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Abstract: Breast cancer ranks among the most prevalent malignancies affecting the female population
and is a prominent contributor to cancer-related mortality. Mathematical modeling is a significant tool
that can be employed to comprehend the dynamics of breast cancer progression and dissemination
and to formulate novel therapeutic approaches. This paper introduces a mathematical model of
breast cancer that utilizes the Caputo–Fabrizio fractal-fractional derivative. The aim is to elucidate
and comprehend the intricate dynamics governing breast cancer cells and cytotoxic T lymphocytes in
the context of the fractional derivative. The derivative presented herein offers a broader perspective
than the conventional derivative, as it incorporates the intricate fractal characteristics inherent in the
process of tumor proliferation. The significance of this study lies in its contribution to a novel mathe-
matical model for breast cancer, which incorporates the fractal characteristics of tumor development.
The present model possesses the capability to investigate the impacts of diverse treatment strategies
on the proliferation of breast cancer, as well as to formulate novel treatment strategies that exhibit
enhanced efficacy.

Keywords: breast cancer; mathematical modeling; fractional derivative; fractals

1. Introduction

Breast cancer is a pathological condition characterized by the unregulated prolifera-
tion of cells within the breast tissue. Based on the data provided by “The Global Burden
of Disease Cancer Collaboration”, it can be observed that breast cancer demonstrates
the highest prevalence when compared to other forms of cancer [1]. This pathological
condition causes cellular and mammary tissue organization aberrations, resulting in unreg-
ulated cellular growth. Therefore, breast cancer presents a potential hazard to women on
a global scale. Breast cancer was ranked as the second most prevalent form of cancer by the
World Health Organization (WHO) in the year 2004 [2]. According to surveys conducted
by the World Health Organization (WHO), it has been found that breast cancer affects
approximately 8–9 percent of women on a global scale. Despite numerous studies and
investigations, the precise cause of breast cancer remains uncertain. Based on the findings
referenced in the sources [2,3], breast cancer was responsible for causing 685,000 fatalities
in the year 2020, affecting a total of 2.3 million women. Breast cancer had become the
most prevalent global disease by the conclusion of 2020, as evidenced by the diagnosis of
7.8 million women within the preceding five-year period [2]. It is worth noting that breast
cancer has a global impact on women following the onset of puberty, and its occurrence
tends to rise as individuals age. A comprehensive grasp of the epidemiology of breast can-
cer and its implications for women’s health is crucial in developing impactful, preventive,
and therapeutic approaches worldwide.
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Cancer is widely recognized as a prominent genetic disorder, with its development
primarily linked to mutations occurring in genes associated with a susceptibility to the
disease [4]. Many methodologies have been devised to comprehend the fundamental
mechanism of human breast cancer [5]. Loeb introduced the notion of a mutator pheno-
type, which holds significant importance in the progression of tumors [6]. Simultaneously,
Tomlinson and Bodmer investigated the mutator phenotype hypothesis and unveiled its
correlation with selective pressure for the clonal expansion of intermediate cells [7]. These
investigations contribute substantially to our comprehension of the intricate dynamics
underlying breast cancer’s development and progression. Through the process of elucida-
tion, these studies provide insight into the role of mutator phenotypes, thereby creating
opportunities for the development of therapeutic interventions and targeted strategies to
address breast cancer and other genetic disorders. The basic ideas of population genetics
and the evolutionary processes driving the origin and spread of tumors are best described
using mathematical models [8,9]. Various factors, including mutation, selection, and tissue
types, have been observed to influence the dynamics of tumorigenesis [10,11]. It is worth
noting that there is a correlation between an upsurge in cases of breast cancer incidences
among women and factors such as postmenopausal status and the presence of estrogen
receptors. The incorporation of mathematical modeling in the field of cancer research
offers significant contributions in elucidating the intricate dynamics among these variables,
thereby enhancing our comprehension of the pathogenesis of breast cancer.

Mathematical frameworks play a crucial role in facilitating the understanding of intricate
disease dynamics and offering precise perspectives on disease control and prevention [12]. In
the context of cancer modeling, this field of study dates back to 1954, when the first attempts
were made to explain cancer behavior [13]. Following this, scholars have researched diverse
facets of cancer and the proliferation of tumors using mathematical models. Dixit et al. [14]
formulated a mathematical model to describe the chemotherapy treatment protocol for
tumor cancers, providing a comprehensive outline of the treatment procedure. Recent
research has focused on developing enhanced, streamlined, mathematical models with
an improved efficiency. An experimental model employing low-dose chemotherapy and
limited parameters was developed to examine the communication of angiogenic signals
between blood vessels and tumors [15]. Jordao and Tavares have developed a compart-
mental model that incorporates both cancerous and healthy cells, thereby comprehensively
examining the proposed cancer model [16]. Khajanchi and Nieto have investigated how
a time delay affects the dynamics of the tumor system [17]. Mahlbacher et al. have
provided an important model to understand the interactions between the immune sys-
tem and malignancies, providing important insights for cancer therapy approaches [18].
Numerous mathematical models have been devised in the existing body of literature to
examine, conceptualize, and depict the transmission dynamics of cancer [10]. These models
play a crucial role in advancing our comprehension of cancer dynamics and they present
promising opportunities for developing effective approaches to cancer research, treatment,
and prevention.

Fractional calculus has developed as a fast-growing area of mathematical studies, em-
phasizing arbitrary order derivatives and integrals. Using fractional differential equations
has attracted considerable interest in diverse scientific fields. Memory properties have
been observed in various intricate phenomena across applied sciences. Researchers may
obtain more precise findings using fractional derivatives instead of integer derivatives,
which introduces an extra degree of freedom. The inherent non-local characteristics of
fractional differential equations render them highly suitable for depicting phenomena or
processes exhibiting memory, as well as hereditary properties across various disciplines,
including physics, chemistry, biology, and economics [19,20]. Sabir et al. [21] introduced
a stochastic framework to tackle the fractional-order differential model linked to breast
cancer growth throughout the phase of immune-chemotherapeutic therapy. The proposed
framework encompasses a range of control factors, such as pharmacological agents target-
ing cancer, a ketogenic dietary regimen, and immunomodulatory agents. The developed
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model incorporates the temporal changes in tumor density during chemotherapy treat-
ment and the immune response elicited by the interplay between healthy and cancer
cells. Solis-Perez et al. [22] introduced a mathematical framework to analyze the com-
petitive dynamics of breast cancer. The model incorporates fractional order derivatives,
notably the Liouville–Caputo and Caputo–Fabrizio–Caputo fractional derivatives. The
use of fractional derivatives has been shown to provide more important insights into the
complexity of the dynamics inside the breast cancer competition model. Sohail et al. [22]
introduced an innovative method for including atezolizumab medication in modeling
breast cancer epidemiology. The researchers used a methodology based on piecewise
fractional-order modeling in their investigation. Hassani et al. [23] examined the Caputo
fractional derivative for the fractional order breast cancer competition model. Numerical
simulations verified the developed methodology’s validity, feasibility, and computational
efficacy. Abaid-ur-Rehman et al. [24] examined the reduced differential transform approach
for the computer solution of two cancer tumor models with fractional-order dynamics in
the Caputo sense. The models used in this study are founded upon the impact of cancer
chemotherapy agents, providing insight into the intricate dynamics involving chemother-
apeutic medications, cancer cells, normal cells, and immune cells. Ozturk and Ozkose
developed the fractional-order model of the tumor–immune system interaction [25]. The
research results revealed that the fractional model had a more favorable level of conformity
to the experimental data than the integer order model.

Within material and process modeling, fractional calculus emerges as a highly effec-
tive instrument, particularly in examining materials and processes that possess memory
and hereditary attributes, such as electrochemical phenomena. Furthermore, fractional
differentiation and integration operators have been employed to extend the applicability of
diffusion and wave equations [26,27]. Additionally, these operators have been utilized to
tackle contemporary challenges, such as the temperature field problem in oil strata [28]. In
terms of cancer research, notable contributions have been made by Valentim et al. [29], who
suggested a multistep exponential model with a fractional order to represent the evolution
history of a tumor. Similarly, Farayola et al. [30] modeled a radiotherapy cancer treatment
process that included radiobiological factors. These studies demonstrate the adaptability
and efficacy of fractional calculus in comprehending intricate cancer-related mechanisms
and have the potential to provide valuable perspectives for enhancing approaches to
cancer treatment.

This article introduces a substantial expansion of a newly developed deterministic
model within the Caputo–Fabrizio fractal-fractional framework. The main objective of
this study is to develop a concise and inclusive mathematical model with fractional-order
properties that can effectively depict the dynamic characteristics of cancer cells and CTLs.
The implications of developing a fractional-order model that is less complex are extensive,
particularly in terms of enhancing computational efficiency and interpretability. With the
growing importance of computational methods in contemporary research, the simplicity
of the proposed model has the potential to facilitate faster and more accurate simulations
and predictions. The study’s primary contributions pertain to the integration of theoretical
concepts and empirical observations within the field of breast cancer research. Utilizing the
proposed Caputo–Fabrizio fractal-fractional model can enhance our comprehension of the
dynamics between cancer and the immune system. This has the possibility of unveiling
innovative approaches for cancer treatment and propelling the progress of mathematical
modeling in the field of oncology.

2. Mathematical Model

This study aims to investigate and analyze the breast cancer model with fractional-
order derivatives, as previously explored and examined by Idrees and Sohail [31] with
integer-order derivatives. Idrees and Sohail introduced a deterministic model that is based
upon a set of fundamental assumptions: initially, it has been observed that cancer cells
exhibit logistic growth when there is no immune response present [32]. Furthermore, it
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has been observed that cytotoxic T lymphocytes exhibit the capacity to eradicate cancer
cells [33]. Moreover, it has been observed that cancer cells have the ability to stimulate
both naive and noncytotoxic cells [34]. Subsequent to the activation of cytotoxic T cells,
their proliferation exhibits a logistic trend, eventually ceasing after a specific threshold
of interactions with cancer cells has been reached [35]. Our model’s basic premise is that
breast cancer is homogenous, which means that every cancer cell within a tumor is thought
to have the same characteristics and tendencies. Although this assumption simplifies
the tumor’s computational description, it could not adequately reflect the heterogeneity
in breast cancers. It is hypothesized that a homogeneous distribution of immune cells
exists inside the tumor microenvironment. In reality, immune cells have the potential to
display spatial heterogeneity within the tumor microenvironment, hence influencing their
interactions with cancer cells. Our model simplifies this distribution for computational
tractability. Some parameters, such as growth rates, treatment efficacies, and immune cell
activities, are considered constant throughout the simulation. In reality, these parameters
may vary over time or across different patients. While we aim to capture average values,
this assumption may not fully account for temporal changes.

The mathematical representation of the dynamics of cancer cells and cytotoxic T
lymphocytes is described by a system of ordinary differential equations:

dC(t)
dt

= a1C(t)
(

1− C(t)
a2

)
︸ ︷︷ ︸

Logistic growth of tumor cells

− a3C(t)
(

L(t)
a4 + L(t)

)
︸ ︷︷ ︸

Tumor cells killed by cytolysis

, (1)

dL(t)
dt = a5L(t)

(
1− L(t)

a6

)(
C(t)

a7 + C(t)

)
︸ ︷︷ ︸

Activation of CTLs by tumor and their logistic growth

− a8C(t)L(t)︸ ︷︷ ︸
Inactivation of CTL after interaction with tumor

− a9L(t)︸ ︷︷ ︸
Natural degradation

,
(2)

where C(t) represents the population of breast cancer cells, L(t) represents the population of
cytotoxic T lymphocytes, and ai (i = 1, 2, 3, . . . , 9) are positive dimensionless constants. The
complete process of non-dimensionalization is explained in [31]. Numerous in vitro and in
vivo investigations have repeatedly shown that tumor cells proliferate exponentially while
their population is small but decelerate as their population reaches higher levels. In light of
this fact, it is postulated that the progression of tumor development adheres to a logistic
curve characterized by an inherent growth rate denoted as α1 and a maximum carrying
capacity represented as α2. The researchers used experimental literature, where accessible,
to determine the parameters of the suggested model quantitatively. Nevertheless, due to
the limited data availability, we must additionally depend on prior estimations of certain
rates and values derived from other scholarly modeling publications. The estimation of
the growth rate α1 is derived from the data [36], while the determination of the carrying
capacity is based on the findings from the research [37–39]. Estimating the values of
parameters α1 and α4 is based on the analysis of experimental data [40]. The parameters of
the CTL equation were determined based on a clinical investigation conducted on cancer
cells and T lymphocytes in individuals diagnosed with breast cancer [41]. The complete
process of the parameter estimation is described in [31].

2.1. Preliminaries of Fractional Calculus

This section discusses some fundamental definitions pertaining to the Caputo–Fabrizio
fractal-fractional order derivative, which are useful when developing a fractional-order
mathematical model of breast cancer.
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Definition 1. The Riemann–Liouville fractional integral of the function g : R+ → R exists for
ξ > 0 in two forms: the upper and lower. These upper and lower integrals on the closed interval
[α, β] are defined as [42]:

RL
α D−ξ

t (g(t)) =RL
α Iξ

t (g(t)) =
1

Γ(ξ)

∫ t

α
(t− x)ξ−1g(x)dx, for t > α,

RL
t D−ξ

β (g(t)) =RL
t Iξ

β(g(t)) =
1

Γ(ξ)

∫ β

t
(x− t)ξ−1g(x)dx, for t < β,

where Γ is the gamma function.

Definition 2. The existence of the Riemann–Liouville fractional derivative of the function g :
R+ → R is established in two distinct forms, namely the upper and lower forms. The calculation
of this derivative is performed by employing the Lagrange rule for differential operators. In order
to calculate the nth-order derivative with respect to the integral of order (n− ξ), the derivative of
order ξ is obtained. It is imperative to consider that the numerical value of n must exceed that of ξ,
where n represents the smallest integer. Thus, the derivatives are defined as [42]:

RL
α Dξ

t (g(t)) =
dn

dtn
RL
α D−(n−ξ)

t (g(t)) =
dn

dtn
RL
α In−ξ

t (g(t)),

RL
t Dξ

β(g(t)) =
dn

dtn
RL
t D−(n−ξ)

β (g(t)) =
dn

dtn
RL
t In−ξ

β (g(t)).

Definition 3. An alternative definition of the derivative, proposed by Caupto [43], was introduced
to address certain limitations of the Riemann–Liouvile derivative. The alternative definition is
provided below.

C
0 Dξ

t (g(t)) =
1

Γ(n− ξ)

∫ t

0

g(n)(Ψ)

(t−Ψ)ξ−n+1 dΨ,

where ξ ∈ (n− 1, n), in which n ∈ N. Obviously, C
0 Dξ

t (g(t)) → Dξ
t (g(t)) whenever ξ → 1.

Thus, C
0 Dξ

t (g(t)) and Dξ
t (h(t)) exist almost everywhere and let s1, s2 ∈ R; then, C

0 Dξ
t [s1g(t) +

s2h(t)] exists almost everywhere with

C
0 Dξ

t [s1g(t) + s2h(t)] = s1[
C
0 Dξ

t (g(t))] + s2[
C
0 Dξ

t (h(t))].

Definition 4. Let us consider a fixed point, denoted as C∗, for the Caputo system, which is
commonly referred to as its equilibrium point and is defined as follows:

C
0 Dξ

t (C
∗(t)) = g(t, C∗(t))⇔ g(t, C∗t) = 0, where 0 < ξ > 1.

Definition 5. Let g ∈ H1(a, b), where H1(a, b) is the Sobolev space of order 1 which is defined as

H1(a, b) = {g ∈ L2(a, b) : D(g) ∈ L2(a, b)};

then, the Caputo fractional derivative is defined as [44]

C
0 Dξ

t (g(t)) =
M(ξ)

1− ξ

∫ t

a
Dξ

t (g(x))exp
(
−ξ

t− x
1− ξ

)
dx,

where M(ξ) is the normalization function such that M(0) = M(1) = 1.
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Definition 6. If the given function does not satisfy the conditions for membership in the Sobolev
space, the resulting derivative is referred to as the Caputo–Fabrizio fractional derivative, which is
formally defined as

CF
0 Dξ

t (g(t)) =
M(ξ)

1− ξ

∫ t

a
(g(t)− g(x))exp

(
−ξ

t− x
1− ξ

)
dx.

Definition 7. If a function g(t) is continuous and fractally differentiable over the given interval
(α, β) with fractal order τ, then the definition of the Caputo–Fabrizio fractal-fractional derivative of
g(t) with order ξ in the Riemann–Liouville sense is given by

CFF
0

Dξ,τ
t (g(t)) =

M(ξ)

1− ξ

d
dtτ

∫ t

0
exp
(
− ξ

1− ξ
(t− x)

)
g(x)dx.

2.2. Mathematical Model with the Caputo–Fabrizio Fractal-Fractional Derivative

The Caputo–Fabrizio fractal-fractional derivative (see Definition 7) is a mathematical
operator that has been specifically developed to expand the traditional notion of differ-
entiation to include a non-integer or fractional orders. The name of this concept derives
from its originators, Michele Caputo and Mauro Fabrizio, who identified the constraints of
traditional fractional derivatives in effectively representing intricate and self-replicating
patterns frequently observed in many natural and biological phenomena, including tumor
proliferation. Caputo and Fabrizio introduced a novel conceptualization of the fractional
derivative that incorporates a smooth kernel [45]. This formulation exhibits distinct rep-
resentations for the temporal and spatial variables. The rationale for the interest in this
novel method derives from the imperative need to use a model that accurately charac-
terizes the dynamics of classical viscoelastic materials, thermal media, electromagnetic
systems, and other related phenomena. The initial description of the fractional derivative
is notably advantageous for mechanical phenomena associated with plasticity, fatigue,
damage, and electromagnetic hysteresis. Utilizing the new fractional derivative appears
more reasonable when these effects are absent. The inclusion of a smooth kernel in the
fractional derivative concept is crucial for representing the interactions between tumor cells
and their surrounding tissue. This smoothness factor can be used to model how tumor cells
respond to mechanical and chemical signals from their environment, affecting their pro-
liferation rates and migration patterns. Tumor cells often exhibit an anomalous diffusion,
which means that their movement does not follow the traditional Brownian motion. The
fractional derivative concept can capture this behavior more accurately, providing a better
understanding of how tumor cells spread and invade surrounding tissues.

The Caputo–Fabrizio fractal-fractional derivative is an innovative fractional order operator
that offers many benefits compared to conventional fractional order operators, including the
Caputo and Atangana–Baleanu fractional derivatives. The Caputo–Fabrizio fractal-fractional
derivative represents a broader spectrum of possibilities than other fractional order operators.
It has a superior stability to other fractional order operators, making it a more dependable
choice for numerical simulations. The integer-order model given in Equations (1) and (2) can be
transformed into the Caputo–Fabrizio fractal-fractional derivative:

CFF
0

Dξ,τ
t (C(t)) = F1(C(t), L(t)) = a1C(t)

(
1− C(t)

a2

)
− a3C(t)

(
L(t)

a4 + L(t)

)
, (3)

CFF
0

Dξ,τ
t (L(t)) = F2(C(t), L(t)) = a5L(t)

(
1− L(t)

a6

)(
C(t)

a7 + C(t)

)
− a8C(t)L(t)− a9L(t), (4)

where ξ and τ are the fractional and fractal order of the model subject to the initial condi-
tions of C(0) = C0(t) and L(0) = L0(t).
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3. Numerical Solution

This study uses the Adams–Bashforth technique to solve the fractional-order model
numerically [46]. To build a numerical scheme for the proposed model, it is essential to
convert the model into the following form:{

CF
0 Dξ

t (C(t)) = τtτ−1F1(C(t), L(t)),
CF
0 Dξ

t (L(t)) = τtτ−1F2(C(t), L(t)).
(5)

After applying the CF integral to the system (5), we obtain

{
C(t) = C(0) + τ

Γ(ξ)

∫ t
0 χτ−1(t− χ)ξ−1F1(χ, C(t), L(t))dχ,

L(t) = L(0) + τ
Γ(ξ)

∫ t
0 χτ−1(t− χ)ξ−1F2(χ, C(t), L(t))dχ.

This implies thatC(t) = C0(t) +
τtτ−1(1−ξ)

M(ξ)
F1(χ, C(t), L(t)) + τξ

M(ξ)

∫ t
0 χτ−1F1(χ, C(t), (L(t)))dχ,

L(t) = L0(t) +
τtτ−1(1−ξ)

M(ξ)
F2(χ, C(t), (L(t))) + τξ

M(ξ)

∫ t
0 χτ−1F2(χ, C(t), L(t))dχ.

At tn+1, we have the following scheme:Cn+1(t) = C0(t) +
τtτ−1(1−ξ)

M(ξ)
F1(χ, C(t), L(t)) + τξ

M(ξ)

∫ tn+1
0 χτ−1F1(χ, C(t), (L(t)))dχ,

Ln+1(t) = L0(t) +
τtτ−1(1−ξ)

M(ξ)
F2(χ, C(t), L(t)) + τξ

M(ξ)

∫ tn+1
0 χτ−1F2(χ, C(t), (L(t)))dχ.

By taking the difference between consecutive terms, we obtain

Cn+1(t) = Cn(t) +
τtτ−1(1−ξ)

M(ξ)
F1(tn, Cn(t), Ln(t))−

τtτ−1
n−1(1−ξ)

M(ξ)
F1(tn−1, Cn−1(t), Ln−1(t))

+ τξ
M(ξ)

∫ tn+1
tn

χτ−1F1(χ, C(t), (L(t)))dχ,

Ln+1(t) = Ln(t) +
τtτ−1(1−ξ)

M(ξ)
F2(tn, Cn(t), Ln(t))−

τtτ−1
n−1(1−ξ)

M(ξ)
F2(tn−1, Cn−1(t), Ln−1(t))

+ τξ
M(ξ)

∫ tn+1
tn

χτ−1F2(χ, C(t), (L(t)))dχ.

Integrating and using the Lagrange interpolation polynomial, we obtain

Cn+1(t) = Cn(t) +
τtτ−1(1−ξ)

M(ξ)
F1(tn, Cn(t), Ln(t))−

τtτ−1
n−1(1−ξ)

M(ξ)
F1(tn−1, Cn−1(t), Ln−1(t))

+ τξ
M(ξ)

[
3h
2 tτ−1

n F1(tn, Cn(t), Ln(t))− h
2 tτ−1

n−1F1(tn−1, Cn−1(t), Ln−1(t))
]
,

Ln+1(t) = Ln(t) +
τtτ−1(1−ξ)

M(ξ)
F2(tn, Cn(t), Ln(t))−

τtτ−1
n−1(1−ξ)

M(ξ)
F2(tn−1, Cn−1(t), Ln−1(t))

+ τξ
M(ξ)

[
3h
2 tτ−1

n F2(tn, Cn(t), Ln(t))− h
2 tτ−1

n−1F2(tn−1, Cn−1(t), Ln−1(t))
]
.

After simplification, we obtain

Cn+1(t) = Cn(t) + τtτ−1
n

(
1−ξ
M(ξ)

+ 3hξ
2M(ξ)

)
F1(tn, Cn(t), Ln(t))

−τtτ−1
n−1

(
1−ξ
M(ξ)

+ hξ
2M(ξ)

)
F1(tn−1, Cn−1(t), Ln−1(t)),

Ln+1(t) = Ln(t) + τtτ−1
n

(
1−ξ
M(ξ)

+ 3hξ
2M(ξ)

)
F2(tn, Cn(t), Ln(t))

−τtτ−1
n−1

(
1−ξ
M(ξ)

+ hξ
2M(ξ)

)
F2(tn−1, Cn−1(t), Ln−1(t)).

(6)

The iterative scheme given in (6) gives the numerical solution of the proposed fractional-
order mathematical model of breast cancer.
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4. Results and Discussion

In this section of the article, the Adams–Bashforth method is used to analyze the
intricate dynamics of our proposed breast cancer model through multiple simulations. The
main goal of these simulations is to determine the input parameters that exert the greatest
influence on perturbing the population levels of cancer patients. Through a numerical
investigation, our objective is to enhance our understanding of the dynamics exhibited by
the fractional breast cancer system. This endeavor seeks to provide a more precise and
all-encompassing comprehension of the dynamics experienced by patients with breast
cancer. The objective of these simulations is to augment our understanding of the funda-
mental mechanisms that govern the progression of breast cancer, with the ultimate goal of
advancing research and treatment strategies for this disease.

We examine three cases of simulations as a means to conceptualize the impact of the
parameters on the system’s dynamic behavior. We observed that both the fractal and the
fraction have a substantial impact on the solution pathway of the breast cancer model in
all cases.

4.1. Case I

We examine the impact of the Caputo–Fabrizio fractal-fractional order derivative on
the breast cancer model at different values of the fractional order, as shown in Figure 1.
For the simulations of Case I, we use the following values of the parameters: α1 = 0.6387,
α2 = 103, α3 = 1, α4 = 20, α5 = 5.7484, α6 = 8 × 102, α7 = 102, α8 = 7.812 × 10−4, and
α9 = 0.8729. The proposed mathematical model possesses periodic solutions characterized
by various amplitude of oscillations. However, it is important to note that these periodic
solutions do not result in Hopf bifurcation. It is worth mentioning that both the cancer
cells and CTLs tend to converge toward the positive equilibrium point due to the presence
of oscillations within their respective populations. Moreover, it has been observed that
the amplitude of oscillations exhibits a proportional increase as the fractional order is
incremented. Similarly, Figure 2 shows the impact of the fractal order on the population of
breast cancer cells and CTLs. The system shows more oscillations as we increase the fractal
order of the model. These results contribute to a deeper comprehension of the system’s
dynamics and illuminate the implications of fractional order derivatives when modeling
such complex phenomena. The investigation of the influence of fractional orders on the
dynamics of systems has the potential to be of great importance in modeling breast cancer
and future therapeutic treatments.

4.2. Case II

We use, in the simulations of this case, the following values of the parameters: α1 = 0.41,
α2 = 103, α3 = 1, α4 = 20, α5 = 5.7484, α6 = 8× 102, α7 = 102, α8 = 7.812× 10−4, and α9 = 0.1287.
Figure 3 illustrates the temporal effects of fractal parameters on the behavior of CTLs and
cancer cells. It is indicated that when τ is small, representing the state of tumor dormancy,
there is evidence of damped oscillations. Tumor dormancy is characterized by a state
in which the population of tumor cells remains stable, and both effector cells and tumor
cells coexist without undergoing extinction. When the parameter τ exceeds a specific
threshold, the system with a value of τ = 0.88 experiences a Hopf bifurcation, resulting
in the emergence of periodic or quasi-periodic solutions. The phenomenon referred to as
Jeff’s phenomenon, which has also been clinically observed [47], is characterized by the
presence of tumor cells displaying oscillatory behavior in the absence of any treatment. The
examination of fractal parameters and their impact on the dynamics of the system enhances
our comprehension of tumor dormancy and oscillatory phenomena, thereby offering
significant insights into the fundamental mechanisms that govern the advancement of
cancer. The implications of these findings for cancer treatment strategies and the need for
further investigation in the field of cancer research should be considered.
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Figure 1. (a–c) Dynamics of cancer cells and CTLs at different values of ξ and a fixed value of τ = 0.95.
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Figure 2. (a–c) Dynamics of cancer cells and CTLs at different values of τ and a fixed value of ξ = 0.85.
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Figure 3. (a,b) Dynamics of cancer cells and CTLs at different values of the fractal order and a fixed
value of the fractional order.

4.3. Case III

Figure 4 depicts the impact of parameter α2 on cancer cells and CTLs in the system
with fixed values of τ and ξ. The simulations of Case III are performed with the same
parametric values as given in Case I with the variation of parameter α2. The parameter α2
denotes the cancer cells’ carrying capacity, which depends on the availability of nutrients
supplied by the host organism and other growth factors. The observation of interest
pertains to the significance of α2, which represents a fundamental biological limitation.
Specifically, the growth of cancer cells is inherently restricted by finite resources and spatial
limitations [48]. When the parameter α2 takes on smaller values, both CTLs and cancer
cells demonstrate damped oscillatory behavior and eventually reach a stable state at the
equilibrium point. Nevertheless, when α2 reaches higher values, CTLs lose their ability to
control the cancer cells effectively. As a consequence, both CTLs and cancer cells exhibit
oscillatory patterns. These results have potential implications for the advancement of
specific therapeutic interventions in cancer treatment. This is due to the consideration of
the regulatory function of α2 in the proliferation of cancer cells and the dynamics of the
immune response. Additional investigation in this particular domain has the potential
to yield significant findings pertaining to the intricacies of cancer proliferation and the
interplay between the immune system and cancer cells.
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Figure 4. (a,b) Dynamics of cancer cells and CTLs at different values of α2 and fixed values of ξ = 0.85
and τ = 0.95.

The simulations conducted in this study demonstrate cyclic fluctuations, which exhibit
a strong concordance with the empirical investigations of breast cancer. According to the
literature, it has been shown that immune cells possess the capability to eradicate tumors
during their first phases, resulting in the destruction of a majority of breast cancer cells
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within a span of two days [49,50]. Also, it is evident that the population of CTLs experiences
quick growth during the first phase and exhibits oscillatory behavior in the vicinity of the
equilibrium point. Consequently, cancer cells demonstrate a decline in response to this swift
reaction by the CTLs and remain constant at a low quantity. This phenomenon, referred
to as “cancer without disease”, has been extensively studied, and several experimental
studies indicate that small tumors do not grow to an invasive state [51–53].

The outcomes derived from the Caputo–Fabrizio fractal-fractional order breast cancer
model demonstrate a significant deviation from the traditional integer and alternative
fractional-order models. The conventional model offers a fundamental comprehension
of the dynamics of breast cancer. However, the Caputo–Fabrizio fractional-order method
contributes a novel aspect by including the complex memory effects and nonlocal behaviors
that are inherent in the evolution of the disease. The Caputo–Fabrizio formulation has
enhanced convergence and accuracy in predicting long-term evolution patterns compared
to other fractional-order models. This emphasizes the model’s ability to effectively char-
acterize the intricate aspects of breast cancer, making it a potentially valuable instrument
for comprehending the intricacies of the condition. The potential of the Caputo–Fabrizio
fractal-fractional order model to enhance breast cancer research and clinical decision-
making is reinforced by its ability to encompass a wide range of patient profiles, account
for anomalous diffusion, and maintain computational efficiency. This model holds promise
in providing fundamental insights and practical applications in the field.

While the current mathematical model effectively assesses the interaction between
breast cancer cells and CTLs, it is important to acknowledge the presence of some limita-
tions. To provide a simplified description of cancer cells and CTLs dynamics, our model
does not include all aspects of immune cell processes. The existing paradigm needs to
address the self-regulatory mechanisms of CTLs adequately. Additionally, most biological
systems exhibit noisy behavior as a result of the fluctuations in their constituent parts;
this phenomenon is referred to as stochasticity. This problem is still open in our model.
Notwithstanding potential limitations, the model in question demonstrates a satisfactory
alignment with the actual data.

5. Conclusions and Future Work

This study’s main aim is to thoroughly analyze the dynamic behaviors exhibited by
the fractional-order breast cancer model. By conducting numerical simulations, it has been
observed that the model illustrates an equilibrium point and displays various dynamic
phenomena, such as quasiperiodic solutions characterized by both damped and higher
amplitude oscillations and Hopf bifurcation. The emergence of these dynamic structures
can be attributed to fluctuations in the fractal and fractional orders, which substantially
impact the model’s dynamical behaviors. Therefore, it can be deduced that the fractional-
order model functions as a practical, user-friendly, and resilient computational instrument
for examining interactions between cancer and immune cells.

The efficacy of treatment strategies can be evaluated over time due to the dynamic
nature of our model. This dynamic aspect allows us to evaluate how treatments impact
the proliferation of breast cancer cells, the activity of immune cells, and the overall tumor
microenvironment. By simulating the interactions between treatments and the complex
dynamics of cancer progression, we can assess how different therapies influence the course
of the disease. In the future, the proposed model can be used to explore a wide range
of therapeutic approaches, including chemotherapy, immunotherapy, targeted therapies,
radiation therapy, and combination therapies. Each treatment type has unique mechanisms
and implications, and assessing their individual and combined effects can yield valuable
insights. Our model is designed to differentiate between various treatment strategies and
assess their respective impacts on breast cancer dynamics. We can achieve this differen-
tiation by incorporating specific parameters and mechanisms that represent the unique
characteristics of each treatment modality. The model can be used to consider factors such
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as treatment dosage, administration schedules, and the mechanisms of action inherent to
each type of therapy.

Additionally, the study emphasizes the significance of input parameters in the breast
cancer system, elucidating key factors essential in managing and preventing breast cancer.
In future research, we intend to expand our model by incorporating delay differential
equations to scrutinize the importance of time delay in the dynamics of breast cancer.
Furthermore, our upcoming research endeavors will incorporate strategic interventions to
mitigate the advancement of breast cancer across various stages. Through the implementa-
tion of these additional investigations, our objective is to enhance our comprehension of the
dynamics of breast cancer and formulate efficacious approaches for managing and prevent-
ing this disease. Incorporating delay considerations and implementing control measures
will enhance the accuracy of our model’s predictions and make significant contributions to
the progress of cancer research and the development of treatment methodologies.
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