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Abstract: In this paper, we conduct research on the fractal characteristics of the superposition of
fractal surfaces from the view of fractal dimension. We give the upper bound of the lower and upper
box dimensions of the graph of the sum of two bivariate continuous functions and calculate the exact
values of them under some particular conditions. Further, it has been proven that the superposition
of two continuous surfaces cannot keep the fractal dimensions invariable unless both of them are
two-dimensional. A concrete example of a numerical experiment has been provided to verify our
theoretical results. This study can be applied to the fractal analysis of metal fracture surfaces or
computer image surfaces.
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1. Introduction

Fractal surfaces, as a class of fractal sets in three-dimensional Euclidean space, are
important research objects in fractal geometry [1]. At present, fractal surfaces have been
extensively applied in a variety of academic fields, such as metal materials [2], geology [3],
computer graphics [4], and so on. One of the most concerning problems is investigating
how to measure the geometric complexity of a fractal surface, like the texture roughness
of a metal fracture surface or a computer image surface. The fractal dimension [5] is a
common measure of the geometric complexity of a surface, which can be used to describe
its fractal characteristics well. It is well known that the topological dimension of a surface
is two. Nevertheless, its fractal dimension increases with larger amounts of complexity or
roughness, which is usually greater than its topological dimension. For instance, the fractal
dimension of the relief on the earth has been found to be 2.3 in general [6]. Beyond that,
many scholars have used iterative function systems (IFS) to construct fractal surfaces that
are attractors of certain IFS. More details about fractal surfaces and relevant studies of their
fractal dimensions can be found in [7–10].

In recent years, exploring the fractal dimension of the graph of fractal curves has
drawn the attention of numerous researchers. There are some commonly used definitions
of the fractal dimension, such as the box dimension, the packing dimension, the Hausdorff
dimension and the Assouad dimension, which are denoted as dimB, dimP, dimH , and dimA
throughout this paper, respectively. Of the diverse fractal dimensions, the box dimension
mainly considered in the present paper shows its advantage of relatively easy calculation.
Up to now, a lot of meaningful work has been done, including fractal interpolation func-
tions [11–14], α-Hölder continuous functions [15,16], self-similar curves like the Von Koch
curve [17,18], and some specific fractal functions like the Weierstrass function [19–23] and
the Besicovitch function [24–26]. For more details of our latest work, we refer interested
readers to [27–32].

Another essential issue involved recently is estimating the fractal dimension of the
superposition of two fractal curves, namely, the sum of two continuous functions of one
variable. This problem can be traced back to the research made first by Falconer [33], who
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showed that the box dimension of the sum of two continuous functions equals the greater
of the box dimensions of them. On this basis, a group of academic workers has pushed this
study forward and obtained a series of preliminary conclusions, whose related progress
can be found in [34–40]. So in this paper, we shall focus on the fractal dimension of the
superposition of two fractal surfaces and investigate whether it has the same result as
that of fractal curves. Based on a three-dimensional Cartesian coordinate system, a fractal
surface can be looked upon as a bivariate continuous function, whose fractal dimension
and fractional calculus have been established in [41]. This work will contribute to enriching
the theory with regards to the fractal dimension of fractal surfaces and can be applied to
the research on fractal characteristics analysis of the superposition of two metal fracture
surfaces or two computer image surfaces.

The outline of the remainder of this paper is organized as follows: In upcoming
Section 2, we will cover the required notations, concepts, and results on the fractal dimen-
sions of the graph of bivariate continuous functions for subsequent sections. Furthermore,
in Section 3, we present our main results obtained in this paper. Firstly, we study the lower
and upper box dimensions of the graph of the sum of two bivariate continuous functions
and give their upper bounds. Secondly, we calculate the exact value of the lower and
upper box dimensions of the graph of the sum of two bivariate continuous functions under
certain particular circumstances. Thirdly, we explore some concrete situations when the
two bivariate continuous functions have the box dimension or not, and we also consider
the case when one of these two functions is Lipschitz. Later in Section 4, we provide a
specific example and do numerical experiments to verify the theoretical results in Section 3.
Finally, in Section 5, we sum up our conclusions and discuss further research in the future.

2. Preliminaries

In the present paper, all the subjects we discuss are entirely real. Given a non-empty
subset D ⊂ R2 and a bivariate function f : D → R, the oscillation of f over the rectangular
regionR is written as

OSC( f ,R) = sup
(x,y),(u,v)∈R∩D

| f (x, y)− f (u, v)| (1)

and the graph of f (x) on D is defined as

G f = {((x, y), f (x, y)) : (x, y) ∈ D} ⊆ D ×R.

We denote ϑ as the function which is always equal to 0 on D. Let ‖·‖2 be the usual
Euclidean norm in Rn. For any τ1, τ2, · · · , τn ∈ Z and δ > 0, we call ∏n

i=1[τiδ, (τi + 1)δ] a
δ-coordinate cube in Rn.

Below, we shall briefly introduce the definition of the box dimension. For more details
about other kinds of fractal dimensions, we consult the interested readers to [1,5,33,37,42],
for example.

Definition 1 ([33]). Let X 6= ∅ be a bounded subset of Rn and let Nδ(X) be the smallest number
of δ-coordinate cubes that intersect X. Then the lower and upper box dimensions of X are defined
as, respectively,

dimB(X) = lim
δ→0

logNδ(X)

− log δ

and

dimB(X) = lim
δ→0

logNδ(X)

− log δ
.

If the above two are equal, we define the box dimension of X as the common value, that is,

dimB(X) = lim
δ→0

logNδ(X)

− log δ
.
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Remark 1. The notation Nδ(X) in Definition 1 can also be replaced by one of the following:

(1) The smallest number of sets of diameter at most δ that cover X;
(2) The smallest number of cubes of side δ that cover X;
(3) The largest number of disjoint balls of radius δ with centres in X;
(4) The smallest number of closed balls of radius δ that cover X.

Now we provide some fundamental results, which will be used in subsequent research.
The forthcoming two lemmas can be essential approaches to estimating the box dimension
of the graph of a bivariate continuous function.

Lemma 1 ([33]). Let f : X ⊆ Rm → Rn.

(1) If f is a Lipschitz map, that is,

‖ f (x)− f (y)‖2 ≤ C‖x− y‖2

for ∀x, y ∈ X and certain 0 < C < +∞. Then

dim( f (X)) ≤ dim(X).

(2) If f is a bi-Lipschitz map, that is,

C1‖x− y‖2 ≤ ‖ f (x)− f (y)‖2 ≤ C2‖x− y‖2

for ∀x, y ∈ X and certain 0 < C1 ≤ C2 < +∞. Then

dim( f (X)) = dim(X).

Here dim denotes any one of dimB, dimB and dimB.

Lemma 2 ([33]). Let f : [a, b]× [c, d] → R be continuous and 0 < δ < min{b− a, d− c, 1}.
Suppose that m and n, respectively, are the least integer greater than or equal to b−a

δ and d−c
δ .

Furthermore, the range of Nδ(G f ) can be estimated as

n−1

∑
j=0

m−1

∑
i=0

max
{

1, OSC( f ,Ri,j) · δ−1
}
≤ Nδ(G f ) ≤

n−1

∑
j=0

m−1

∑
i=0

{
2 + OSC( f ,Ri,j) · δ−1

}
whereRi,j = [a + iδ, a + (i + 1)δ]× [c + jδ, c + (j + 1)δ].

Proof. Since f (x) is continuous on [a, b] × [c, d], the estimation of Nδ(G f ) can be trans-
formed into the oscillation of f (x) on the above subregions. We note that the number of
cubes of side length δ in the part above the rectangular regionRi,j that intersect G f is no
less than

max
{

1, OSC( f ,Ri,j) · δ−1
}

and no more than
2 + OSC( f ,Ri,j) · δ−1.

Summing over all the subregions just leads to the present lemma.

The next proposition reveals several basic properties relating to the fractal dimensions
of the graph of a bivariate continuous function.

Proposition 1. Let f : [a, b]× [c, d]→ R be continuous. Given a constant r ∈ R, the following
three statements hold.

(1) It holds
2 ≤ dimB(G f ) ≤ dimB(G f ) ≤ 3.
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(2) For a constant bivariate function f (x, y) ≡ r on [a, b]× [c, d], we have

dimB(G f ) = dimB(G f ) = dimB(G f ) = 2.

(3) If r 6= 0, then

dimB(Gr· f ) = dimB(G f ) and dimB(Gr· f ) = dimB(G f ).

Proof. The following arguments for (1)–(3) are all based on Definition 1, Lemmas 1 and 2.

(1) Assume that max(x,y)∈[a,b]×[c,d]| f (x, y)| = M > 0. On one hand, it follows from
Lemma 2 that

Nδ(G f ) ≤
n−1

∑
j=0

m−1

∑
i=0

{
2 + OSC( f ,Ri,j) · δ−1

}
≤ mn

(
2 + 2Mδ−1

)
≤ 2

(
(b− a)δ−1 + 1

)(
(d− c)δ−1 + 1

)(
1 +Mδ−1

)
≤ 2(b− a + 1)(d− c + 1)(M+ 1)δ−3.

Thus by Definition 1,

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≤ lim
δ→0

log
[
2(b− a + 1)(d− c + 1)(M+ 1)δ−3]

− log δ

= lim
δ→0

log δ3

log δ
+ lim

δ→0

log[2(b− a + 1)(d− c + 1)(M+ 1)]
− log δ

= 3.

On the other hand, it is observed that

Nδ(G f ) ≥
n−1

∑
j=0

m−1

∑
i=0

1

= mn

=
(
(b− a)δ−1 + 1

)(
(d− c)δ−1 + 1

)
≥ (b− a)(d− c)δ−2.

So by Definition 1, we can get

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≥ lim
δ→0

log
[
(b− a)(d− c)δ−2]
− log δ

= lim
δ→0

log δ2

log δ
+ lim

δ→0

log[(b− a)(d− c)]
− log δ

= 2.

Obviously, we can assert from Definition 1 that dimB(G f ) ≤ dimB(G f ), which leads
to the conclusion of (1).
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(2) Note that OSC( f ,Ri,j) = 0 when f (x, y) ≡ r on [a, b]× [c, d]. Consequently,

Nδ(G f ) ≤ 2mn +
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) · δ−1

≤ 2
(
(b− a)δ−1 + 1

)(
(d− c)δ−1 + 1

)
≤ 2(b− a + 1)(d− c + 1)δ−2.

At this time, we obtain

dimB(G f ) = lim
δ→0

logNδ(G f )

− log δ

≤ lim
δ→0

log
[
2(b− a + 1)(d− c + 1)δ−2]

− log δ

= lim
δ→0

log δ2

log δ
+ lim

δ→0

log[2(b− a + 1)(d− c + 1)]
− log δ

= 2.

Combining (1) of Proposition 1,

2 ≤ dimB(G f ) ≤ dimB(G f ) ≤ 2.

That is,
dimB(G f ) = dimB(G f ) = dimB(G f ) = 2,

finishing the proof of (2).

(3) Let us define a mapping Γ : G f → Gr· f by

Γ((x, y), f (x, y)) = ((x, y), (r · f )(x, y)), (x, y) ∈ [a, b]× [c, d]

for ∀r ∈ R \ {0}. By using the simple properties of norm, one can show that

‖Γ((x, y), f (x, y))− Γ((u, v), f (u, v))‖2

≤
√

1 + r2‖((x, y), f (x, y))− ((u, v), f (u, v))‖2

and
‖Γ((x, y), f (x, y))− Γ((u, v), f (u, v))‖2

≥ |r|√
r2 + 1

‖((x, y), f (x, y))− ((u, v), f (u, v))‖2

for ∀(x, y), (u, v) ∈ [a, b]× [c, d]. With Lemma 1, we can claim that Γ is a bi-Lipschitz
mapping and then the result of (3) holds.

Remark 2. In Proposition 1, if the box dimension of G f exists on [a, b]× [c, d], then

2 ≤ dimB(G f ) ≤ 3

and for ∀r ∈ R \ {0},
dimB(Gr· f ) = dimB(G f ).

In particular, if r = 0, we have

dimB(Gϑ) = dimB(Gϑ) = dimB(Gϑ) = 2
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by (2) of Proposition 1. Thus for any continuous function f : [a, b]× [c, d]→ R, 0 · f must be a
two-dimensional continuous function on [a, b]× [c, d].

Up to now, some particular bivariate continuous functions with non-integer fractal
dimensions have been constructed. For instance, Yu [43] had given the following facts.

Example 1 ([43]). For 0 < α < 1 and λ ≥ 2, let

W(x, y) =
∞

∑
j=1

λ−αj sin(λjx), (x, y) ∈ [a, b]× [c, d].

Then
dimB(GW ) = 3− α.

Example 2 ([43]). For 1 < s < 2, let

B(x, y) =
∞

∑
j=1

λs−2
j cos(λjx), (x, y) ∈ [a, b]× [c, d]

where
λj+1

λj
≥ λ > 1 for ∀j ∈ N∗. If

λj+1
λj
↗ ∞, then dimB(GB) and dimB(GB) could be any

numbers satisfying
2 ≤ dimB(GB) < dimB(GB) < 3.

3. Main Results

In this section, we present our main results for the fractal dimensions in the graph
of the sum of two bivariate continuous functions. For two bivariate continuous functions
f , g : [a, b] × [c, d] → R, our motivation is to explore the values of dimB(G f+g) and
dimB(G f+g). According to Definition 1, we can notice that the estimation of Nδ(G f+g)
is key to calculating them. Hence, we begin by investigating how to attain the range of
Nδ(G f+g). The upcoming result about the oscillation is basic.

Theorem 1. Let f , g : [a, b]× [c, d] → R be continuous. Furthermore, the range of OSC( f +
g,Ri,j) can be estimated as∣∣∣∣∣∣

n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j)−
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

∣∣∣∣∣∣ ≤
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≤
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) +
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

where m, n,Ri,j have been defined in Lemma 2.

Proof. From Equation (1), we can obtain

OSC(− f ,Ri,j) = OSC( f ,Ri,j) (2)
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and

OSC( f + g,Ri,j) = sup
(x,y),(u,v)∈Ri,j

|( f + g)(x, y)− ( f + g)(u, v)|

≤ sup
(x,y),(u,v)∈Ri,j

{| f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)|}

≤ sup
(x,y),(u,v)∈Ri,j

| f (x, y)− f (u, v)|+ sup
(x,y),(u,v)∈Ri,j

|g(x, y)− g(u, v)|

≤ OSC( f ,Ri,j) + OSC(g,Ri,j).

(3)

Summing over all the rectangular regions in Equation (3) just leads to the right end of
the required inequality. Furthermore, combining Equations (2) and (3), we estimate

OSC( f ,Ri,j) = OSC( f + g− g,Ri,j) ≤ OSC( f + g,Ri,j) + OSC(g,Ri,j)

and
OSC(g,Ri,j) = OSC( f + g− f ,Ri,j) ≤ OSC( f + g,Ri,j) + OSC( f ,Ri,j).

Thus
OSC( f + g,Ri,j) ≥

∣∣OSC( f ,Ri,j)−OSC(g,Ri,j)
∣∣. (4)

Summing over all the rectangular regions in Equation (4) and using absolute value
inequality, one can get the left end of our required inequality as well.

In the light of Theorem 1 and Lemma 2,Nδ(G f+g) seems to have a certain relationship
with Nδ(G f ) and Nδ(Gg). The next important theorem establishes a connection among the
above three.

Theorem 2. Let f , g : [a, b]× [c, d] → R be continuous. Furthermore, the range of Nδ(G f+g)
can be estimated as∣∣∣Nδ(G f )−Nδ(Gg)

∣∣∣− ρδ−2 ≤ Nδ(G f+g) ≤ Nδ(G f ) +Nδ(Gg) + ρδ−2

where 0 < δ < min{b− a, d− c, 1} and ρ = 2(b− a + 1)(d− c + 1)δ−2.

Proof. It follows from Theorem 1 and Lemma 2 that

Nδ(G f+g) ≤ 2mn + δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≤ 2
(
(b− a)δ−1 + 1

)(
(d− c)δ−1 + 1

)
+ δ−1

n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j) + δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

≤ 2(b− a + 1)(d− c + 1)δ−2 +Nδ(G f ) +Nδ(Gg)

and

Nδ(G f+g) ≥ δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f + g,Ri,j)

≥ 2mn +

∣∣∣∣∣δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC( f ,Ri,j)− δ−1
n−1

∑
j=0

m−1

∑
i=0

OSC(g,Ri,j)

∣∣∣∣∣− 2mn

≥
∣∣∣Nδ(G f )−Nδ(Gg)

∣∣∣− 2(b− a + 1)(d− c + 1)δ−2.

This concludes the proof of Theorem 2.
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With the help of Theorem 2, we shall prove the following several conclusions.
Theorems 3 and 4 give the upper bound of dimB(G f+g) and dimB(G f+g), respectively.

Theorem 3. Let f , g : [a, b]× [c, d]→ R be continuous. Then

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Assume that dimB(G f ) = s1 and dimB(Gg) = s2. Given ∀ε > 0, by Definition 1
there must exist a certain number δ0 ∈ (0, min{b− a, d− c, 1}) such that

Nδ(G f ) ≤ δ−s1−ε,

Nδ(Gg) ≤ δ−s2−ε

for ∀δ ∈ (0, δ0]. Then by Theorem 2, we get

Nδ(G f+g) ≤ Nδ(G f ) +Nδ(Gg) + ρδ−2

≤ δ−s1−ε + δ−s2−ε + ρδ−2

≤
(

δmax{s1,s2}−s1 + δmax{s1,s2}−s2 + ρδmax{s1,s2}−2+ε
)

δ−max{s1,s2}−ε

≤ (ρ + 2)δ−max{s1,s2}−ε

for ∀δ ∈ (0, δ0]. From Definition 1, we can conclude that

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ

≤ lim
δ→0

log
[
(ρ + 2)δ−max{s1,s2}−ε

]
− log δ

= lim
δ→0

log(ρ + 2)
− log δ

+ lim
δ→0

log δmax{s1,s2}+ε

log δ

= max{s1, s2}+ ε.

Since the above formula is true for ∀ε > 0, we have

dimB(G f+g) ≤ max{s1, s2} = max
{

dimB(G f ), dimB(Gg)
}

,

which completes the proof of Theorem 3.

Theorem 4. Let f , g : [a, b]× [c, d]→ R be continuous. Then

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

Proof. Assume that
dimB(G f ) = α1 and dimB(Gg) = α2.

From the definition of dimB(Gg), there exists a positive subsequence {δλk}
∞
k=1 such

that limk→∞ δλk = 0 and meanwhile

lim
k→∞

logNδλk
(Gg)

− log δλk

= α2.

So given ∀ε > 0, there exists a κ1 ∈ N∗ such that

Nδλk
(Gg) ≤ δ−α2−ε

λk
(5)
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when k ≥ κ1. Furthermore, by the definition of dimB(G f ), there exists a κ2 ∈ N∗ such that

Nδλk
(G f ) ≤ δ−α1−ε

λk
(6)

when k ≥ κ2. Combining Theorem 2, Equations (5) and (6), we can obtain

Nδλk
(G f+g) ≤ Nδλk

(G f ) +Nδλk
(Gg) + ρδ−2

λk

≤ δ−α1−ε
λk

+ δ−α2−ε
λk

+ ρδ−2
λk

≤
(

δ
max{α1,α2}−α1
λk

+ δ
max{α1,α2}−α2
λk

+ ρδ
max{α1,α2}−2+ε
λk

)
δ
−max{α1,α2}−ε
λk

≤ (ρ + 2)δ−max{α1,α2}−ε
λk

when k ≥ max{κ1, κ2}. Thus by Definition 1, we have

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ

≤ lim
k→∞

log
[
(ρ + 2)δ−max{α1,α2}−ε

λk

]
− log δλk

= lim
k→∞

log(ρ + 2)
− log δλk

+ lim
k→∞

log δ
max{α1,α2}+ε
λk

log δλk

= max{α1, α2}+ ε.

In the light of the arbitrariness of ε, we immediately get our required result.

Under certain particular circumstances, the previous two formulae could take an equal
sign, shown in the undermentioned two theorems.

Theorem 5. Let f , g : [a, b]× [c, d]→ R be continuous. If

dimB(G f ) 6= dimB(Gg),

then
dimB(G f+g) = max

{
dimB(G f ), dimB(Gg)

}
.

Proof. Let H = f + g. Without loss of generality, we can assume that

dimB(G f ) > dimB(Gg). (7)

Suppose that

dimB(GH) 6= max
{

dimB(G f ), dimB(Gg)
}
= dimB(G f ).

From Theorem 3, it follows that

dimB(GH) < dimB(G f ). (8)

Then combining Equations (7) and (8), we have

dimB(GH−g) = dimB(G f )

> max
{

dimB(GH), dimB(Gg)
}

= max
{

dimB(GH), dimB(G−g)
}

,
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which is a contradiction to Theorem 3. Therefore, we can conclude that

dimB(G f+g) = dimB(GH) = max
{

dimB(G f ), dimB(Gg)
}

.

This means the conclusion of Theorem 5 holds.

Theorem 6. Let f , g : [a, b]× [c, d]→ R be continuous. If

max
{

dimB(G f ), dimB(Gg)
}
> min

{
dimB(G f ), dimB(Gg)

}
,

then
dimB(G f+g) = max

{
dimB(G f ), dimB(Gg)

}
.

Proof. Without loss of generality, we suppose that

η1 = dimB(Gg) > dimB(G f ) = η2.

At this time, we know that

max
{

dimB(G f ), dimB(Gg)
}
= η1 > η2 = min

{
dimB(G f ), dimB(Gg)

}
.

From Theorem 4, it follows that

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}
= η1. (9)

Next, we prove that dimB(G f+g) ≥ η1 as below. By the definition of dimB(Gg) and

dimB(G f ), given ∀ε ∈
(

0, η1−η2
2

)
, there exists a δ1 ∈ (0, min{b− a, d− c, 1}) such that

Nδ(G f ) ≤ δ−η2−ε < δ−η1+ε ≤ Nδ(Gg)

for ∀δ ∈ (0, δ1]. Note that η1 − η2 − 2ε > 0 and η1 − 2 − ε > 0, thus there exists a
δ2 ∈ (0, min{b− a, d− c, 1}) such that

δη1−η2−2ε ≤ 1
3

and δη1−2−ε ≤ 1
3ρ

for ∀δ ∈ (0, δ2]. Furthermore, by Theorem 2, we estimate

Nδ(G f+g) ≥
∣∣∣Nδ(G f )−Nδ(Gg)

∣∣∣− ρδ−2

≥ δ−η1+ε − δ−η2−ε − ρδ−2

≥
(

1− δη1−η2−2ε − ρδη1−2−ε
)

δ−η1+ε

≥ 1
3

δ−η1+ε

for ∀δ ∈ (0, min{δ1, δ2}]. Consequently, one can get

dimB(G f+g) = lim
δ→0

logNδ(G f+g)

− log δ
≥ lim

δ→0

log 1
3 δ−η1+ε

− log δ
= η1 − ε

by Definition 1. Since ε in the above formula is arbitrary, we have dimB(G f+g) ≥ η1.
Combining Equation (9), we just obtain the required result.
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Now we shall deal with some concrete examples of the fractal dimensions of the graph
of the sum of two bivariate continuous functions. To this end, we first need to state the
definition of function spaces as follows.

Definition 2. Spaces of bivariate continuous functions.

(1) Let Sd be the space of all bivariate continuous functions whose box dimension exists and is
equal to d on [a, b]× [c, d] as 2 ≤ d ≤ 3. Namely, Sd is the space of d-dimensional bivariate
continuous functions on [a, b]× [c, d].

(2) Let Sd2
d1

as the space of all bivariate continuous functions whose box dimension does not exist
on [a, b] × [c, d]. Here d1, d2 are the lower and upper box dimensions of the function on
[a, b]× [c, d] as 2 ≤ d1 < d2 ≤ 3, respectively.

Below, we start with the case when the two bivariate continuous functions have a
different box dimension.

Proposition 2. Let f (x, y) ∈ Sd1 and g(x, y) ∈ Sd2 . If d1 6= d2, then

f (x, y) + g(x, y) ∈ Smax{d1,d2}.

Proof. Without loss of generality, suppose that d1 > d2. At this time, we observe that

dimB(Gg) = dimB(Gg) < dimB(G f ) = dimB(G f ).

Then it follows from Theorems 5 and 6 that

dimB(G f+g) = max
{

dimB(G f ), dimB(Gg)
}
= max{d1, d2}

and
dimB(G f+g) = max

{
dimB(G f ), dimB(Gg)

}
= max{d1, d2}.

That is,
dimB(G f+g) = max{d1, d2},

completing the proof of Proposition 2.

The upcoming two corollaries discuss a few situations when at least one of two
bivariate continuous functions does not have the box dimension on [a, b]× [c, d]. These
results can easily be obtained from Theorems 5 and 6, with their proofs omitted.

Corollary 1. Let f (x, y) ∈ Sd2
d1

and g(x, y) ∈ Sd.

(1) If d1 < d2 < d,
f (x, y) + g(x, y) ∈ Sd.

(2) If d < d1 < d2,
f (x, y) + g(x, y) ∈ Sd2

d1
.

Corollary 2. Let f (x, y) ∈ Sd2
d1

, g(x, y) ∈ Sd4
d3

.

(1) If d1 < d2 < d3 < d4,
f (x, y) + g(x, y) ∈ Sd4

d3
.

(2) If d3 < d4 < d1 < d2,
f (x, y) + g(x, y) ∈ Sd2

d1
.
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If the two bivariate continuous functions have the same box dimension d, the result
will become more complicated. Here we discuss two situations according to whether d
equals to two or not. If d 6= 2, we can arrive at the following two conclusions.

Proposition 3. Let f (x, y), g(x, y) ∈ Sd for 2 < d ≤ 3. If the box dimension of G f+g exists, then

f (x, y) + g(x, y) ∈
⊕

t∈[2,d]

S t.

Proof. Firstly, let
f (x, y) = −g(x, y) +W(x, y)

whereW(x, y) is the function given in Example 1 and dimB(GW ) = 3− α could be any
number belonging to (2, d) by choosing suitable α. Furthermore, from Propositions 1 and 2,
it follows that

dimB(G f ) = dimB(G−g+W )

= max
{

dimB(Gg), dimB(GW )
}

= max{d, 3− α}
= d.

Secondly, let
f (x, y) = −g(x, y) + H(x, y)

where H(x) ∈ S2. At this time,

dimB(G f ) = max
{

dimB(Gg), dimB(GH)
}
= max{d, 2} = d.

Thirdly, let f (x, y) = g(x, y). Furthermore, we know from Proposition 1 that

dimB(G f+g) = dimB(G2 f ) = dimB(G f ) = d.

According to the above discussion, we just finish the proof of the present proposition.

Proposition 4. Let f (x, y), g(x, y) ∈ Sd for 2 < d ≤ 3. If the box dimension of G f+g does not
exist, then

f (x, y) + g(x, y) ∈
⊕

t1,t2∈[2,d)
t1<t2

S t2
t1

.

Proof. Let
f (x, y) = −g(x, y) + B(x, y)

where B(x, y) is the function given in Example 2 and dimB(GB), dimB(GB) could be any
numbers satisfying

2 ≤ dimB(GB) < dimB(GB) < d ≤ 3. (10)

From Theorems 5 and 6, we can get

dimB(G f ) = dimB(G−g+B) = max
{

dimB(Gg), dimB(GB)
}
= d

and
dimB(G f ) = dimB(G−g+B) = dimB(Gg) = d,

which implies that
dimB(G f ) = d.

Then by Equation (10), we just obtain our required result.
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If d = 2, the next result manifests that the sum of two two-dimensional bivariate
continuous functions can keep the fractal dimension closed.

Theorem 7. Let f (x, y), g(x, y) ∈ S2. Then f (x, y) + g(x, y) ∈ S2.

Proof. From Theorem 3, it follows that

dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}
= 2.

Combining (1) of Proposition 1, we obtain

2 ≤ dimB(G f+g) ≤ dimB(G f+g) ≤ 2.

Thus
dimB(G f+g) = 2,

namely, f (x, y) + g(x, y) ∈ S2.

In particular, if one of the two bivariate continuous functions is Lipschitz, we have the
following assertion.

Theorem 8. Let f , g : [a, b]× [c, d]→ R be continuous. If g is Lipschitz on [a, b]× [c, d], then

dim(G f+g) = dim(G f )

where dim denotes any one of dimH , dimP, dimA, dimB, dimB and dimB.

Proof. Let us define a map Υ : G f → G f+g by

Υ((x, y), f (x, y)) = ((x, y), f (x, y) + g(x, y)), (x, y) ∈ [a, b]× [c, d].

Since g is Lipschitz on [a, b]× [c, d], let

L = sup
(x,y),(u,t)∈[a,b]×[c,d]

|g(x, y)− g(u, t)|
‖(x, y)− (u, t)‖2

< +∞.

For ∀(x, y), (u, t) ∈ [a, b]× [c, d], on one hand,

‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2
2

=‖((x, y), f (x, y) + g(x, y))− ((u, t), f (u, t) + g(u, t))‖2
2

=‖(x, y)− (u, t)‖2
2 + |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2

≤‖(x, y)− (u, t)‖2
2 + 2| f (x, y)− f (u, t)|2 + 2|g(x, y)− g(u, t)|2

≤‖(x, y)− (u, t)‖2
2 + 2| f (x, y)− f (u, t)|2 + 2L2‖(x, y)− (u, t)‖2

2

=
(

1 + 2L2
)
‖(x, y)− (u, t)‖2

2 + 2| f (x, y)− f (u, t)|2

≤
(

3 + 2L2
)
‖((x, y), f (x, y))− ((u, t), f (u, t))‖2

2.
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On the other hand,

‖((x, y), f (x, y))− ((u, t), f (u, t))‖2
2

=‖(x, y)− (u, t)‖2
2 + | f (x, y)− f (u, t)|2

=‖(x, y)− (u, t)‖2
2 + |( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))− (g(x, y)− g(u, t))|2

≤‖(x, y)− (u, t)‖2
2 + 2|( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2 + 2|g(x, y)− g(u, t)|2

≤‖(x, y)− (u, t)‖2
2 + 2|( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2 + 2L2‖(x, y)− (u, t)‖2

2

=
(

1 + 2L2
)
‖(x, y)− (u, t)‖2

2 + 2|( f (x, y)− f (u, t)) + (g(x, y)− g(u, t))|2

≤
(

3 + 2L2
)
‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2

2.

Then by the above two inequalities, we can obtain

C1‖((x, y), f (x, y))− ((u, t), f (u, t))‖2 ≤‖Υ((x, y), f (x, y))− Υ((u, t), f (u, t))‖2

≤ C2‖((x, y), f (x, y))− ((u, t), f (u, t))‖2

where C1 =
1√

3 + 2L2
and C2 =

√
3 + 2L2 satisfying 0 < C1 < C2 < +∞. This means that

Υ is a bi-Lipschitz map. With Lemma 1, we just get our required result.

4. Examples

In this section, we give a concrete example to verify the result acquired in Section 3.

Example 3. For 0 < α < 1, let

W∗(x, y) =
∞

∑
j=1

2−αj sin(2jx), (x, y) ∈ [0, 1]× [0, 1]

and

B∗(x, y) =
∞

∑
j=1

(2j)−
9
10×2j

cos
(
(2j)2j

x
)

, (x, y) ∈ [0, 1]× [0, 1].

By [43], we have

dimB(GW∗) = 3− α, dimB(GB∗) =
39
19

and dimB(GB∗) =
21
10

.

If 0 < α < 9
10 , it follows from Corollary 1 that

dimB(GW∗+B∗) = dimB(GW∗) = 3− α.

Now we show several graphs and numerical results for Example 3. Figure 1 indicates
the graph of W∗ when α = 0.5. Figure 2 denotes the graph of B∗. Figure 3 represents
the graph ofW∗ + B∗. Let α be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Table 1
presents the corresponding numerical results for the box dimension of the graph by using
the computing methods stated in [44]. In addition, Figure 4 supports our theoretical results
gained in Section 3, where the minor deviation may be rendered by the approximation of
the computer process.
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Figure 1. The graph ofW∗.

Figure 2. The graph of B∗.

Figure 3. The graph of B∗ +W∗.
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Table 1. Connection between α and dimB(GW∗+B∗ ).

α dimB(GW∗+B∗)

0.1 2.8736
0.2 2.7801
0.3 2.6792
0.4 2.5853
0.5 2.4779
0.6 2.3825
0.7 2.2814
0.8 2.1840

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

The Box dimension

3-

Figure 4. Comparison between numerical results and theoretical results.

5. Conclusions

In this last section, we sum up conclusions obtained in this paper.

5.1. Conclusions and Remarks

Throughout the present paper, we mainly focus on the fractal dimensions of the graph
of the superposition of two continuous surfaces f and g on [a, b]× [c, d] with certain lower
and upper box dimensions. Our main conclusions can be summarized in the following
several aspects:

(1) dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

(2) dimB(G f+g) ≤ max
{

dimB(G f ), dimB(Gg)
}

.

(3) When
dimB(G f ) 6= dimB(Gg),

we prove that
dimB(G f+g) = max

{
dimB(G f ), dimB(Gg)

}
.

(4) When

max
{

dimB(G f ), dimB(Gg)
}
> min

{
dimB(G f ), dimB(Gg)

}
,

we prove that
dimB(G f+g) = max

{
dimB(G f ), dimB(Gg)

}
.

(5) It has been proven that the superposition of two continuous surfaces cannot keep the
fractal dimensions invariable unless both of them are two-dimensional.
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(6) It has been proven that the fractal dimensions of the graph of the sum of a bivariate
continuous function and a bivariate Lipschitz function equal the fractal dimensions of
the graph of the former. That is, a bivariate Lipschitz function can be absorbed by any
other bivariate continuous function in the sense of fractal dimensions.

Moreover, it is worth mentioning that the previous results can be extended to any
closed regain D ⊂ R2. In other words, all the results attained in the present paper still hold
for two continuous surfaces f and g defined on D.

5.2. Applications in Other Fields

In recent years, estimation of the fractal dimensions of the superposition of continuous
surfaces has been widely applied in various fields, such as metal materials, computer
graphics, and more.

In metal materials, the fracture surface topography with regards to the fatigue of metals
can be studied by fractal characteristics, which can be found in [45,46]. Furthermore, fractal
dimension is closely related to the parameters of the areal surface of metals, as shown in [2].
As is known to all, there are a good deal of approaches to calculating fractal dimensions,
and the results under different resolutions and methods will be slightly different. This
work principally investigates how to calculate fractal dimensions by counting boxes and
how to estimate the fractal dimensions of the superposition of two fractal surfaces, which
can be applied to research on fracture surface topography regarding the fatigue of metals.

In computer graphics, texture roughness is an important visual feature of computer
images, which is of great significance to image analysis, recognition, and interpretation. A
lot of research work has been done on texture analysis and many methods for measuring
and describing texture roughness have been proposed (see [47–50], for example). Fractal
dimension is one of the mostly used tools to describe the texture roughness of image
surfaces, namely, the complexity of image gray surfaces, which can be a representation of
image stability. The higher the fractal dimension, the more complex the surface, and then
the coarser the image. The results in this paper can also contribute to calculating the fractal
dimensions of the surface of the superposition of two computer images.

Besides, there are a lot of other potential applications of the theory of fractal surfaces
like geology [3], oceanography [51], geosciences [52–54] and so on. Relevant interested
researchers can further explore these applications in the future.

5.3. Further Research

In this paper, there are still some points worthy of improvement and further considera-
tion in the future. Here we present them and put forward several open questions, including
the following:

(1) This work only deals with cases when the two bivariate continuous functions have a
different upper box dimension and the lower box dimension of one function is larger
than the upper box dimension of the other one. People could further explore the other
situations later.

Question 1. Suppose that f (x, y) ∈ Sd2
d1

, g(x, y) ∈ Sd4
d3

. What is dimB(G f+g)

when d2 = d4 and what is dimB(G f+g) when d2 ≥ d3?

(2) In the present paper, we only focus on the box dimension of the graph of the sum of
two bivariate continuous functions. Therefore, other kinds of fractal dimensions, such
as the packing dimension, the Hausdorff dimension, and the Assouad dimension,
could be further considered for this problem.

Question 2. Let f (x, y), g(x, y) : [a, b]× [c, d] → R be continuous. What can
dimP(G f+g), dimH(G f+g) and dimA(G f+g) be, respectively?

(3) This study is only about bivariate continuous functions, which could be generalized
to continuous functions of n variables in the future.
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Question 3. Let f (x), g(x) : ∏n
i=1[ai, bi] → R be continuous. What can the

fractal dimensions of G f+g be?

(4) Apart from this, people could further investigate the fractal dimensions of the graph
of bivariate continuous functions under other operations.

Question 4. Let f (x, y), g(x, y) : [a, b]× [c, d] → R be continuous. What can
the fractal dimensions of G f ·g be?
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