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Abstract: Influenced by the rapid development of artificial intelligence, the identification of chaotic
systems with intelligent optimization algorithms has received widespread attention in recent years.
This paper focuses on the intelligent information identification of chaotic maps with multi-stability
properties, and an improved sparrow search algorithm is proposed as the identification algorithm.
Numerical simulations show that different initial values can lead to the same dynamic behavior,
making it impossible to stably and accurately identify the initial values of multi-stability chaotic maps.
An identification scheme without considering the initial values is proposed for solving this problem,
and simulations demonstrate that the proposed method has the highest identification precision
among seven existing intelligent algorithms and a certain degree of noise resistance. In addition, the
above research reveals that chaotic systems with multi-stability may have more potential applications
in fields such as secure communication.

Keywords: identification; chaotic map; sparrow search algorithm; multi-stability; initial value

1. Introduction

Over the past few decades, chaos theory research has attracted increasing attention.
Due to its special properties such as ergodicity, randomness, and sensitivity to initial
values [1], chaos has a wide range of applications in fields like electronic information,
artificial intelligence, biology, and materials science [2–8]. In general, it is not difficult to
collect the data in respect of chaotic behavior in nonlinear systems, but it is not possible
to clearly deduce the exact mathematical model of the chaos phenomenon. Without prior
information, how to accurately identify various types of system parameter through the
collected data is the key to utilizing and controlling chaos [9,10].

Due to the rapid development of artificial intelligence technology, the introduction
of intelligent optimization algorithms for the parameter identification of chaotic systems
has become a hot topic in recent years. This method is simple and robust, and it is not
sensitive to the considered system. So far, multiple intelligent optimization algorithms
have been proposed for identifying the parameters of chaotic systems. For example,
Xu et al. [11] proposed a hybrid flower pollination algorithm for the parameter identifica-
tion of a Lorenz system, Rössler system, and other classical chaotic systems. Gupta et al. [12]
and Hu et al. [13] designed two improved artificial bee colony algorithms to study the pa-
rameter identification of fractional-order nonlinear systems, and simulations demonstrated
the good identification display. Yousri et al. [14] reported the chaotic whale optimization
variants to be applied in the parameter identification of a permanent magnet synchronous
motor with hyperchaotic behavior. The results show that the algorithm combined with
a logistic map has the best performance. In addition, the JAYA algorithm [15], differential
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evolution algorithm [16], particle swarm optimization algorithm [17], bird swarm algo-
rithm [18], sunflower optimization algorithm [19], butterfly optimization algorithm [20],
and other intelligent optimization algorithms are utilized to identify the parameters of
nonlinear systems with chaotic behavior.

Until recently, most reports for the parameter identification of chaotic systems have
only focused on the system parameters, while the identification research for the initial
values is not enough [21,22]. As a matter of fact, the initial value also has an important
impact on the generation behavior of the chaotic system, so it is necessary to conduct
in-depth research on initial value identification.

Recently, a new dynamical system called a multi-stability chaotic system was discov-
ered, and it has been reported in many papers [23–26]. It is different from regular chaotic
systems; any imperfect identification of system parameters and initial values not only
causes time-series with different quantities, but also with different qualities. This means
that tiny changes in the initial values may result in different chaotic attractors, especially in
discrete chaotic maps [27–29].

To sum up, these issues have driven us to further study the identification of system
parameters and initial values in multi-stability chaotic maps. In order to obtain more
accurate results, we introduce the sparrow search algorithm (SSA) [30], which has been
proven to have better performance than some intelligent optimization algorithms like
particle swarm optimization, the differential evolution algorithm, the genetic algorithm, etc.
A new improved sparrow search algorithm (ISSA) has also been designed for information
identification.

The remainder of this paper is organized as follows. The framework for the infor-
mation identification of chaotic maps is introduced in Section 2. Section 3 presents the
proposed ISSA. Numerical simulations with and without initial values are given in Section 4
and Section 5, respectively. Finally, Section 6 summarizes the conclusions and presents the
prospects for future work.

2. Information Identification of Chaotic Map

For chaotic maps utilized in practical applications, the most crucial information is
the system parameters and initial values, as they directly affect the dynamic behavior
generated by the system. In this paper, the basic framework for the parameter and initial
value identification of chaotic maps is shown in Figure 1. According to this figure, the
identification process is regarded as a typical optimization problem.

 ΔX=F(X, t, θ )
x1 ,…, xM

－  

~ ~ ~ ~
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~ ~
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Figure 1. Framework for parameter and initial value identification of chaotic map.

The original chaotic map is

∆X = F(X, t, θ), (1)
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where {X = x1, x2, . . . , xM} denotes the state vector of the original system and M is the
number of samples in the identification. x0 is the initial value and t is the iteration number
of the chaotic map. {θ = θ1, θ2, . . . , θD} represents the system parameters and D is the
number of system parameters. The character with the “∼” symbol above it represents
the various information of the identified system, and the meaning of this information
corresponds to the original system.

Symbol J is the goal of the identification problem, which is generally set as the mean
squared error between the original and the identification time series

J =
1
M

M

∑
t=1

(Xt − X̃t)
2. (2)

Therefore, the information identification problem is regraded as a multi-dimensional
optimization problem with an objective function J. The optimization process involves
continuously modifying the initial values and system parameters through the intelligent
optimization algorithm to make the value of target J close to 0, thereby accurately identify-
ing the key information of the original system.

3. The Proposed Intelligent Optimization Algorithm

In this study, SSA was selected as the optimization algorithm for information identifica-
tion. In order to improve the precision, we designed an improved sparrow search algorithm
(ISSA) that incorporates two new schemes; namely, inertial weight and chaotic search.

3.1. Classical Sparrow Search Algorithm

SSA is a bionics swarm intelligence optimization algorithm that simulates the group
behavior of sparrows in foraging. It consists of three types of sparrow populations, i.e., pro-
ducers, scroungers, and scouters, so the algorithm is mainly divided into three update steps.
The producers are responsible for guiding the direction of the population and finding the
foraging area, while the scroungers will always follow the producers and compete for food.
The scouters are responsible for guarding the population. If a predator is found, they will
issue an alarm, causing the entire population to migrate within their activity range.

We assume that the sparrow population has a total of N (i ∈ [1, N]) sparrows. The
mathematical equation for updating the location of the producers is

Yi,j(t + 1) =
{

Yi,j(t)exp(−i
αT ), if R2 < ST,

Yi,j(t) + QL, if R2 ≥ ST,
(3)

where t is the current generation number and T is the maximum generation number. Yi,j(·)
is the position of the i-th sparrow in the j-th dimension solution space. α is a random number
between 0 and 1. Q is a random number subject to the normal distribution. L is a matrix
with 1× d dimensions, where each element inside is 1. R2 ∈ [0, 1] and ST ∈ [0.5, 1] are the
alarm value and the safety threshold, respectively. When R2 exceeds the safety threshold,
this indicates that the scouters have detected the predator and the entire population will
migrate to other safe areas.

The mathematical equation for updating the location of the scroungers is

Yi,j(t + 1) =

{
Qexp(

Yworst(t)−Yi,j(t)
i2 ), if i > N/2,

Yp(t + 1) + |Yi,j(t)−Yp(t + 1)|A+L, otherwise,
(4)

where Yp(t) is the optimal position of the producers at the t-th generation, and Yworst(t)
is the global worst position at the t-generation. A is a 1× d matrix with internal elements
randomly set to 1 or −1, and A+ = AT(AAT)−1. When i > N/2, this indicates that the
i-th scrounger will fly to other areas to search for food.
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Assuming that 20% of the total population of sparrows are aware of danger (scouters),
the mathematical update equation is

Yi,j(t + 1) =

{
Ybest(t) + β|Yi,j(t)−Ybest(t)|, if fi > fg,

Yi,j(t) + K[
Yi,j(t)−Yworst(t)

fi− fw+ε ], if fi = fg,
(5)

where Ybest(t) is the global worst position at the t-generation. β is subject to the normal
distribution, and K is a random number between 0 and 1; both of these are the step-size
control coefficients. fi is the fitness value of the current sparrow position; fg and fw are the
current global optimal fitness value and global worst fitness value, respectively. ε is a very
small constant so as to avoid zero-division error.

3.2. Improved Sparrow Search Algorithm

The ISSA attempts to incorporate inertial weight and chaotic searching into the classical
SSA to enhance the algorithm’s ability to solve local optimal dilemmas.

First, a special numerical factor called the inertial weight is added to the producer’s
update equation. This will adjust adaptively based on the current fitness value and global
optimal fitness value of sparrows, and gradually decrease with the increase in generation.
If the current position of the sparrow is far from the optimal position, the decrease trend of
the inertial weight will slow down; otherwise its value will rapidly decrease. Therefore,
Equation (3) is changed to

Yi,j(t + 1) =
{

w(t)Yi,j(t)exp(−i
αT ), if R2 < ST,

w(t)Yi,j(t) + QL, if R2 ≥ ST,
(6)

and the inertial weight is defined as

w(t) = (wmax − wmin)exp(−10
fi
fg
)(

t
T
)2 + wmin, (7)

where wmax and wmin are set to 1.5 and 0.6, respectively.
Next, a novel search strategy called chaotic searching is proposed. This is intended to

seek in a certain range according to the global optimal position at the current generation,
aiming to guide the algorithm to jump out of a local optimum. The sparrow position in the
chaotic search is updated as

Y(t) = (Ybest(t)− aYbest(t)) + [(Ybest(t) + aYbest(t))− (Ybest(t)− aYbest(t))]xn, (8)

where a determines the search scope and a ∈ (0, 1). xn is generated according to the
logistic-logistic chaotic system (LLS) [31], and its mathematical equation is

x(n) = µxn−1(1− xn−1)× 214 − floor(µxn−1(1− xn−1)× 214), (9)

where µ is set to µ = 5 here. The LLS has a high Lyapunov exponent, so its randomness is
very strong. Moreover, the values of the sequence generated are also evenly distributed
between 0 and 1, which is very conducive to the search process.

Finally, the execution process of the ISSA is presented in Algorithm 1.
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Algorithm 1 Pseudo code of ISSA

1: Initialize N, ST, T, and a
2: Evaluate the fitness value of each particle; find the best and the worst sparrow position
3: while t < T do
4: for i = 1 : the number of producers do
5: Update new position by Equation (6)
6: end for
7: for i = the number of producers +1 : N do
8: Update new position by Equation (4)
9: end for

10: for i = 1 : the number of producers do
11: Update new position by Equation (5)
12: end for
13: Execute chaotic search according to Equation (8)
14: Preserve better sparrow’s position
15: t = t + 1
16: end while

4. Identification of Initial Values and System Parameters

In this section, multiple intelligent optimization algorithms are introduced to directly
identify initial values and system parameters using the approach shown in Figure 1. The
identification system considered comprises three memristive hyperchaotic maps with
multi-stability properties.

4.1. Identification Systems

The three identification systems comprise a quadratic discrete memristor (QDM) sys-
tem, absolute value discrete memristor (ADM) system, and sinusoidal discrete memristor
(SDM) system [29]. Their formulas are derived as follows.

The mathematical equation of the QDM system is{
xn+1 = k(y2

n − 1)xn,
yn+1 = xn + yn,

(10)

the mathematical equation of the ADM system is{
xn+1 = k(|yn| − 1)xn,
yn+1 = xn + yn,

(11)

and the mathematical equation of the SDM system is{
xn+1 = k sin(πyn)xn,
yn+1 = xn + yn,

(12)

where k is the system parameter. All of the systems are hyperchaotic maps composed of
different nonlinear memristives, and they have multi-stability characteristics controlled by
the initial values (x0, y0). Here, the initial state settings of these three systems are listed in
Table 1, and all systems exhibit hyperchaos behavior, as plotted in Figure 2.

Table 1. Initial states of the identification systems.

System System Parameter Initial Value

QDM k = 1.78 x0 = −0.5, y0 = 0.5
ADM k = 2.3 x0 = −0.8, y0 = 0.6
SDM k = 1.84 x0 = 0.5, y0 = −0.6
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(a) (b) (c)

Figure 2. Hyperchaotic attractor of (a) QDM with k = 1.78, x0 = −0.5, y0 = 0.5, (b) ADM with
k = 2.3, x0 = −0.8, y0 = 0.6, and (c) SDM with k = 1.84, x0 = 0.5, y0 = −0.6.

4.2. Numerical Simulation

Numerical simulations were carried out in systems (10), (11), and (12), and the in-
formation that needed to be identified is given in Table 1. To verify the advantages and
effectiveness of the proposed ISSA, six other intelligent algorithms, i.e., the differential
evolution (DE) algorithm [32], particle swarm optimization (PSO) algorithm [33], artificial
bee colony (ABC) algorithm [34], bird swarm algorithm (BSA) [35], and JAYA [36], were
used for the comparison. The detailed parameter settings for the intelligent optimization
algorithm are shown in Table 2. The number of samples in the identification was set to
M = 3, and the population size of all algorithms was fixed to N = 40. According to the
settings given in Table 1, the individual particle search range in all algorithms was set to
[−3, 3]. The algorithm maximum generation was T = 100, and we performed over 30 con-
secutive algorithm runs to eliminate the stochastic nature of the algorithms. Simulations
were based on MATLAB 2020a on an Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz with
8 GB RAM.

Table 2. Parameter settings of different intelligent optimization algorithms.

Algorithm Parameter Setting

DE CR = F = 0.6
PSO c1 = c2 = 2, ωmin = 0.4, ωmax = 0.9
ABC limit = 100
BSA C = S = 1.5, a1 = a2 = 1, FQ = 3, P ∈ [0.8, 1], FL ∈ [0.5, 0.9]
JAYA -
SSA ST = 0.8
ISSA ST = 0.8, a = 0.6

The identification results for QDM are shown in Table 3. The objective function J
reflects the error between the original system-generated sequence and the estimated system-
generated sequence. Normally, the smaller the value, the smaller the difference between the
identified information and the original information. Here, we stipulate that when the value
of J is no more than 1× 10−8, it is determined that the information identified is accurate.

As is illustrated in Table 3, except for ABC and JAYA, all other algorithms can accu-
rately identify the information of the original system. From the stability of the algorithm
identification results, the proposed ISSA has the best performance, and PSO ranks second.
However, all of these algorithms have 1 or 2 additional accurate identification results
(k = 1.7800, x0 = −0.6514, y0 = 0.6514 and k = 1.7800, x0 = 1.1514, y0 = −1.1514). The
reason for this may be due to the interference of the multi-stability properties, and the
detailed analysis is listed in the following Section 4.3.
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Table 3. Initial value and system parameter identification results for QDM.

Algorithm Min J Average J Standard Deviation Accurate Identification

DE 1.0596 × 10−9 7.6312 × 10−7 1.1302 × 10−6 k = 1.7800, x0 = −0.5000, y0 = 0.5000
k = 1.7800, x0 = −0.6514, y0 = 0.6514

PSO 3.6528 × 10−14 6.1925 × 10−11 1.6995 × 10−10
k = 1.7800, x0 = −0.5000, y0 = 0.5000
k = 1.7800, x0 = −0.6514, y0 = 0.6514
k = 1.7800, x0 = 1.1514, y0 = −1.1514

ABC 1.2452 × 10−5 1.3061 × 10−3 1.2951 × 10−3 -

BSA 7.1560 × 10−14 1.8623 × 10−3 1.1445 × 10−2
k = 1.7800, x0 = −0.5000, y0 = 0.5000
k = 1.7800, x0 = −0.6514, y0 = 0.6514
k = 1.7800, x0 = 1.1514, y0 = −1.1514

JAYA 7.2978 × 10−5 9.1129 × 10−4 8.5444 × 10−4 -

SSA 3.3176 × 10−15 1.1539 × 10−5 8.1394 × 10−5
k = 1.7800, x0 = −0.5000, y0 = 0.5000
k = 1.7800, x0 = −0.6514, y0 = 0.6514
k = 1.7800, x0 = 1.1514, y0 = −1.1514

ISSA 8.2173 × 10−32 2.7615 × 10−28 1.5450 × 10−27
k = 1.7800, x0 = −0.5000, y0 = 0.5000
k = 1.7800, x0 = −0.6514, y0 = 0.6514
k = 1.7800, x0 = 1.1514, y0 = −1.1514

The identification results for QDM are listed in Table 4. Similar to the results for
QDM, ISSA still outperforms the other six algorithms, but it also has 2 additional accurate
identification results (k = 2.3000, x0 = −0.4000, y0 = 0.2000 and k = 2.3000, x0 = 1.0928,
y0 = −1.2928).

Table 4. Initial value and system parameter identification results for ADM.

Algorithm Min J Average J Standard Deviation Accurate Identification

DE 2.5280 × 10−12 1.5302 × 10−7 5.4263 × 10−7 k = 2.3000, x0 = −0.8000, y0 = 0.6000
k = 2.3000, x0 = −0.4000, y0 = 0.2000

PSO 6.8340 × 10−14 9.0310 × 10−11 3.0218 × 10−10
k = 2.3000, x0 = −0.8000, y0 = 0.6000
k = 2.3000, x0 = −0.4000, y0 = 0.2000
k = 2.3000, x0 = 1.0928, y0 = −1.2928

ABC 1.0000 × 10−8 2.1014 × 10−4 4.2926 × 10−4 k = 2.3000, x0 = −0.4000, y0 = 0.2000

BSA 1.7174 × 10−14 3.7102 × 10−4 2.5935 × 10−2
k = 2.3000, x0 = −0.8000, y0 = 0.6000
k = 2.3000, x0 = −0.4000, y0 = 0.2000
k = 2.3000, x0 = 1.0928, y0 = −1.2928

JAYA 3.1510 × 10−4 3.6840 × 10−3 4.5653 × 10−3 -

SSA 5.7673 × 10−22 6.4127 × 10−13 4.5076 × 10−12
k = 2.3000, x0 = −0.8000, y0 = 0.6000
k = 2.3000, x0 = −0.4000, y0 = 0.2000
k = 2.3000, x0 = 1.0928, y0 = −1.2928

ISSA 3.2689 × 10−31 3.2823 × 10−29 8.4737 × 10−29
k = 2.3000, x0 = −0.8000, y0 = 0.6000
k = 2.3000, x0 = −0.4000, y0 = 0.2000
k = 2.3000, x0 = 1.0928, y0 = −1.2928

The identification results for SDM are presented in Table 5. It seems that SDM generates
more complex time series, and all algorithms do not perform very well in identifying its
information. Among them, ISSA ranks the first, and PSO and BSA rank second and third,
respectively. Although the stability of the algorithm identification results is not good, ISSA
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and PSO can still have 3 accurate identification results (including 2 redundant results:
k = 1.8400, x0 = −0.9289, y0 = 0.8289 and k = 1.8400, x0 = 0.6245, y0 = −0.7245).

Table 5. Initial value and system parameter identification results for SDM.

Algorithm Min J Average J Standard Deviation Accurate Identification

DE 1.2100 × 10−6 1.4477 × 10−3 2.1841 × 10−3 -

PSO 2.7861 × 10−11 4.0176 × 10−3 8.1275 × 10−3
k = 1.8400, x0 = −0.5000, y0 = 0.4000
k = 1.8400, x0 = −0.9289, y0 = 0.8289
k = 1.8400, x0 = 0.6245, y0 = −0.7245

ABC 4.8297 × 10−6 4.9959 × 10−4 7.6374 × 10−4 -

BSA 1.7721 × 10−12 6.3962 × 10−3 1.1652 × 10−3 k = 1.8400, x0 = 0.6245, y0 = −0.7245

JAYA 2.6764 × 10−4 1.7661 × 10−2 2.2592 × 10−2 -

SSA 1.0565 × 10−8 1.4487 × 10−3 5.8847 × 10−2 -

ISSA 7.0006 × 10−26 8.3717 × 10−6 1.2630 × 10−4
k = 1.8400, x0 = −0.5000, y0 = 0.4000
k = 1.8400, x0 = −0.9289, y0 = 0.8289
k = 1.8400, x0 = 0.6245, y0 = −0.7245

4.3. Results Analysis

According to the results of the previous section, the proposed ISSA has the highest
identification precision among the seven existing algorithms. However, due to the influence
of the multi-stability properties, none of the algorithms can identify the unique original
information stably. The analysis of the causes of this problem is as follows.

The evolution trajectories of xn by different initial values for the three hyperchaotic
memristive maps are plotted in Figure 3. From this figure, it can be seen that although
the three systems evolve from completely different initial values, their dynamic behaviors
are almost identical in the early stage. QDM and SDM show differences in dynamic
behavior after 35 and 20 iterations of the system, respectively, while ADM does not show
differences until the system performs 230 iterations. The number of sequence samples used
for identification is only M = 3 [37], which decreases the algorithm’s ability to distinguish
sequence errors.

The multi-stability of the system leads to this phenomenon, i.e., different initial values
may lead to the same dynamic behavior over a period of time. In the simulation using
the intelligent optimization algorithm for information identification, the parameters of the
identification system need to be adjusted by the error between time series. Therefore, it is
impossible to conduct stable and accurate identification for initial values. This characteristic
may lead to more potential application scenarios for chaotic systems with multi-stability,
like secure communication, since this system, as a pseudo-random sequence generator,
may make it more difficult for intelligent technology to decipher the keys.

Let us continue to study information identification for a chaotic map without multi-
stability properties. Here, a famous chaotic map named the Lozi map is considered, and its
equation is {

xn+1 = 1− k|xn + yn|,
yn+1 = bxn,

(13)

where system parameter b is fixed to b = 0.3, and k = 1.5, x0 = 0.1, y0 = 0.1 are set as the
original information.
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(a)

(b)

(c)

Figure 3. Evolution trajectories of sequence xn starting from different initial values: (a) QDM with
k = 1.7800, x0 = −0.5000, y0 = 0.5000 (blue line) and k = 1.7800, x0 = −0.6514, y0 = 0.6514 (red line),
(b) ADM with k = 2.3000, x0 = −0.8000, y0 = 0.6000 (blue line) and k = 2.3000, x0 = −0.4000,
y0 = 0.2000 (red line), and (c) SDM with k = 1.8400, x0 = −0.5000, y0 = 0.4000 (blue line) and
k = 1.8400, x0 = −0.9289, y0 = 0.8289 (red line).

The results and convergence situation for the Lozi map are given in Table 6 and
Figure 4. It can be seen that the original information of the Lozi map is accurately identified.
The results prove the above conclusions. For the chaotic map without multi-stability,
the algorithms can identify its original information stably and accurately. Moreover, the
proposed ISSA still has higher accurate identification precision among the seven algorithms.

Table 6. Initial value and system parameter identification results for Lozi map.

Algorithm Min J Average J Standard Deviation Accurate Identification

DE 4.4276 × 10−9 1.2313 × 10−5 2.6389 × 10−5 k = 1.5000, x0 = 0.1000, y0 = 0.1000
PSO 8.6821 × 10−11 5.1173 × 10−9 1.5569 × 10−9 k = 1.5000, x0 = 0.1000, y0 = 0.1000
ABC 9.4028 × 10−6 1.2273 × 10−3 1.2005 × 10−3 -
BSA 2.9036 × 10−13 2.4014 × 10−4 9.0801 × 10−4 k = 1.5000, x0 = 0.1000, y0 = 0.1000
JAYA 5.8166 × 10−7 6.4159 × 10−4 2.6890 × 10−3 -
SSA 5.5330 × 10−12 6.3569 × 10−6 1.8484 × 10−5 k = 1.5000, x0 = 0.1000, y0 = 0.1000
ISSA 3.0417 × 10−30 3.9779 × 10−11 2.0097 × 10−10 k = 1.5000, x0 = 0.1000, y0 = 0.1000
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Figure 4. Convergence situation for parameter identification of Lozi map.

5. Identification with Any Initial Values

To solve the problem that it is difficult to accurately identify the initial values of
a multi-stability chaotic map, we designed a parameter identification scheme that does not
require consideration of initial values, as illustrated in Figure 5.

 ΔX=F(X, t, θ )

~ ~

x0

x1 ,…, xM
~ ~

Intelligent 

optimization algorithm

Modifying θ 

ΔX=F(X, t, θ )
~ ~~

∑ 

~

J
xl

x1 ,…, xl xl+1, …, xl+M

＋ 

－  

Figure 5. Framework for parameter identification of chaotic map with any initial values.

From Figure 5, it can be seen that the original system evolves from any initial value,
and after a period of iteration x1, . . . , xl . Next, the identification system selects xl as the
initial value, which can be any one of the state sequences generated by the original system.
Finally, the original system and identification system select samples of M length that have
evolved with xl as the initial value for the calculation of target J. Therefore, the calculation
formula for J is the same as Equation (2).

In this section, only the ISSA is utilized for information identification due to it having
the highest identification precision among the seven intelligent algorithms. It should be
noted that all chaotic maps evolve from the initial states given in Table 1 and discard the
first 499 states (i.e., l = 500 and x501, x502, x503 as collected identification samples). The
identification results by the scheme of Figure 5 are listed in Table 7. As shown in this table,
the identification accuracy of the ISSA is very high without considering the identification of
two initial values. For QDM and ADM systems, the accurately identified system parameters
can exhibit no error at maximum display precision in MATLAB 2020a, while for the more
complex SDM, the accurate identification only has an error of 1 × 10−15. The numerical
simulations demonstrate the effectiveness of the proposed ISSA and identification scheme.
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Table 7. The results of system parameter identification with any initial values by ISSA.

System Min J Average J Standard Deviation Accurate Identification

QDM 1.1620 × 10−31 1.1620 × 10−31 2.2270 × 10−47 k = 1.780000000000000
ADM 4.1087 × 10−32 4.1087 × 10−32 1.1135 × 10−47 k = 2.300000000000000
SDM 8.1403 × 10−32 8.1403 × 10−32 2.2270 × 10−47 k = 1.840000000000001

Noise is the inevitable factor in practical applications. Therefore, the identification of
system parameters for three chaotic maps under noise interference was carried out. Addi-
tive Gaussian white noise (AWGN) was considered in the identification samples collected
from the original system. For better comparison, the relative error (RE) is defined as

RE =
|θ̃ − θ|

θ
× 100%, (14)

where θ̃ and θ are the identified and the original system parameters, respectively. The
simulation results are given in Table 8. As shown in the table, even in the presence of
noise, the proposed method can still identify the parameters of the original system, but
the identification precision decreases as the signal-to-noise ratio (SNR) decreases. ADM
is the system that is the least affected by noise interference; when the SNR reaches 30 dB,
the identified RE decreases to below 0.1%. SDM requires an SNR greater than 40 dB to
reduce the RE to below 0.1%. The QDM system is more affected by noise. When the SNR is
below 30 dB, it is difficult to accurately identify the system parameter of the QDM system.
However, when the SNR increases to above 40 dB, its RE can also decrease to below 0.1%.

It is worth noting that although the difference between the identification results and the
original system value is very small, the interference of noise always leads to some numerical
errors in the identification results. However, chaotic systems have strong sensitivity to
parameters, which may make this method limited in some practical applications that
require high precision. Therefore, it is necessary to continue developing methods with
strong noise resistance.

Table 8. The results of system parameter identification with any initial values under noise interference
by ISSA.

System SNR(dB) Average J Average Identification Result RE

QDM

10 8.5678 × 10−3 0.48101725418938 73.98%
20 9.1598 × 10−4 1.63532335966099 11.12%
30 8.0724 × 10−5 1.77856372619514 3.34%
40 8.5505 × 10−6 1.77873077715485 0.07%
50 7.9381 × 10−7 1.77958662235126 0.02%

ADM

10 7.6060 × 10−3 2.2511417157987 2.12%
20 8.4544 × 10−4 2.28961739751150 0.45%
30 8.3162 × 10−5 2.30163725145009 0.07%
40 7.5631 × 10−6 2.30019465294567 0.01%
50 7.4071 × 10−7 2.30012024008413 0.01%

SDM

10 9.3754 × 10−3 1.3665566983129 25.73%
20 7.6273 × 10−4 1.82645413905643 0.74%
30 7.4214 × 10−5 1.83699837846524 0.30%
40 7.9969 × 10−6 1.83945874768613 0.05%
50 9.1389 × 10−7 1.84042638568128 0.02%
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6. Conclusions

In this paper, an improved sparrow search algorithm called the ISSA was proposed to
identify the system parameters and initial values for three chaotic maps with multi-stability.
Because of the multi-stability property, the system can evolve the same dynamic behaviors
from completely different initial values, so the initial values cannot be identified stably
and accurately. To solve this problem, an identification scheme with any initial values
was proposed, which also considers the identification situation under noise interference.
Simulation experiments confirmed the results and demonstrated that the proposed ISSA
has the highest identification precision among seven existing intelligent optimization
algorithms, and it can still identify the system parameters with very low error under
noise interference.

These simulations therefore theoretically constitute a possibility for the intelligent
synchronization control of chaotic maps with multi-stability. What is more important is
that the introduced approach may be a useful tool for the future applications of chaotic
secure communication. Finally, the simulation experiments also show the potential security
of multi-stability chaotic systems in secure communication applications, which is worthy of
further study. Our next work will involve trying to apply this method for the identification
of continuous-time chaotic systems with multi-stability.
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