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Abstract: This paper investigates the problem of fixed-time distributed time-varying optimization
of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed
graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are
involved. The aim is to cooperatively minimize a convex time-varying global cost function produced
by a sum of time-varying local cost functions within a fixed time, where each time-varying local
cost function does not have to be convex. Using a three-step design procedure, a fully distributed
fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design
a fully distributed fixed-time estimator to estimate some centralized optimization terms within a
fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm
with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1,
and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal
controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller
for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed
time T2, and afterwards minimize the convex time-varying global cost function within a fixed time
T3. The upper bound of each fixed time Tm (m = 0, 1, 2, 3) is given explicitly, which is independent of
the initial states. Finally, a numerical example is provided to validate the results.

Keywords: fixed-time distributed optimization; fractional-order multiagent systems; weight-unbalanced
digraph; time-varying cost functions

1. Introduction

More recently, distributed optimization in a group of multiagent systems (MASs) has
received considerable attention owing to its broad applications including but not limited
to sensor networks [1], economic dispatch of power grids [2,3] and wireless resource
management [4]. The primary goal of distributed optimization in MASs is to minimize
the sum of local cost functions (termed the global cost function) cooperatively, where
each agent has a local cost function only known to itself. Existing results mainly focus on
implementing distributed optimization of MASs in a discrete-time manner [1,5,6], which
is different from the case where each agent has continuous-time dynamics. Since many
physical systems have continuous-time dynamics [7], the distributed optimization problem
of MASs with various continuous-time dynamics is extensively studied, such as first-
order MASs [8,9], second-order MASs [10,11] and higher-order MASs [12,13]. Normally,
the implementation of distributed optimization relies upon some factors, i.e., algorithm
performance, the information exchange network topology, the agent inherent dynamics,
as well as the characteristics of the local cost functions. Existing works on the above four
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factors will be discussed, respectively, to point out their corresponding limitations, and
further bring out the research motivation and contribution of this paper.

1.1. Related Work and Its Limitations

(1) Fixed-Time Optimal Convergence: One of the paramount criteria to evaluate the
performance of the distributed optimization algorithm is the optimal convergence rate.
Nonetheless, in the aforementioned discrete-time and continuous-time optimization al-
gorithms, all agents reach an agreement and converge to the global optimal solution as
time approaches infinity. In order to satisfy the finite-time convergence requirement of
some practical tasks, some finite-time distributed optimization algorithms are designed
in [3,14,15]. For the finite-time distributed optimization algorithms, the convergence time
relies on initial states directly. It is impossible to ensure a predetermined convergence time
if certain initial state data are not supplied in advance. Designing fixed-time distributed
optimization algorithms that are independent of any initial states is required. So far, little
work about the fixed-time distributed optimization problem of MASs [16–19] has been
addressed by utilizing the idea of fixed-time stability [20]. Note that, all the aforementioned
finite- and fixed-time optimization algorithms have some constraints, i.e., each local cost
function and its gradient are respectively required to be (strongly) convex and/or Lipschitz,
and the agents’ topology is considered to be undirected.

(2) Weight-Unbalanced Directed Topology: The aforesaid optimal algorithms are designed
based on the assumption that the information exchange network topology among agents
are either undirected or directed but weight-balanced [21], which would generally fail
when they are relocated to unbalanced digraphs. Unbalanced digraphs present a unique
challenge that has received widespread recognition in the optimization community [5].
Existing attempts to consider weight-unbalanced digraphs have used certain additional
information, such as the in-neighbors and out-degree information [22,23], out-neighbors
and in-degree information [24], and the zero eigenvalue’s corresponding left eigenvector
in the Laplacian matrix [10,25,26], which might not be feasible in practice [5,27]. Without
employing the certain information mentioned above, the distributed optimization prob-
lem of MASs with unbalanced digraphs is studied by designing a scaling-function-based
discrete-time algorithm in [5] and a continuous-time coordination algorithm in [27]. But the
designed algorithms in [5,27] depend on certain global information, based on the assump-
tion that each local cost function is strongly convex, and can only achieve an asymptotic
optimal convergence. The above limitations hinder the algorithms’ implementation in
real applications.

(3) Heterogeneous Nonlinear Fractional-Order Dynamics: Additionally, existing works on
distributed optimization usually assume all agents have homogeneous linear dynamics,
and/or share a unique dynamical mode, i.e., single-integrator dynamics [28,29], double-
integrator dynamics [10,11] and general linear dynamics [12]. But oftentimes, many physi-
cal systems are inherently nonlinear and susceptible to heterogeneous disturbances. The
tools used in the homogeneous and linear frameworks cannot be used in the heterogeneous
and nonlinear ones, and the designed optimal algorithms for homogeneous linear MASs
are generally not suitable for heterogeneous nonlinear MASs. The distributed optimization
problems for MASs with heterogeneous disturbances and heterogeneous nonlinear MASs
are respectively studied in [8,14,18] and in [13,30], where the considered topologies are
either undirected [8,13,14] or directed but weight-balanced [30]. Note that all considered
MASs and designed controllers above have integer-order dynamics. A fractional-order (FO)
system with a fractional order can be used to correctly describe the dynamics of anomalous
systems with memory or hereditary features [31,32]. In addition, FO controllers are more
reliable and offer more design flexibility than integer-order controllers [33]. The FO system
is attracting more attention and offers a wide range of practical applications [34]. Recently,
the authors in [35] study the distributed optimization problem of nonlinear uncertain
fractional-order MASs (FOMASs) via designing an adaptive surface control protocol with
asymptotic optimal convergence rate. To the best of our knowledge, the fixed-time dis-
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tributed optimization of FOMASs with heterogeneous nonlinear functions and disturbances
over a weight-unbalanced digraph has not been reported.

(4) Time-Varying Local Cost Functions: Furthermore, while time-varying local cost
functions are frequently used in applications like monitoring a time-varying optimal
solution, the studies listed above primarily focus on the distributed optimization issue
using time-invariant local cost functions. The authors of [11,13,15,19,28,36,37] study the
distributed optimization problem with time-varying local cost functions, also known as the
distributed time-varying optimization problem, which is more challenging to solve because
its optimal point (trajectory) may be time-varying. A connectivity-preserving optimization
algorithm is developed in [11] to make all agents achieve consensus within a finite-time
and the consensus values converge to a time-varying optimal trajectory asymptotically. Via
distributed average tracking, some optimization algorithms are designed to cooperatively
minimize the sum of time-varying local cost functions within a finite time in [15] and
within a fixed time in [19]. At present, there are several limitations in the aforementioned
distributed time-varying optimization problems. For example, the considered network
topologies in [11,13,15,19,28,37] are undirected and the designed algorithms in [11,13,28,37]
can only achieve asymptotic convergence. Moreover, the authors in [11,15,19,28,37] only
consider the integrator-type agent dynamics, each time-varying local cost function and
its Hessian are forced to be convex and invertible in [11,13,37], respectively. This paper
intends to overcome the aforementioned limitations.

1.2. Research Motivation

Motivated by the discussion and observation on the aforementioned four factors,
this paper aims to solve the fixed-time distributed time-varying optimization problem
of an FOMAS with time-varying local cost functions, heterogeneous unknown nonlinear
functions and disturbances over a weight-unbalanced directed network. In this paper, each
time-varying local cost function and its Hessian are not necessarily forced to be convex
and invertible, respectively. As previously mentioned, the aforesaid four factors (i.e., fixed-
time optimal convergence, weight-unbalanced directed topology, heterogeneous nonlinear
fractional-order dynamics, and time-varying local cost functions) have their corresponding
motivations, and existing related works about those four factors have their corresponding
limitations or constraints. Fixed-time optimal convergence has a fast convergence rate
and meets the demand for ensuring a predefined convergence time independent of any
initial states. The benefit of weighted unbalanced direct topology is that it requires fewer
communication channels and less equipment. Heterogeneous nonlinear dynamics and
time-varying local cost functions are common in many physical systems and applications.
Based on a practical perspective, the above four factors are comprehensively considered in
a unified framework and the existing limitations of some related works are removed in this
paper. The studied problem of this paper is very challenging, and the derived results are of
great significance in theory and practice.

1.3. Research Contribution

This paper focuses on studying the problem of distributed optimization of an FOMAS
through comprehensive consideration of the following four factors: fixed-time optimal
convergence, weight-unbalanced directed topology, heterogeneous nonlinear agent inher-
ent dynamics, and time-varying local cost functions. By integrating the idea of fixed-time
stability [20], the distributed estimator (or tracking control) method [14], the sliding-mode
control technique and the distributed leaderless consensus control method, this paper
proposes an estimator-based fully distributed fixed-time optimization algorithm to solve
such a problem. Compared with the existing related works, the research contribution of
this work is threefold.

(1) A fixed-time optimal convergence protocol independent of any initial states is designed;
this is different from the designed asymptotic optimal convergence protocols
in [5,30,37], and the finite-time optimal convergence protocols in [3,14,15] depen-



Fractal Fract. 2023, 7, 813 4 of 21

dent of initial states. However, the fixed-time optimal convergence protocols are
designed in [16–19], where the considered topologies among agents are undirected.

(2) A weight-unbalanced directed topology without employing certain additional information is
considered, which includes the undirected topologies considered in [8,16,18], weight-
balanced directed topologies in [19,21,30], and weight-unbalanced directed topologies,
and employs certain additional information in [23–26] as its special cases. However,
the weight-unbalanced directed topology without employing certain additional in-
formation is considered in [5,27], where the designed protocols are only asymptotic
optimal convergence.

(3) An FOMAS with time-varying local cost functions, heterogeneous unknown nonlinear
functions and disturbances is investigated; this is in contrast to the studied MAS
with linear and homogeneous integer-order dynamics in [9,12,28,29]. Note that
each local cost function is required to be convex in [8,11–13,29], strongly convex
in [5,17,27,37], and the Hessian of each local cost function is forced to be invertible and
equal in [9–11,13,37]. However, in this paper, only the global cost function is forced
to be convex but not necessarily each local cost function, and only the Hessian of the
global cost function is forced to be invertible but not necessarily the Hessian of each
local cost function.

In sum, the work of this paper is an extension of and/or an improvement on the
above-mentioned works.

2. Preliminaries
2.1. Notations

Let R, R+, Rn and Rn×m be respectively the sets of all real numbers, nonnegative
real numbers, n-dimensional real column vectors and n × m real matrices. Symbols
⊗, IN and IN respectively represent the Kronecker product, index set {1, 2, . . . , N} and
N × N identity matrix. For a real number p > 0 and a vector x = [x1, x2, . . . , xn]T ∈
Rn, xp = [xp

1 , xp
2 , . . . , xp

n]
T , sigp(x) = [sigp(x1), sigp(x2), . . . , sigp(xn)]T with sigp(xi) =

|xi|psgn(xi), sgn(x) = [sgn(x1), sgn(x2), . . . , sgn(xn)]T , where sgn(xi) represents the
signum function of xi; d

dt and ∂
∂xi

represent the differential operator and partial differ-
ential operator with respect to t and xi, respectively; for a function f (x, t) : Rn ×R+ → R
that is twice differentiable, its gradient is denoted by ∇ f (x, t) = [ ∂ f (x,t)

∂xi
]i∈In (as a column

vector), its Hessian is denoted by ∇2 f (x, t) = [ ∂2 f (x,t)
∂xi∂xj

]i,j∈In (as a n × n matrix). For bi,
c ∈ R, i = 1, 2, . . . , m, a diagonal matrix with diagonal entries b1, b2, . . . , bm is denoted as
diag(b1, b2, . . . , bm) ∈ Rm×m, and let cn = [c, c . . . , c]T ∈ Rn.

2.2. Fractional Integral and Derivative

In this paper, let p ∈ (0, 1], pi ∈ (0, 1], Γ(z) =
∫ ∞

0 tz−1e−tdt and h(t) ∈ C([t0, ∞),R).
The following definitions and property are available in [38].

Definition 1. The p-order (Riemann-Liouville fractional) integral of h(t) is defined as

Iph(t) =
1

Γ(p)

∫ t

t0

h(s)
(t− s)1−p ds.

Definition 2. Let Dph(t) be the p-order (Caputo fractional) derivative of h(t), defined as

Dph(t) = I1−p ḣ(t) =
1

Γ(1− p)

∫ t

t0

ḣ(s)
(t− s)p ds.

Property 1. It holds that Dp(D1−ph(t)
)
= D1−p(Dph(t)) = ḣ(t) for h(t) ∈ C([t0, ∞),R).

Specifically, Dph = 0 if h is a constant.
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2.3. Directed Graph Theories

The following directed graph theories can be found in [5,27]. A weighted directed
graph (digraph) among N nodes (agents) is modeled as G. Let V = {V1,V2, . . . ,VN} be
the node set, and A = [aij]N×N with weights aij ≥ 0 be the adjacency matrix, where
aij > 0 if and only if agent j is available to agent i, and aij = 0 otherwise. The Laplacian
matrix L = [lij]N×N can be defined as L = diag(|N in

1 |, |N in
2 |, . . . , |N in

N |) − A, where
N in

i = {j ∈ V|aij > 0}, N out
i = {j ∈ V|aji > 0}, the cardinalities |N in

i | = ∑j∈N in
i

aij

and |N out
i | = ∑j∈N out

i
aji are called the in-degree and out-degree of agent i. A digraph is

called weight-balanced if and only if |N in
i | = |N out

i |, ∀i ∈ V . A digraph is termed strongly
connected if there exists a directed path between any two nodes. A digraph graph has a
directed spanning tree if and only if there exists a node (termed the root) with a directed
path to all other nodes.

Assumption 1. The digraph G is time-invariant and strongly connected.

It is worth mentioning that, the digraph G is weight-unbalanced if Assumption 1
holds. Denote ξ = [ξ1, ξ2, . . . , ξN ]

T , Ξ = diag(ξ1, ξ2, . . . , ξN), and a matrix Q = (ΞL +
LTΞ)/2, where ξi > 0 and ∑N

i=1 ξi = 1. If Assumption 1 holds, we have the following
important lemma.

Lemma 1 ([39]). Let X = [X1, X2, . . . , XN ]
T ∈ RN , Y = [Y1, Y2, . . . , YN ]

T ∈ RN , and
Ω(a, b, α, β) = {Y : Y = a · sigα(X) + b · sigβ(X), X 6= cN}, where ab ≥ 0 (except a = b = 0)
and 0 ≤ α < β, and a, b, c, α, β are constants. Based on Assumption 1, there exists a constant
k0 > 0 such that

k0 = min
Y∈Ω(a,b,α,β)

YTQY
YTY

. (1)

Lemma 2 ([40]). If H is a nonsingular M-matrix, there exist an N × N positive diagonal matrix
Θ = diag(θ1, θ2, · · · , θN) and a positive constant η = λ(H̃) such that H̃ = ΘH + HTΘ ≥
η IN, where [θ1, θ2, · · · , θN ]

T = (HT)−11N and λ(H̃) represents the minimal eigenvalue value
of H̃.

2.4. Some Supporting Lemmas

Lemma 3 ([41]). Let x1, x2, . . . , xn ≥ 0. Then

n

∑
i=1

xq
i ≥

(
n

∑
i=1

xi

)q

, 0 < q ≤ 1, (2)

n

∑
i=1

xq
i ≥ n1−q

(
n

∑
i=1

xi

)q

, 1 < q < ∞. (3)

Lemma 4 ([20]). For a differential equation

ẏ = −ay1− 1
ε − by1+ 1

ε , y(0) = y0, (4)

in which y ∈ R+ ∪ {0}, a, b > 0, and ε > 1, the equilibrium of (4) is globally stable after a
fixed-time T and T ≤ Tmax = πε

2
√

ab
.

Lemma 5 ([42]). For a continuous differentiable convex function f (x) : Rn → R, x∗ ∈ Rn is a
global minimum of f (x) if and only if ∇ f (x∗) = 0n.
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3. Problem Statement

Consider an FOMAS composed of N agents under a digraph G. Inspired by [18,30], the
FOMAS is assumed to satisfy the following continuous-time heterogeneous
nonlinear dynamics:

Dpi xi = hi(xi, t) + τi + ui, i ∈ IN = {1, 2, . . . , N}, (5)

where 0 < pi ≤ 1, xi ∈ R and τi ∈ R are, respectively, agent i’s state and disturbance,
hi(xi, t) ∈ R is a nonlinear function, and ui ∈ R is the input. Let J = ∑N

i=1 fi(xi, t) be a
convex global cost function, where fi(xi, t) : R× R+ → R is a time-varying local cost
function only known to itself.

This study aims to find a fully distributed optimization protocol to solve the fixed-time
distributed time-varying optimization problem formulated below.

Fixed-time distributed time-varying optimization problem: Find a fully distributed con-
troller ui in (5) for each agent, such that for any given initial states xi(0), there exists a
fixed-time T independent of the initial states, and xi converges to the optimization point x∗i
within the fixed-time T, i.e., xi = x∗i as t ≥ T for each i ∈ IN , where x∗i ∈ R is the minimizer
of the following distributed time-varying optimization problem:

min
over all xi∈R

J =
N

∑
i=1

fi(xi, t) subject to xi − δi = xj − δj, ∀i, j ∈ IN , (6)

and the constant δi represents the final consensus configuration (or expected formation)
such that xi − δi = xj − δj, ∀i, j ∈ IN . In fact, x∗i ∈ R is the minimizer of the optimiza-
tion problem (6) if and only if x∗ ∈ R is the minimizer of the optimization problem
minx0∈R f0(x0, t), where f0(x0, t) = ∑N

i=1 fi(x0 + δi, t) is the time-varying global cost func-
tion and x∗i = x∗ + δi, ∀i ∈ IN .

Remark 1. It is worth pointing out that existing optimization problems usually require all xi and
reach an exact consensus (see [8–19]), i.e., xi = xj, ∀i, j ∈ IN , and they converge to a common
optimization point x∗. But achieving perfect consensus for all xi in real applications would be
incredibly difficult. In other words, there is always an offset between xi and xj for ∀i 6= j. Thus,
in the optimization problem (6), it is required that xi − xj = δi − δj for ∀i, j ∈ IN , and each
xi converges to its own optimization point x∗i , where x∗i − δi = x∗j − δj = x∗, ∀i, j ∈ IN . For
∀i, j ∈ IN , if δi = δj, xi − xj = δi − δj reduces to xi = xj. Thus, the studied time-varying
optimization problem (6) is more generic and practical, and has a wider range of applications
in resource management/allocation problems [4], economic dispatch problems [18] and optimal
rendezvous formation problems [29].

The following assumptions are required to solve the fixed-time distributed time-
varying optimization problem of the nonlinear FOMAS (5).

Assumption 2. There exists a positive scalar function h̄i(xi, t) such that |hi(xi, t)+ τi| ≤ h̄i(xi, t)
for each i ∈ IN .

Assumption 3. The time-varying global cost function f0(x0, t) is a twice continuously differen-

tiable function with respect to x0, and its Hessian ∇2 f0(x0, t) = ∂2 f0(x0,t)
∂x2

0
6= 0, ∀x0 ∈ R and

t ∈ R+.

Remark 2. From Assumption 2, each agent’s nonlinear function and disturbance are converted into
a simplified relation that only involves an available (computable) scalar function. Assumption 2 is
mild and has been used for consensus algorithm design of uncertain nonidentical MASs in [43–45].
Additionally, from Assumption 2, both of hi(xi, t) and τi are unavailable, h̄i(xi, t) is available to
agent i ∈ IN only and can be used in the algorithm design.
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Remark 3. Note that each local cost function is required to be convex in [8,11–13,29], strongly
convex in [5,17,27,37], and the Hessian of each local cost function is required to be invertible
and equal in [9–11,13,37]. However, in Assumption 3, only the global cost function is required
to be convex but not necessarily each local cost function, and only the Hessian of the global cost
function is required to be invertible but not necessarily the Hessian of each local cost function. Thus,
Assumption 3 is mild. The invertibility of ∇2 f0(x0, t) in Assumption 3 implies that ∑N

i=1 fi(x0, t)
is strictly convex; thus, there exists a unique solution in the time-varying optimization problem (6).

4. Fixed-Time Sliding Mode Control

A sliding-mode-based optimization controller is first proposed as

ui = wi − h̄i(xi, t)sgn(ri)− a1sig1−ε1(ri)− b1sig1+ε1(ri), i ∈ IN , (7)

where the functions ri ∈ R and wi ∈ R satisfy the following fractional-order dynamics:

D1−pi ri = xi − zi, Dpi zi = wi, D1−pi wi = u∗i , (8)

0 < ε1 < 1, a1, b1 > 0 are constants, and u∗i is the nominal controller to be designed later.

Remark 4. Specifically, if pi = 1 ∀i ∈ IN , the fractional-order dynamics (8) reduce to

ri = xi − zi, żi = wi = u∗i . (9)

Theorem 1. Under Assumption 2, the nonlinear FOMAS (5) with the protocol (7) consist-
ing of the sliding-mode manifold (8) reaches the sliding-mode surface ri = 0 within a fixed
time T1, satisfying

T1 ≤
πN

ε1
4

2ε1
√

a1b1
. (10)

Proof. Let Vr(t) = ∑N
i=1 r2

i be the Lyapunov function. By using Property 1, (5), (7) and (8),
i ∈ IN , we have that

ṙi = Dpi (D1−pi ri) = Dpi xi − Dpi zi

= hi(xi, t) + τi + ui − wi

= hi(xi, t) + τi − h̄i(xi, t)sgn(ri)− a1sig1−ε1(ri)− b1sig1+ε1(ri). (11)

From (11), Assumption 2 and Lemma 3, we have that V̇r(t) satisfies

V̇r(t) ≤2
N

∑
i=1

ri

(
−a1sig1−ε1(ri)− b1sig1+ε1(ri)

)
=2

N

∑
i=1

(
−a1|ri|2−ε1 − b1|ri|2+ε1

)

≤− 2a1

(
N

∑
i=1

r2
i

) 2−ε1
2

− 2b1N1− 2+ε1
2

(
N

∑
i=1

r2
i

) 2+ε1
2

=− arV
1− 1

εr
r (t)− brV

1+ 1
εr

r (t), (12)

where ar = 2a1, br = 2b1N−
ε1
2 and εr =

2
ε1

> 2. By invoking Lemma 4, we have Vr(t) = 0
within a fixed time T1, satisfying (10). Therefore, the sliding-mode surface ri = 0 for each
i ∈ IN can be achieved within the fixed time T1.
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As proved in Theorem 1, ri = 0 as t ≥ T1; thus, ṙi = Dpi xi − Dpi zi = 0, i.e., Dpi xi =
Dpi zi = wi according to (8). Hence, as t ≥ T1, the dynamics of each agent can be described
as the following single-integrator MAS:

ẋi = D1−pi (Dpi xi) = D1−pi wi = u∗i , i ∈ IN , (13)

where we have Property 1 and (8) in the first equality and the last equality, respectively.

Remark 5. According to Theorem 1, when t ≥ T1, the nonlinear FOMAS (5) with the proposed
protocol (7) is equivalent to the single-integrator MAS (13) with nominal controller. In view of (8),
for each i ∈ IN , ri is independent of any unknown information hi(xi, t) or τi, but depends only on
its own absolute state information xi and the nominal controller u∗i . This holds true for the protocol
(7). In the following, it just needs to design a fully distributed nominal controller u∗i such that
the fixed-time distributed time-varying optimization problem of the single-integrator MAS (13) is
solved.

5. Main Results

In this section, over a strongly connected digraph (could be weight-unbalanced), we
first design a centralized fixed-time convergent or optimization protocol by embedding
some centralized optimization terms into the fixed-time optimization control scheme
in Section 5.1. In Section 5.2, the centralized optimization protocol is transformed into
a distributed optimization protocol via designing a distributed fixed-time estimator to
estimate the centralized optimization terms.

5.1. Centralized Fixed-Time Optimization Protocol Design

Before designing the centralized fixed-time optimization protocol, three centralized
optimization terms about the time-varying global cost function are denoted as

F1 =
N

∑
j=1
∇ f j(xj, t), F2 =

N

∑
j=1

∂

∂t
∇ f j(xj, t), F3 =

N

∑
j=1
∇2 f j(xj, t).

A neighborhood position error variable is designed as

ex
i = ∑

j∈N in
i

aij(xi − δi − (xj − δj)), i ∈ IN . (14)

Based on Assumption 3, we design the following nominal controller (for each i ∈ IN):

u∗i = −a2sig1−ε2(ex
i )− b2sig1+ε2(ex

i )− φi(t), (15)

where the optimization term φi(t) is defined as

φi(t) = φ(t) =
1
F3

(
a3sig1−ε3(F1) + b3sig1+ε3(F1) + F2

)
, (16)

0 < εk < 1, ak, bk > 0 are constants, k = 2, 3.

Theorem 2. Under Assumptions 1–3, consider the nonlinear FOMAS (5) controlled by the fixed-
time optimization controller (7) consisting of the sliding-mode manifold (8), nominal controller (15)
and optimization term (16). Then xi = x∗i is achieved within a fixed time T, satisfying

T ≤ πN
ε1
4

2ε1
√

a1b1
+

2π(2 + ε2)(2N)
ε2

2(2+ε2)

ρσε2
+

π

2ε3
√

a3b3
, (17)

where i ∈ IN , ρ = k0 min{a2
2, b2

2} and σ = min{ 2−ε2
a2

, 2+ε2
b2
}.
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Proof. The proof process includes two steps. As ri = 0 within a fixed time T1, we will show
that, ∀i, j ∈ IN , xi − δi = xj − δj along the sliding-mode surface ri = 0 within a fixed time
T2 in Step 1; and afterwards, we will show that xi = x∗i within a fixed time T3 in Step 2.

Step 1 (Fixed-time consensus): As t ≥ T1, using (15) with (16) for (13) yields

ẋi = −a2sig1−ε2(ex
i )− b2sig1+ε2(ex

i )− φ(t) (18)

for i ∈ IN . For t ≥ T1, by using a new variable x̃i = xi +
∫ t

T1
φ(s)ds for (18), one has

˙̃xi = −a2sig1−ε2(ex̃
i )− b2sig1+ε2(ex̃

i ) (19)

for i ∈ IN and ex̃
i = ∑j∈N in

i
lij(x̃j − δj). Denote Yi = a2sig1−ε2(ex̃

i ) + b2sig1+ε2(ex̃
i ) for i ∈ IN .

Then ėx̃
i = ∑j∈N in

i
lij ˙̃xj = −∑j∈N in

i
lijYj. Consider the Lyapunov function

Vx̃(t) =
N

∑
i=1

ξi

(
a2

2− ε2
|ex̃

i |2−ε2 +
b2

2 + ε2
|ex̃

i |2+ε2

)
. (20)

The time derivative V̇x̃(t) satisfies

V̇x̃(t) =
N

∑
i=1

ξi

(
a2|ex̃

i |1−ε2sgn(ex̃
i ) + b2|ex̃

i |1+ε2sgn(ex̃
i )
)

ėx̃
i

=−
N

∑
i=1

∑
j∈N in

i

ξiYilijYj

≤− k0

N

∑
i=1

sgn2(ex̃
i )
(

a2|ex̃
i |1−ε2 + b2|ex̃

i |1+ε2
)2

≤− ρ
N

∑
i=1

(
|ex̃

i |2(1−ε2) + |ex̃
i |2(1+ε2)

)
, (21)

where ρ = k0 min{a2
2, b2

2} and the first inequality holds since ∑N
i=1 ∑j∈N in

i
ξiYilijYj =

YTQY ≥ k0YTY with Y = [Y1, Y2, . . . , YN ]
T ∈ Ω(a2, b2, 1− ε2, 1 + ε2) according to (1).

Note that 0 < 1− ε2 < 2−ε2
2+ε2

< 1 + ε2 and 0 < 1− ε2 < 1 < 1 + ε2 due to the fact that
0 < ε2 < 1. For ∀i ∈ IN , it holds

|ex̃
i |

2(2−ε2)
2+ε2 ≤ |ex̃

i |2(1−ε2) + |ex̃
i |2(1+ε2), |ex̃

i |2 ≤ |ex̃
i |2(1−ε2) + |ex̃

i |2(1+ε2). (22)

Using (22) and the inequality (2) with n = 2N and q = 2
2+ε2

< 1 yields

N

∑
i=1

(
|ex̃

i |2(1−ε2) + |ex̃
i |2(1+ε2)

)
≥ 1

2

N

∑
i=1

(
|ex̃

i |
2(2−ε2)

2+ε2 + |ex̃
i |2
)

=
1
2

N

∑
i=1

((
|ex̃

i |2−ε2
) 2

2+ε2 +
(
|ex̃

i |2+ε2
) 2

2+ε2

)

≥ 1
2

(
N

∑
i=1

(
|ex̃

i |2−ε2 + |ex̃
i |2+ε2

)) 2
2+ε2

. (23)

Also note that 0 < 1− ε2 < (1+ε2)(2−ε2)
2+ε2

< 1 + ε2. For i ∈ IN , it holds

|ex̃
i |

2(1+ε2)(2−ε2)
2+ε2 ≤ |ex̃

i |2(1−ε2) + |ex̃
i |2(1+ε2), |ex̃

i |2(1+ε2) ≤ |ex̃
i |2(1−ε2) + |ex̃

i |2(1+ε2). (24)
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Using (24) and the inequality (3) with n = 2N and q = 2(1+ε2)
2+ε2

> 1 yields

N

∑
i=1

(
|ex̃

i |2(1−ε2) + |ex̃
i |2(1+ε2)

)
≥ 1

2

N

∑
i=1

(
|ex̃

i |
2(1+ε2)(2−ε2)

2+ε2 + |ex̃
i |2(1+ε2)

)

=
1
2

N

∑
i=1

((
|ex̃

i |2−ε2
) 2(1+ε2)

2+ε2 +
(
|ex̃

i |2+ε2
) 2(1+ε2)

2+ε2

)

≥ (2N)
1− 2(1+ε2)

2+ε2

2

(
N

∑
i=1

(
|ex̃

i |2−ε2 + |ex̃
i |2+ε2

)) 2(1+ε2)
2+ε2

. (25)

Denote Ve(t) = ∑N
i=1(|ex̃

i |2−ε2 + |ex̃
i |2+ε2). According to (20), one has that Ve(t) ≥

σVx̃(t) with σ = min{ 2−ε2
a2

, 2+ε2
b2
}. It then follows from (21), (23) and (25) that

V̇x̃(t) ≤−
ρ

4
V

2
2+ε2

e (t)− ρ(2N)
1− 2(1+ε2)

2+ε2

4
V

2(1+ε2)
2+ε2

e (t)

≤− ρ

4
(σVx̃(t))

2
2+ε2 − ρ(2N)

− ε2
2+ε2

4
(σVx̃(t))

2(1+ε2)
2+ε2

=− a∗V
1− 1

ε∗
x̃ (t)− b∗V

1+ 1
ε∗

x̃ (t), (26)

where ε∗ =
2+ε2

ε2
> 2, a∗ =

ρσ1− 1
ε∗

4 and b∗ =
ρσ1+ 1

ε∗

4(2N)
1

ε∗
. Using Lemma 4 yields that Vx̃(t) = 0

within a fixed time T2, satisfying

T2 ≤
πε∗

2
√

a∗b∗
=

2π(2 + ε2)(2N)
ε2

2(2+ε2)

ρσε2
. (27)

Thus, as t ≥ T1 + T2, ex̃
i = ∑j∈N in

i
lij(x̃j − δj) = 0. This, together with L1N = 0N and

rank(L) = N − 1, implies that x̃1 − δ1 = x̃2 − δ2 = · · · = x̃N − δN ; that is, xi − δi = xj − δj
as t ≥ T1 + T2, ∀i, j ∈ IN . Therefore, the consensus of the nonlinear MAS (5) is reached
within a finite settling time T1 + T2.

Step 2 (Fixed-time optimization): As t ≥ T1 + T2, ẋi = −φ(t). Consider a Lyapunov
function as Vf (t) = F2

1 = (∑N
i=1∇ fi(xi, t))2. Its derivative is V̇f (t) = 2(∑N

i=1∇ fi(xi, t))
(∑N

i=1∇2 fi(xi, t)ẋi + ∑N
i=1

∂
∂t∇ fi(xi, t)) = 2F1(−φ(t)F3 + F2) as t ≥ T1 + T2; this, together

with (16), implies that

V̇f (t) =2F1

(
−a3sig1−ε3(F1)− b3sig1+ε3(F1)

)
=2
(
−a3|F1|2−ε3 − b3|F1|2+ε3

)
=− 2a3V

2−ε3
2

f (t)− 2b3V
2+ε3

2
f (t)

=− a f V
1− 1

ε f
f (t)− b f V

1+ 1
ε f

f (t), (28)

where a f = 2a3, b f = 2b3 and ε f = 2
ε3

> 2. By invoking Lemma 4, we have F1 =

∑N
i=1∇ fi(xi, t) = 0 within a fixed time T3, satisfying

T3 ≤
πε f

2
√

a f b f

=
π

2ε3
√

a3b3
. (29)

Therefore, according to Lemma 5, we can get that, as t ≥ T = ∑3
i=1 Ti, xi = x∗i for

∀i ∈ IN , where x∗i is the unique minimizer of problem (6).



Fractal Fract. 2023, 7, 813 11 of 21

Remark 6. It follows from Theorem 2 that the proposed fixed-time protocol (7) with (8), (15) and
(16) not only guarantees the system’s state converges to an optimal solution in a fixed time, but
also avoids the requirements that each fi(xi, t) is convex in [8,12,13,37] and each ∇2 fi(x, t) is
invertible and equal in [9,10,13,37]. Unfortunately, the protocol (7) is centralized because φi(t) as
given in (16) depends on the knowledge of F1, F2 and F3, which is global information (centralized
optimization terms). In the following subsection, a class of fixed-time estimators based on tracking
will be designed to reconstruct the global information (16) in a fully distributed manner.

5.2. Distributed Fixed-Time Optimization Protocol Design

To rebuild the centralized optimization terms, a distributed fixed-time estimator is
developed for each agent below. Distributed fixed-time optimization protocol for the
nonlinear FOMAS (5) will be constructed in accordance with the result of Theorem 2 and
the developed distributed estimator.

Let ωj = [∇ f j(xj, t), ∂
∂t∇ f j(xj, t),∇2 f j(xj, t)]T ∈ R3 for j ∈ IN . Each local cost func-

tion f j(xj, t) is unique to each agent j ∈ IN , and as a result, ωj is also unique. In the
leaderless FOMAS (5) with a digraph G, each agent j ∈ IN may be regarded as a virtual
leader. Then, by building a distributed fixed-time leader-following network estimator,
the information ωj of the virtual leader may be tracked in fixed-time by all the agents
i ∈ IN (treated as N virtual followers). Before proceeding, denote diagonal matrices
Āj = diag(āj1, . . . , āji, . . . , ājN) ∈ RN×N with ājj > 0 and āji = 0, ∀i 6= j, i, j ∈ IN . If
Assumption 1 holds (the leader-following network has a directed spanning tree), then each
matrixHj = L+ Āj defines the interaction topology among the leader-following network,
which is a nonsingular M-matrix. Under Assumption 1, it follows from Lemma 2 that
there exist a positive diagonal matrix Θj = diag(θ j

1, θ
j
2, · · · , θ

j
N) and a positive constant

ηj = λ(H̃j) such that H̃j = ΘjHj +HT
j Θj ≥ ηj IN for j ∈ IN .

In this section, a distributed fixed-time estimator or tracking for each agent i ∈ IN is
constructed as 

v̇i
j = −∆i

j − ljsgn(∆i
j),

∆i
j = cjsig1−εj(yi

j) + djsig1+εj(yi
j),

yi
j = ∑

k∈N in
i

aik(v
i
j −vk

j ) + āji(v
i
j −ωj),

(30)

where vi
j = [vi

j,1, vi
j,2, vi

j,3]
T is the estimate of ωj for each agent i ∈ IN, ∆i

j = [∆i
j,1, ∆i

j,2, ∆i
j,3]

T,

yi
j = [yi

j,1, yi
j,2, yi

j,3]
T , lj ≥ supt ‖ω̇j‖, cj, dj > 0 are constants, and 0 < εj < 1, ∀i, j ∈ IN .

Here, ω̇j is assumed to be bounded for any j ∈ IN and t ∈ R+.

Lemma 6. Under Assumption 1, consider the distributed fixed-time estimator (30) for each agent
i ∈ IN , the centralized optimization term φ(t) given in (16) is reconstructed in a distributed
manner as

φi(t) =
1

Fi,3

(
a3sig1−ε3(Fi,1) + b3sig1+ε3(Fi,1) + Fi,2

)
(31)

within a fixed time T0, where Fi,1 = ∑N
j=1 vi

j,1, Fi,2 = ∑N
j=1 vi

j,2, and Fi,3 = ∑N
j=1 vi

j,3, and

T0 = max
j∈IN

2π(2 + εj)(2N)

εj
2(2+εj)

ρjσjεj

, (32)

ρj =
ηj
2 min{c2

j , d2
j } and σj = mini∈IN{

2−εj

θ
j
i cj

,
2+εj

θ
j
i dj
} for j ∈ IN .

Proof. Denote Hj = [hj
ik]N×N = L+ Āj and χi

j,1 = vi
j,1 −∇ f j(xj, t) for ∀i, j ∈ IN . From

(30), ∀i, j ∈ IN , the neighborhood-based error variable yi
j,1 satisfies
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ẏi
j,1 = ∑

k∈N in
i

hj
ikχ̇k

j,1 = − ∑
k∈N in

i

hj
ik

(
∆k

j,1 + ljsgn(∆k
j,1) +

d
dt
∇ f j(xj, t)

)
. (33)

Recall that each matrixHj is a nonsingular M-matrix if Assumption 1 holds; it thus

follows from Lemma 2 that there exists a positive diagonal matrix Θj = diag(θ j
1, θ

j
2, · · · , θ

j
N)

such that H̃j = ΘjHj +HT
j Θj ≥ ηj IN , where ηj = λ(H̃j) > 0 and j ∈ IN . Choose a

Lyapunov function for each j ∈ IN as

Vj(t) =
N

∑
i=1

θ
j
i

(
cj

2− εj
|yi

j,1|
2−εj +

dj

2 + εj
|yi

j,1|
2+εj

)
. (34)

Differentiating Vj(t) along (33) yields (each j ∈ IN)

V̇j(t) =
N

∑
i=1

θ
j
i

(
cj|yi

j,1|
1−εj sgn(yi

j,1) + dj|yi
j,1|

1+εj sgn(yi
j,1)
)

ẏi
j,1

=−
N

∑
i=1

θ
j
i ∆

i
j,1 ∑

k∈N in
i

hj
ik

(
∆k

j,1 + ljsgn(∆k
j,1) +

d
dt
∇ f j(xj, t)

)

≤−
ηj

2

N

∑
i=1

∆i
j,1 · ∆i

j,1 −
N

∑
i=1

∑
k∈N in

i

θ
j
i ∆

i
j,1hj

ik

(
ljsgn(∆k

j,1) +
d
dt
∇ f j(xj, t)

)
, (35)

where the last inequality holds since

N

∑
i=1

∑
k∈N in

i

θ
j
i ∆

i
j,1hj

ik∆k
j,1 =

1
2

∆T
j,1H̃j∆j,1 ≥

ηj

2
∆T

j,1∆j,1

and ∆j,1 = [∆1
j,1, ∆2

j,1, . . . , ∆N
j,1]

T . It should be noted that Hj1N = [āj1, āj2, . . . , ājN ]
T ,

∆i
j,1sgn(∆i

j,1) = |∆i
j,1| and ∆i

j,1sgn(∆k
j,1) ≤ |∆i

j,1|, for ∀i, j, k ∈ IN . Then, for each j ∈ IN , we

can use lj ≥ supt ‖ω̇j‖ ≥ supt |
d
dt∇ f j(xj, t)| to deduce

−
N

∑
i=1

∑
k∈N in

i

θ
j
i ∆

i
j,1hj

ik

(
d
dt
∇ f j(xj, t) + ljsgn(∆k

j,1)

)

=−
N

∑
i=1

θ
j
i ∆

i
j,1 āji

d
dt
∇ f j(xj, t)− lj

N

∑
i=1

θ
j
i ∆

i
j,1

 ∑
k∈N in

i

aik

(
sgn(∆i

j,1)− sgn(∆k
j,1)
)
+ ājisgn(∆i

j,1)


≤
(∣∣∣∣ d

dt
∇ f j(xj, t)

∣∣∣∣− lj

) N

∑
i=1

θ
j
i āji|∆i

j,1| ≤ 0. (36)

Denote ρj =
ηj
2 min{c2

j , d2
j } for each j ∈ IN . Substituting (36) into (35) yields

V̇j(t) ≤ −
ηj

2

N

∑
i=1

(
cj|yi

j,1|
1−εj sgn(yi

j,1) + dj|yi
j,1|

1+εj sgn(yi
j,1)
)2

≤ −
ηj

2

N

∑
i=1

(
c2

j |yi
j,1|

2(1−εj) + d2
j |yi

j,1|
2(1+εj)

)
≤ −ρj

N

∑
i=1

(
|yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj)

)
. (37)
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Note that 0 < 2(1− εj) <
2(2−εj)

2+εj
< 2(1 + εj) and 2(1− εj) < 2 < 2(1 + εj) due to

0 < 1− εj < 1 < 1 + εj, ∀j ∈ IN . So, ∀j ∈ IN , one has

|yi
j,1|

2(2−εj)
2+εj ≤ |yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj), |yi

j,1|2 ≤ |yi
j,1|

2(1−εj) + |yi
j,1|

2(1+εj). (38)

Using (38) and (2) with n = 2N and q = 2
2+εj
∈ (0, 1) yields

N

∑
i=1

(
|yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj)

)
≥ 1

2

N

∑
i=1

(
|yi

j,1|
2(2−εj)

2+εj + |yi
j,1|2

)

=
1
2

N

∑
i=1

((
|yi

j,1|
2−εj

) 2
2+εj +

(
|yi

j,1|
2+εj

) 2
2+εj

)

≥ 1
2

(
N

∑
i=1

(
|yi

j,1|
2−εj + |yi

j,1|
2+εj

)) 2
2+εj

. (39)

Also note that 2(1− εj) < 2(1 + εj)
2−εj
2+εj

< 2(1 + εj) due to 0 < 2(1− εj) < 2(1 + εj),
∀j ∈ IN . So, ∀j ∈ IN , one has

|yi
j,1|

2(1+εj)(2−εj)
2+εj ≤ |yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj), |yi

j,1|
2(1+εj) ≤ |yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj). (40)

Using (40) and (3) with n = 2N and q =
2(1+εj)

2+εj
> 1 yields

N

∑
i=1

(
|yi

j,1|
2(1−εj) + |yi

j,1|
2(1+εj)

)
≥ 1

2

N

∑
i=1

(
|yi

j,1|
2(1+εj)(2−εj)

2+εj + |yi
j,1|

2(1+εj)

)

=
1
2

N

∑
i=1

(|yi
j,1|

2−εj
) 2(1+εj)

2+εj +
(
|yi

j,1|
2+εj

) 2(1+εj)
2+εj



≥ (2N)
1−

2(1+εj)
2+εj

2

(
N

∑
i=1

(
|yi

j,1|
2−εj + |yi

j,1|
2+εj

)) 2(2+εj)
2+εj

. (41)

Denote V j(t) = ∑N
i=1(|yi

j,1|
2−εj + |yi

j,1|
2+εj) for each j ∈ IN . According to (34), one has

that V j(t) ≥ σjVj(t) with σj = mini∈IN{
2−εj

θ
j
i cj

,
2+εj

θ
j
i dj
} for each j ∈ IN . It can be derived from

(37), (39) and (41) that

V̇j(t) ≤ −
ρj

4
V

2
2+εj
j (t)−

ρj(2N)
1−

2(1+εj)
2+εj

4
V

2(1+εj)
2+εj

j (t)

≤ −
ρj

4
(
σjVj(t)

) 2
2+εj −

ρj(2N)
1−

2(1+εj)
2+εj

4
(
σjVj(t)

) 2(1+εj)
2+εj

= −µjV
1− 1

γj
j (t)− νjV

1+ 1
γj

j (t), (42)

where γj =
2+εj

εj
> 2, µj =

ρjσ
1− 1

γj
j
4 and νj =

ρjσ
1+ 1

γj
j

4(2N)
1

γj
for each j ∈ IN . It thus follows from

Lemma 4 that Vj(t) = 0 within a fixed time T∗j , satisfying
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T∗j ≤
πγj

2√µjνj
=

2π(2 + εj)(2N)

εj
2(2+εj)

ρjσjεj
(43)

for j ∈ IN . Thus, as t ≥ T∗j , yi
j,1 = ∑k∈N in

i
hj

ikχk
j,1 = 0 for ∀j ∈ IN , whereHj = [hj

ik]N×N is a

nonsingular M-matrix, implies that χk
j,1 = 0 for ∀k ∈ IN ; that is, vi

j,1 = ∇ f j(xj, t) as t ≥ T∗j
for ∀i, j ∈ IN . So, ∑N

j=1 vi
j,1 = ∑N

j=1∇ f j(xj, t), i.e., Fi,1 = F1, as t ≥ T0 = maxj∈IN{T
∗
j } for

each agent i ∈ IN . Similarly, as t ≥ T∗j , it can be derived that vi
j,2 = ∂

∂t∇ f j(xj, t) and vi
j,3 =

∇2 f j(xj, t) for ∀j ∈ IN . So ∑N
j=1 vi

j,2 = ∑N
j=1

∂
∂t∇ f j(xj, t) and ∑N

j=1 vi
j,3 = ∑N

j=1∇2 f j(xj, t),
i.e., Fi,2 = F2 and Fi,3 = F3, as t ≥ T0 for each agent i ∈ IN . Therefore, as t ≥ T0, the
distributed optimization term φi(t) given in (31) for each agent i ∈ IN is equivalent to the
centralized optimization term φ(t) given in (16).

Now, to summarize Lemma 6, Theorems 1 and 2, we can state and establish the main
theorem of this paper.

Theorem 3. Under Assumptions 1–3, consider the nonlinear FOMAS (5) controlled by the dis-
tributed optimization controller (7) consisting of the sliding-mode manifold (8), nominal controller
(15), estimator (30) and optimization term (31). Then xi = x∗i is achieved within a fixed time
∑3

m=0 Tm, satisfying

3

∑
m=0

Tm ≤max
j∈IN

2π(2 + εj)(2N)

εj
2(2+εj)

ρjσjεj

︸ ︷︷ ︸
=T0 (see(32))

+
πN

ε1
4

2ε1
√

a1b1︸ ︷︷ ︸
≥T1 (see (10))

+
2π(2 + ε2)(2N)

ε2
2(2+ε2)

ρσε2︸ ︷︷ ︸
≥T2(see (27))

+
π

2ε3
√

a3b3︸ ︷︷ ︸
≥T3(see (29))

, (44)

where i ∈ IN , ρj =
ηj
2 min{c2

j , d2
j }, σj = mini∈IN{

2−εj

θ
j
i cj

,
2+εj

θ
j
i dj
}, ρ = k0 min{a2

2, b2
2} and σ =

min{ 2−ε2
a2

, 2+ε2
b2
}, and j ∈ IN .

Proof. The proof process includes four steps, i.e., Step 1–4. By repeating the proof processes
of Lemma 6, Theorem 1, Step 1 and Step 2 in Theorem 2, respectively, it can be proved that,
∀i, j ∈ IN , φi(t) = φ(t) as t ≥ T0 in Step 1, each agent reaches the sliding-mode surface
ri = 0 as t ≥ T0 + T1 in Step 2, xi − δi = xj − δj as t ≥ T0 + T1 + T2 in Step 3, and xi = x∗i
as t ≥ T0 + T1 + T2 + T3 in Step 4, and, hence, omitted here.

If Assumptions 1–3 are satisfied, the implementation process of the fixed-time dis-
tributed optimization of the nonlinear FOMAS (5) with generic digraph is summarized as
in Algorithm 1.

Remark 7. To prevent the divergence that the time-varying signals ωj would otherwise cause,
we introduce a signum function term −ljsgn(∆i

j) in (30), where lj ≥ supt ‖ω̇j‖. Note that

lj ≥ supt ‖ω̇j‖ is similar to Assumption 4.6 in [28], and ω̇j is bounded if all of d
dt (∇ f j(xj, t)),

d
dt (

∂
∂t∇ f j(xj, t)) and d

dt (∇
2 f j(xj, t)) are bounded. The boundedness of ω̇j might be restrictive,

but it can be satisfied for many cost functions. For example, fi(xi, t) = (aixi + gi(t))2, ω̇j
is bounded if ‖gi(t)‖2, ‖ġi(t)‖2 and ‖g̈i(t)‖2 are bounded [28], such as gi(t) = i(sin(t) +
cos(t)), ie−t sin(t), i

1+t or i tanh(t), and so on.

Remark 8. In the algorithm (7), the sliding-mode control term−h̄i(xi, t)sgn(ri)− a1sig1−ε1(ri)−
b1sig1+ε1(ri) is used to derive all agents reaching the sliding-mode surface in a fixed time., the
nominal controller u∗i designed by (15) consists of consensus control term −a2sig1−ε2(ex

i ) −
b2sig1+ε2(ex

i ) and an estimator-based optimization term −φi(t) estimated by (30) and (31). The
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consensus control term is used for reaching consensus in fixed time, and the estimator-based
optimization term is used for capturing the minimizer of the optimization problem (6) within a fixed
time.

Remark 9. Since none of the parameters, including εk, ak ,bk, cj, dj and εj, k = 1, 2, 3 and
j = 1, 2, . . . , N, depend on any global information, the designed distributed optimization controller
(7) using (8), (15), (30) and (31) is fully distributed. Also the designed fully distributed optimization
controller is suitable for weight-unbalanced digraphs, and task requirements can be satisfied by
modifying the parameters of the expected settling time in (44).

Algorithm 1 Fixed-time distributed optimization algorithm: A fractional-stage implementation
If Assumptions 1–3 are satisfied, the whole fixed-time distributed optimization procedure
is summarized by the following four cascading stages.
I Stage 1: Fixed-time estimator of the centralized optimization term φ(t): upgrade (5)

using (7) with (8), (15), (30) and (31). According to Lemma 6, as t ≥ T0 = maxj∈IN{T
∗
j }, the

distributed optimization term φi(t) given in (31) is equivalent to the centralized optimiza-
tion term φ(t) given in (16) for each i ∈ IN .
I Stage 2: Fixed-time sliding mode control: continue upgrading (5) using (7) with (8),

(15), (30) and (31). According to Theorem 1, as t ≥ T0 + T1, the dynamics of each agent is
described by the single-integrator MAS (13).
I Stage 3: Fixed-time consensus of xi− δi, ∀i ∈ IN : continue upgrading (5) using (7) with

(8), (15), (30) and (31). According to the proof of Step 1 in Theorem 2, as t ≥ T0 + T1 + T2,
xi − δi = xj − δj, ∀i, j ∈ IN .
I Stage 4: Fixed-time convergence of xi − x∗i , ∀i ∈ IN : continue upgrading (5) using

(7) with (8), (15), (30) and (31). According to the proof of Step 2 in Theorem 2, as t ≥
T0 + T1 + T2 + T3, xi = x∗i , ∀i ∈ IN .

Remark 10. The previous works in [11,13,15,19,28,37] about the distributed time-varying opti-
mization problem of MASs are only applicable for a connected undirected topology. Whereas, our
work is applicable for a strongly connected directed topology. Furthermore, both fixed-time optimal
convergence and nonlinear dynamics are considered here. The detailed comparison between our work
and the works in [11,13,15,19,28,37] is listed in Table 1.

Table 1. Comparison of Distributed Time-Varying Optimization.

Related Work Optimal
Convergence Rate Topology Dynamics

[11,28,37] Infinite time Undirected Linear

[13] Infinite time Undirected Nonlinear

[15] Finite time Undirected Linear

[19] Fixed time Undirected Linear

This work Fixed time Directed Nonlinear

If the nonlinear FOMAS (5) reduces to the single-integrator MAS (13), as a byproduct,
we have the following theorem.

Theorem 4. Under Assumptions 1 and 3, consider the single-integrator MAS (13) controlled
by the continuous distributed optimization controller (15) consisting of the estimator (30) and
optimization term (31). Then xi = x∗i is achieved within a fixed time T0 + T2 + T3, where i ∈ IN ,
T0 = maxj∈IN{T

∗
j } and T∗j is given by (32), T2 and T3 are given by (27) and (29), respectively.

Remark 11. The proposed discontinuous controller (7) in Theorem 3 may cause chattering, and
both the proposed discontinuous controller (7) in Theorem 3 and the continuous controller (15) in
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Theorem 4 may result in singularity when Fi,3 in (31) is irreversible at some point, i.e., Fi,3 = 0 at
t = t∗ with t∗ ∈ (0, T0). To avoid these unexpected phenomena, some control techniques/methods
need to be developed, which are interesting topics for future research.

To avoid the singularity caused by Fi,3 in (31), a special case of Assumption 3 is
studied; that is, each ∇2 fi(xi, t) in Assumption 3 is equal [37], i.e., ∇2 fi(xi, t) = ∇2 f j(xj, t),
∀i, j ∈ IN . Then, the optimization term φi(t) in (15) is designed as

φi(t) =
1

F̃i,3

(
a3sig1−ε3(Fi,1) + b3sig1+ε3(Fi,1) + Fi,2

)
, (45)

where F̃i,3 = N∇2 fi(xi, t), Fi,1 = ∑N
j=1 vi

j,1, Fi,2 = ∑N
j=1 vi

j,2, vi
j,1 and vi

j,2 are designed by the

estimator (30) with vi
j = [vi

j,1, vi
j,2]

T being the estimate of ωj = [∇ f j(xj, t), ∂
∂t∇ f j(xj, t)]T for

each agent i ∈ IN, ∆i
j = [∆i

j,1, ∆i
j,2]

T, yi
j = [yi

j,1, yi
j,2]

T, lj ≥ supt ‖ω̇j‖, cj, dj > 0, and 0 < εj <

1, ∀i, j ∈ IN.
By using the optimization term (45) for (15), a singularity-free distributed optimiza-

tion controller is thus derived and designed. The following theorems, as byproducts of
Theorem 3, are stated and established directly.

Theorem 5. Under Assumptions 1–3, if ∇2 fi(xi, t) = ∇2 f j(xj, t), ∀i, j ∈ IN , consider the
nonlinear FOMAS (5) controlled by the distributed optimization controller (7) consisting of the
sliding-mode manifold (8), nominal controller (15), estimator (30) and optimization term (45). Then
xi = x∗i is achieved within a fixed time ∑3

m=0 Tm, satisfying (44), i ∈ IN .

Theorem 6. Under Assumptions 1 and 3, if ∇2 fi(xi, t) = ∇2 f j(xj, t), ∀i, j ∈ IN , consider the
single-integrator MAS (13) controlled by the continuous distributed optimization controller (15),
consisting of the estimator (30) and optimization term (45). Then xi = x∗i is achieved within a
fixed time T0 + T2 + T3, where i ∈ IN , T0 = maxj∈IN{T

∗
j } and T∗j is given by (32), T2 and T3 are

given by (27) and (29), respectively.

6. Simulation Study

Consider the FOMAS (5) with N = 5, pi = 1.1− 0.1 ∗ i, hi =
ki1

5|ki1|+1 (xi − 1)2 and
τi = 0.2 tanh(ki2t), where ki1 and ki2 are taken randomly from N(0, 1) (defined by the
randn function of Matlab). The digraph G among the five agents is shown in Figure 1
with weights. We can check that Assumption 1 is satisfied with a weight-unbalanced
strongly-connected digraph G, since only agent 5 has the same weighted in-degree and
weighted out-degree, i.e., |N in

5 | = |N out
5 | = 1. It is easy to verify that Assumption 2 is

satisfied with h̄i = 0.2(xi − 1)2 + 0.2 for i ∈ IN . In the optimization problem (6), we choose
δi = i for each i ∈ IN , and

f1(x1, t) = (x1 + 0.3e1−t)2 + 3, f2(x2, t) = −0.4 sin(πt)x2 + t, f3(x3, t) = 2x2
3 − 0.6e1−tx3,

f4(x4, t) = −0.5(x4 − 5)2 +
t + 2
t + 1

, f5(x5, t) = −2x2
5 + 8x5 + arctan(πt).

Denote Āj = diag(5, 5, 5, 5, 5), cj = 1, dj = 2, εj = 0.1, lj = 15, ak = 0.8 ,bk = 0.5
and εk = 0.2, k = 1, 2, 3 and j = 1, 2, . . . , 5. Let xi(0) = zi(0) + 1, ri(0) = wi(0) = 0, and
vi

j(0) = 03, ∀i, j ∈ IN , where x1(0), . . . , x5(0) are chosen as 1, 3, −5, 4, −2.
The gradient of each time-varying cost function f j(xj, t), j = 0, 1, . . . , 5, and its two

partial differential operators with respect to t and xj are given in Table 2, where f0(x0, t) =
∑N

i=1 fi(x0, t) is the time-varying global cost function, x0 = xi − δi, ∀i ∈ IN . It is easily
verified from Table 2 that the time-varying local cost functions f2(x2, t), f4(x4, t) and
f5(x5, t) are non-convex, the Hessian of each time-varying local cost function is not equal
and ∇2 f2(x2, t) is not invertible. Therefore, the methods in the literature mentioned in
Remark 3 fail to work. It is also verified from Table 2 that the time-varying global cost
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function f0(x0, t) is strictly convex; thus, Assumption 3 is satisfied, and there exists a
unique minimizer to the optimization problem (6). By some calculations, the unique
minimizer of (6) is x∗i = 0.4 sin(πt) + i− 3 for each i ∈ IN , which shows that the optimal
points (trajectories) are time-varying. Note that x∗ = x∗i − δi = 0.4 sin(πt)− 3 is a common
optimization point of (6). The trajectories of φi in (31) and φ in (16) are shown in Figure 2;
these imply that φi = φ as t ≥ 1 s, ∀i ∈ IN . The trajectories of ri, xi, x∗i , xi − δi, and x∗ are
respectively provided in Figures 3–5. It is seen from Figure 3 that, ∀i ∈ IN , ri = 0 is achieved
as t ≥ 2 s (all agents achieve fixed-time sliding mode control), while there exist chattering
phenomena. It is seen from Figures 4 and 5 that, ∀i, j ∈ IN , xi − δi = xj − δj is achieved as
t ≥ 4 s (all agents reach fixed-time consensus), and xi − δi = x∗i − δi = x∗ is achieved as
t ≥ 5 s (all agents reach fixed-time optimization). The trajectories of x∗1 = 0.4 sin(πt)− 2,
and x1 with four different initial states x1(0) = 2, x1(0) = 0, x1(0) = −2, x1(0) = −4, and
all other parameters and initial values given above are shown in Figure 6. It is observed
from Figure 6 that the fixed time within which x1 = x∗1 is achieved is independent of the
initial states. Therefore, Theorem 3 is verified by the simulation results.

Table 2. The Gradient of Each Time-Varying Cost Function, and its Two Partial Differential Operators.

j ∇ fj(xj, t) ∂
∂t∇ fj(xj, t) ∇2 fj(xj, t)

1 2x1 + 0.6e1−t −0.6e1−t 2

2 −0.4 sin(πt) −0.4π cos(πt) 0

3 4x3 − 0.6e1−t 0.6e1−t 4

4 −x4 + 5 0 −1

5 −4x5 + 8 0 −4

0 x0 − 0.4 sin(πt) + 3 −0.4π cos(πt) 1

Figure 1. A digraph G among five agents A1–A5.

Figure 2. Trajectories of φi in (31) and φ in (16).
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Figure 4. Trajectories of xi and x∗i .
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Figure 6. Trajectories of x∗1 , and x1 with different initial states x1(0).

7. Conclusions

This study has considered the fixed-time distributed optimization problem of a non-
linear FOMAS with heterogeneous time-varying cost functions, nonlinear functions and
disturbances under generic weight-unbalanced digraph. By integrating the fixed-time
Lyapunov stability theory and the sliding-mode control technique, a novel estimator-based
fully distributed optimization algorithm with fixed-time optimal convergence has been
designed to solve the problem. One simulation example has been given to demonstrate the
effectiveness of our method over a wider range of time-varying local cost functions, consid-
ering a weight-unbalanced digraph. An interesting research direction would be to further
extend the results of this study to the FOMAS with the digraph having a spanning tree,
time-varying consensus configurations, or a continuous fixed-time optimization algorithm.
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