; Tang, G.; Jiang, Y.; Liu, J. A parallel algorithm for the two-dimensional time fractional diffusion equation with

implicit difference method. Sci. World J. 2014, 2014, 219580. [CrossRef] [PubMed]
16. Akimova, E.N.; Misilov, V.E.; Sultanov, M.A. Regularized gradient algorithms for solving the nonlinear gravimetry problem for

the multilayered medium. Math. Methods Appl. Sci. 2022, 45, 8760–8768. [CrossRef]

http://doi.org/10.2478/s13540-013-0030-y
http://dx.doi.org/10.1039/C4CP03465A
http://www.ncbi.nlm.nih.gov/pubmed/25297814
http://dx.doi.org/10.3389/fphy.2017.00052
http://dx.doi.org/10.3303/CET2186201
http://dx.doi.org/10.1016/j.cma.2009.10.010
http://dx.doi.org/10.1007/s11071-022-08071-5
http://dx.doi.org/10.1029/2000WR900031
http://dx.doi.org/10.1016/S1389-1286(02)00300-6
http://dx.doi.org/10.1016/j.cnsns.2018.04.019
http://dx.doi.org/10.1016/j.cma.2004.06.006
http://dx.doi.org/10.3390/math9172052
http://dx.doi.org/10.1155/2014/219580
http://www.ncbi.nlm.nih.gov/pubmed/24744680
http://dx.doi.org/10.1002/mma.7012

Fractal Fract. 2023, 7, 801 21 of 21

17. Li, X.; Su, Y. A parallel in time/spectral collocation combined with finite difference method for the time fractional differential
equations. J. Algorithms Comput. Technol. 2021, 15, 17483026211008409. [CrossRef]

18. De Luca, P.; Galletti, A.; Ghehsareh, H.; Marcellino, L.; Raei, M. A GPU-CUDA framework for solving a two-dimensional inverse
anomalous diffusion problem. Parallel Comput. Technol. Trends 2020, 36, 311.

19. Yang, X.; Wu, L. A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model. Mathematics
2020, 8, 596. [CrossRef]

20. Berdyshev, A.S.; Sultanov, M.A. On Stability of the Solution of Multidimensional Inverse Problem for the Schrödinger Equation.
Math. Model. Nat. Phenom. 2017, 12, 119–133. [CrossRef]

21. Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems of Mathematical Physics; Walter de Gruyter:
Berlin, Germany, 2007; Volume 52.

22. Yang, F.; Ren, Y.P.; Li, X.X.; Li, D.G. Landweber iterative method for identifying a space-dependent source for the time-fractional
diffusion equation. Bound. Value Probl. 2017, 2017, 163. [CrossRef]

23. Su, L.D.; Vasil’ev, V.I.; Jiang, T.S.; Wang, G. Identification of stationary source in the anomalous diffusion equation. Inverse Probl.
Sci. Eng. 2021, 29, 3406–3422. [CrossRef]

24. Bazhlekova, E. An Inverse Source Problem for the Generalized Subdiffusion Equation with Nonclassical Boundary Conditions.
Fractal Fract. 2021, 5, 63. [CrossRef]

25. Gong, X.; Wei, T. Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation. Inverse Probl. Sci.
Eng. 2019, 27, 1577–1594. [CrossRef]

26. Nguyen, H.T.; Le, D.L.; Nguyen, V.T. Regularized solution of an inverse source problem for a time fractional diffusion equation.
Appl. Math. Model. 2016, 40, 8244–8264. [CrossRef]

27. Sultanov, M.A.; Akimova, E.N.; Misilov, V.E.; Nurlanuly, Y. Parallel Direct and Iterative Methods for Solving the Time-Fractional
Diffusion Equation on Multicore Processors. Mathematics 2022, 10, 323. [CrossRef]

28. Akimova, E.N.; Sultanov, M.A.; Misilov, V.E.; Nurlanuly, Y. Parallel sweep algorithm for solving direct and inverse problems for
time-fractional diffusion equation. Numer. Methods Program. 2022, 23, 275–287. (In Russian) [CrossRef]

29. Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [CrossRef]
30. Slodička, M.; Šišková, K.; Bockstal, K.V. Uniqueness for an inverse source problem of determining a space dependent source in a

time-fractional diffusion equation. Appl. Math. Lett. 2019, 91, 15–21. [CrossRef]
31. Samarskii, A.; Nikolaev, E. Numerical Methods for Grid Equations, Volume I: Direct Methods; Birkhäuser: Basel, Switzerland, 1989.
32. Akimova, E.N. Parallel Algorithms for Solving the Gravimetry, Magnetometry, and Elastisity Problems on Multiprocessor

Systems with Distributed Memory. Doctor of Physical and Mathematical Sciences, Institute of Mathematics and Mechanics, Ural
Branch of Russian Academy of Sciences, Ekaterinburg, Russia, 2009. (In Russian)

33. Saad, Y. Iterative Methods for Sparse Linear Systems; SIAM: Philadelphia, PA, USA, 2003.
34. Vasin, V.V.; Eremin, I.I. Operators and Iterative Processes of Fejér Type: Theory and Applications; De Gruyter: Berlin, Germany;

New York, NY, USA, 2009. [CrossRef]
35. OpenMP Community. OpenMP Application Programming Interface Specification. Available online: https://www.openmp.org

(accessed on 1 August 2023).
36. Intel Corporation. Accelerate Fast Math with Intel oneAPI Math Kernel Library. Available online: https://www.intel.com/

content/www/us/en/developer/tools/oneapi/onemkl.html (accessed on 1 August 2023).
37. Zhang, Y.N.; Sun, Z.Z. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput.

Phys. 2011, 230, 8713–8728. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/17483026211008409
http://dx.doi.org/10.3390/math8040596
http://dx.doi.org/10.1051/mmnp/201712312
http://dx.doi.org/10.1186/s13661-017-0898-2
http://dx.doi.org/10.1080/17415977.2021.2000609
http://dx.doi.org/10.3390/fractalfract5030063
http://dx.doi.org/10.1080/17415977.2018.1539481
http://dx.doi.org/10.1016/j.apm.2016.04.009
http://dx.doi.org/10.3390/math10030323
http://dx.doi.org/10.26089/NumMet.v23r417
http://dx.doi.org/10.1016/j.amc.2009.05.018
http://dx.doi.org/10.1016/j.aml.2018.11.012
http://dx.doi.org/10.1515/9783110218190
https://www.openmp.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
http://dx.doi.org/10.1016/j.jcp.2011.08.020

	Introduction
	Problem
	Statement of the Problem
	Discretization of Equation and Difference Scheme
	Constructing the SLAE

	Numerical Methods for Solving the SLAE
	Block-Elimination Method
	Parallel Matrix Sweep Method

	Numerical Method for Solving the Inverse Problems
	Parallel Implementation of Algorithms for Solving the Inverse Problem
	Efficient Computation of the Right-Hand Parts
	Parallel Implementation of the SLAE Solver

	Numerical Experiments
	Problem 1
	Experiment 1
	Experiment 2

	Problem 2

	Discussion
	Conclusions
	References

