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1. Introduction

In fixed point theory, the Banach contraction principle [1] is one of the most prominent
and substantial results that was first introduced and established by Stefan Banach in 1922.
Based on the intelligibility, adequacy, and applications of this result, it has become a very
famous tool in solving existence problems in numerous branches of mathematical analysis.
So several researchers have boosted, broadened, and elongated this theorem in various
directions. In 2014, Jleli et al. [2] introduced a new variant of contractions in the setting
of generalized metric spaces, which is known as Θ-contraction. As a consequence, they
obtained a fixed point result in complete metric space, which is a generalization of Banach’s
fixed point theorem. Hussain et al. [3] introduced a different condition in the notion
of Θ-contraction and proved a result that is an extension of the result of Jleli et al. [2].
Ahmad et al. [4] changed the third postulate of Θ-contraction with an easy one. Later on,
Imdad et al. [5] gave the notion of weak Θ-contraction by omitting some conditions of
Θ-contraction and established some related theorems in the framework of complete metric
spaces. Subsequently, Ameer et al. [6,7] presented Ćirić type α∗-η∗-Θ-contractions and
Suzuki-type Θ-contractions and obtained a fixed point theorem for multivalued mappings.
For further details in this field, we refer the researchers to [8–11].

Gordji et al. [12] innovated the concept of orthogonality in metric spaces and set up
the fixed point result for self-mappings in the background of orthogonal metric spaces.
Baghani et al. [13] improved the leading result of Gordji et al. [12] by proving some new
fixed point theorems. They also investigated the existence and uniqueness of a solution to
a Volterra-type integral equation in Lp space as application of their main theorem. After-
ward, Baghani et al. [14,15] manifested fixed and coinciding point results for multivalued
mappings. Hazarika et al. [16] discussed the general convergence methods in the setting of
orthogonal metric spaces and studied the applications of fixed point results to obtain the
existence of a solution of differential and integral equations. For more achievements in this
direction, we refer researchers to [17–20].

On the other hand, abstract spaces like metric spaces, normed spaces, and inner
product spaces are all examples of “topological spaces”, which are more general spaces.
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These spaces have been specified in order of increasing structure; that is, every inner
product space is a normed space, and in turn, every normed space is a metric space.
Two vectors are said to be orthogonal if and only if their inner product is zero, i.e., they
make an angle of 90◦ (π/2 radians), or one of the vectors is zero in the context of inner
product spaces. The complete inner product space is called a Hilbert space. Some fixed
point theorems for contractive and nonexpansive mappings in the setting of Hilbert spaces
are given in the literature [21–23]. However, no one has obtained fixed point theorems for
Θ-contraction mappings in Hilbert spaces.

In this research, we introduce the notion of Θ-contraction mappings in orthogonally
complete metric spaces and obtain some fixed point results for these mappings. Also, we
give an example to illustrate the validity of our results. Moreover, we apply our results
to investigate the solution to a differential equation. As a consequence of our leading
result, we deduce the prime theorem of Jleli et al. [2] and several well-known results from
the literature.

2. Preliminaries

In this article, we represent by N and R+ the set of natural numbers and the set of
positive real numbers, respectively.

Jleli et al. [2] initiated the notion of Θ-contraction along the following lines.

Definition 1. Let Θ : (0, ∞)→ (1, ∞) be a function such that

(J1) Θ is non-decreasing; i.e., 0 < ξ < ς implies Θ(ξ) < Θ(ς);
(J2) For every sequence {ξ } ⊆ (0, ∞), we have lim→∞ Θ(ξ ) = 1 if and only if lim→∞(ξ ) = 0;

(J3) There exists 0 < r < 1 and σ ∈ (0, ∞] such that limξ→0+
Θ(ξ)−1

ξr = σ.

A mapping V : (X , τ) → (X , τ) is said to be Θ-contraction if there exists some function
Θ : R+ → (1, ∞) satisfying (J1)-(J3) and a constant λ ∈ (0, 1) such that for all ξ, ς ∈ X ,

τ(Vξ,Vς) 6= 0 =⇒ Θ(τ(Vξ,Vς)) ≤ [Θ(τ(ξ, ς))]λ.

Theorem 1 ([2]). Let (X , τ) be a complete metric space and V : (X , τ) → (X , τ) be a Θ-
contraction; then, there exists a unique point ξ∗ ∈ X such that ξ∗ = Vξ∗.

Hussain et al. [3] introduced the following condition
(J4): Θ(ξ + ς) ≤ Θ(ξ)Θ(ς),
of the function Θ : (0, ∞) → (1, ∞) and generalized the above theorem of Jleli et al. [2]
in complete metric spaces. Inspired by Hussain et al. [3], we express by Ψ the class of all
mappings Θ : (0, ∞)→ (1, ∞) fulfilling (J1)–(J4).

Ahmad et al. [4] replaced the condition (J3) with a simple condition (J /
3 ).

(J /
3 )Θ is continuous on (0, ∞).

We represent by Ω the class of all mappings satisfying (J1), (J2), and (J ′3).
Gordji et al. [12] present the concept of the orthogonal set (O-set, for short) in this way.

Definition 2 ([12]). Let X be a non-empty set and ⊥ ⊆ X ×X be a binary relation. Then (X ,⊥)
is said to be an O-set if there exists ξ0 ∈ X such that

ς ⊥ ξ0 or ξ0 ⊥ ς

for all ς ∈ X . The element ξ0 is said to be an orthogonal element.

Example 1 ([12]). Let X = Z. Define ⊥ on X by l ⊥ m if there exists ℵ ∈ Z such that l = ℵm.
Then, 0 ⊥ m, for all m ∈ Z. Thus, (X ,⊥) is an O-set.
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Example 2 ([12]). Let (X ,< ., . >) be an inner product space. Define ⊥ on X by ξ ⊥ ς if
< ξ, ς >= 0. Then, 0 ⊥ m, for all m ∈ Z. Thus, (X ,⊥) is an O-set.

Definition 3 ([12]). Let (X ,⊥) be O-set. A sequence {ξ } is called an O-sequence if

ξ  ⊥ ξ +1 or ξ +1 ⊥ ξ 

for all  ∈ N.

Definition 4 ([12]). The triplet (X ,⊥, τ) is said to be an orthogonal metric space if the pair (X ,⊥)
is an orthogonal set and the pair (X , τ) is a metric space.

Definition 5 ([12]). A set X of (X ,⊥, τ) is claimed to be O-complete if each Cauchy O-sequence
is convergent.

Definition 6 ([12]). Let (X ,⊥, τ) be an orthogonal metric space. A mapping V : (X ,⊥, τ) →
(X ,⊥, τ) is said to be orthogonally continuous (⊥-continuous) at a point ξ ∈ X if for O-sequence
{ξ } in X converging to ξ implies Vξ  → Vξ. If V is ⊥-continuous on each of its points ξ ∈ X ,
then V is said to be ⊥-continuous on X .

Definition 7 ([12]). Let (X ,⊥) be an O-set. A mapping V : X → X is called ⊥-preserving if
Vξ ⊥ Vς whenever ξ ⊥ ς.

The authors [12] established the following result as a generalization of Banach’s fixed
point theorem in this way.

Theorem 2 ([12]). Let (X ,⊥, τ) be an O-COMS and V : (X ,⊥, τ) → (X ,⊥, τ) be a self
mapping. If there there exists λ ∈ (0, 1) such that

τ(Vξ,Vς) ≤ λτ(ξ, ς)

for all ξ, ς ∈ X and the mapping V is ⊥-preserving and ⊥-continuous, then V has a unique
fixed point.

Samet et al. [24] introduced the notion of α-admissible mapping as follows:

Definition 8 ([24]). A mapping V : X → X is called α-admissible if there exists a function
α : X ×X → [0, ∞) such that

α(ξ, ς) ≥ 1 implies α(Vξ,Vς) ≥ 1.

Ramezani [25] presented the idea of orthogonal α admissibility in the following way.

Definition 9 ([25]). A mapping V : X → X is called an orthogonally α-admissible if there exists
a function α : X ×X → [0, ∞) such that

ξ⊥ς and α(ξ, ς) ≥ 1 implies α(Vξ,Vς) ≥ 1.

We give the following property (JH), which is required to prove the uniqueness of
fixed points in our main theorem.

Definition 10. Let (X ,⊥, τ) be an O-COMS and V : (X ,⊥, τ) → (X ,⊥, τ). We say that
the function α : X × X → [0, ∞) satisfies the property (JH) if α(ξ, ς) ≥ 1, for all ξ, ς ∈
{ρ ∈ X : ρ = Vρ} and ξ⊥ς.
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In this manuscript, we prove some fixed point results for orthogonal Θ-contraction
and orthogonal (α, Θ)-contraction in the context of O-COMS. The established results will
combine and modify many celebrated results from the literature.

3. Main Results

Definition 11. Let (X ,⊥, τ) be a O-COMS. A mapping V : (X ,⊥, τ) → (X ,⊥, τ) is said to
be an orthogonal (α, Θ)-contraction if there exist the functions α : X × X → [0, ∞), Θ ∈ Ψ
and non-negative real numbers λ1, λ2, λ3 and λ4 with λ1 + λ2 + λ3 + 2λ4 < 1 such that for all
ξ, ς ∈ X with ξ ⊥ ς, τ(Vξ,Vς) > 0 implies

α(ξ, ς)Θ(τ(Vξ,Vς)) ≤ [Θ(τ(ξ, ς))]λ1 · [Θ(τ(ξ,Vξ))]λ2

·[Θ(τ(ς,Vς))]λ3 · [Θ(τ(ξ,Vς) + τ(ς,Vξ))]λ4 . (1)

Theorem 3. Let (X ,⊥, τ) be a O-COMS and V : (X ,⊥, τ) → (X ,⊥, τ) be an orthogonal
(α, Θ)-contraction. Suppose that these conditions hold:

(i) V is ⊥-preserving,
(ii) V is orthogonally α-admissible mapping,
(iii) There exists ξ0 ∈ X such that ξ0 ⊥ Vξ0 and α(ξ0,Vξ0) ≥ 1,
(iv) V is ⊥-continuous.
Then, V has a fixed point. Furthermore, if the function α : X × X → [0, ∞) satisfies the

property (JH), then V has a unique fixed point.

Proof. From the hypothesis (iii), there exists ξ0 ∈ X such that ξ0 ⊥ Vξ0 and α(ξ0,Vξ0) ≥ 1.
Let the sequence {ξ } be defined as

ξ1 = Vξ0, · · ·, ξ +1 = Vξ  = V +1ξ0,

for all  ≥ 0. As V is ⊥-preserving, so {ξ } is an O-sequence in X . As V is orthogonally
α-admissible, we obtain α(Vξ ,Vξ +1) > 1, for all  ≥ 0. If ξ  = ξ +1, for any  ∈ N ∪ {0},
then it is very clear that ξ  is a fixed point of V . Now, we consider that ξ  6= ξ +1, for
all  ∈ N ∪ {0}. Thus we obtain τ(Vξ ,Vξ +1) > 0, for all  ≥ 0. As V is ⊥-preserving,
we obtain

ξ  ⊥ ξ +1 or ξ +1 ⊥ ξ 

for all  ∈ N∪ {0}. Thus {ξ } is an O-sequence. Now, suppose that

0 < τ(ξ ,Vξ ) = τ(Vξ −1,Vξ ),

for all  ∈ N∪ {0}. Now, from (1) and (J4), we have

1 < Θ
(
τ(ξ , ξ +1)

)
= Θ

(
τ(Vξ −1,Vξ )

)
≤

[
Θ
(
τ(ξ −1, ξ )

)]λ1 ·
[
Θ
(
τ(ξ −1,Vξ −1)

)]λ2 ·
[
Θ
(
τ(ξ ,Vξ )

)]λ3

·
[
Θ
(
τ(ξ −1,Vξ ) + τ(ξ ,Vξ −1)

)]λ4

=
[
Θ
(
τ(ξ −1, ξ )

)]λ1 ·
[
Θ
(
τ(ξ −1, ξ )

)]λ2 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3

·
[
Θ
(
τ(ξ −1, ξ +1) + τ(ξ , ξ )

)]λ4

=
[
Θ
(
τ(ξ −1, ξ )

)]λ1 ·
[
Θ
(
τ(ξ −1, ξ )

)]λ2 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3

·
[
Θ
(
τ(ξ −1, ξ +1)

)]λ4 .

From the triangle inequality and (J1), we have

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)]λ1 ·
[
Θ
(
τ(ξ −1, ξ )

)]λ2 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3

·
[
Θ
(
τ(ξ −1, ξ ) + τ(ξ , ξ +1)

)]λ4 .
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Using (J4), we obtain

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)]λ1

·
[
Θ
(
τ(ξ −1, ξ )

)]λ2 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3

·
[
Θ
(
τ(ξ −1, ξ )

)
·Θ
(
τ(ξ , ξ +1)

)]λ4

=
[
Θ
(
τ(ξ −1, ξ )

)]λ1 ·
[
Θ
(
τ(ξ −1, ξ )

)]λ2 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3

·
[
Θ
(
τ(ξ −1, ξ )

)]λ4 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ4

=
[
Θ
(
τ(ξ −1, ξ )

)]λ1+λ2+λ4 ·
[
Θ
(
τ(ξ , ξ +1)

)]λ3+λ4

which implies that[
Θ
(
τ(ξ , ξ +1)

)]1−λ3−λ4 ≤
[
Θ
(
τ(ξ −1, ξ )

)]λ1+λ2+λ4

for all  ∈ N∪ {0}; that is,

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)] λ1+λ2+λ4
1−λ3−λ4 .

Let λ1+λ2+λ4
1−λ3−λ4

= µ < 1. Consequently,

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)]µ (2)

for all  ∈ N∪ {0}. This implies

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)]µ

≤
[
Θ
(
τ(ξ −2, ξ −1)

)]µ2

≤ . . . ≤ [Θ(τ(ξ0, ξ1))]
µ

for all  ∈ N∪ {0}. Taking → ∞ and by using (J2), we obtain

lim
→∞

Θ
(
τ(ξ , ξ +1)

)
= 1 ⇔ lim

→∞
τ(ξ , ξ +1) = 0. (3)

From the condition (J3), there exists 0 < r < 1 and σ ∈ (0, ∞] such that

lim
→∞

Θ(τ(ξ , ξ +1))− 1
τ(ξ , ξ +1)r = σ.

Assume that σ < ∞ and let ℘2 = σ
2 > 0. From the concept of the limit, there exists 0 ∈ N

such that

|
Θ(τ(ξ , ξ +1))− 1

τ(ξ , ξ +1)r − σ| ≤ ℘2

for all  > 0. This implies that

Θ(τ(ξ , ξ +1))− 1
τ(ξ , ξ +1)r ≥ σ− ℘2 =

σ

2
= ℘2

for all  > 0. Then
τ(ξ , ξ +1)

r ≤ ℘1 [Θ(τ(ξ , ξ +1))− 1]

for all  > 0, where ℘1 = 1
℘2

. Now, we suppose that σ = ∞. Let ℘2 > 0 be an arbitrary
positive number. From the concept of the limit, there exists 0 ∈ N such that

℘2 ≤
Θ(τ(ξ , ξ +1))− 1

τ(ξ , ξ +1)r
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for all  > 0. This implies that

τ(ξ , ξ +1)
r ≤ ℘1 [Θ(τ(ξ , ξ +1))− 1]

for all  > 0, where ℘1 = 1
℘2

. Thus, in all cases, there exist ℘1 > 0 and 0 ∈ N such that

τ(ξ , ξ +1)
r ≤ ℘1 [Θ(τ(ξ , ξ +1))− 1] (4)

for all  > 0. Thus, from (3) and (4), we obtain

τ(ξ , ξ +1)
r ≤ ℘1 ([Θ(τ(ξ0, ξ1))]

r − 1). (5)

Taking the limit → ∞ in the inequality (5) and using the fact that

lim
→∞

[(Θ(τ(ξ0, ξ1))]
r
= 1,

because 0 < r < 1, we get
lim
→∞

τ(ξ , ξ +1)
r = 0.

Thus, there exists 1 ∈ N such that

τ(ξ , ξ +1) ≤
1

1/r (6)

for all  > 1. Now, for m >  > 1, we have

τ(ξ , ξm) ≤
m−1

∑
i=

τ(ξi, ξi+1) ≤
m−1

∑
i=

1
i1/r ≤

∞

∑
i=1

1
i1/r .

As 0 < r < 1, ∑∞
i=1

1
i1/r converges. Therefore, τ(ξ , ξm) → 0 as m,  → ∞. Thus, we have

{ξ } is a Cauchy O-sequence in (X ,⊥, τ). From the O-completeness of (X ,⊥, τ), there
is ξ∗ ∈ X such that, lim→∞ ξ  → ξ∗. We show that ξ∗ is a fixed point of V . As V is a
⊥-continuous mapping, so

ξ +1 = Vξ  → Vξ∗

as  → ∞, that is, ξ∗ = Vξ∗. Lastly, we suppose that ξ/ = Vξ/ such that ξ/ 6= ξ∗. Now,
since the function α : X × X → [0, ∞) satisfies the property (JH), we have ξ∗⊥ξ/ and
α
(

ξ∗, ξ/
)
≥ 1. Thus, from (1), we have

Θ
(

τ(ξ∗, ξ/)
)

= Θ
(

τ(Vξ∗,Vξ/)
)
≤ α

(
ξ∗, ξ/

)
Θ
(

τ(Vξ∗,Vξ/)
)

≤
[
Θ
(

τ(ξ/, ξ∗)
)]λ1 ·

[
Θ
(

τ(ξ/,Vξ/)
)]λ2

·[Θ(τ(ξ∗,Vξ∗))]λ3

·
[
Θ
(

τ(ξ/,Vξ∗) + τ(ξ∗,Vξ/)
)]λ4

=
[
Θ
(

τ(ξ/, ξ∗)
)]λ1 ·

[
Θ
(

τ(ξ/, ξ∗) + τ(ξ∗, ξ/)
)]λ4

≤
[
Θ
(

τ(ξ/, ξ∗)
)]λ1 ·

[
Θ
(

τ(ξ/, ξ∗)
)]2λ4

=
[
Θ
(

τ(ξ/, ξ∗)
)]λ1+2λ4

< Θ
(

τ(ξ/, ξ∗)
)

,

which is a contradiction. Thus ξ/ = ξ∗.
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Remark 1. Let us consider Θ(t) = e
√

t in (1); then Θ satisfies (J1)−(J4), and we obtain

ln(α(ξ, ς))
√

τ(Vξ,Vς) ≤ λ1

√
τ(ξ, ς) + λ2

√
τ(ξ,Vξ)

+λ3

√
τ(ς,Vς) + λ4

√
τ(ξ,Vς) + τ(ς,Vξ) (7)

which is Ćirić-type contraction ([26]). Now, if we take square in both terms of (7), then we have

[ln(α(ξ, ς))]2τ(Vξ,Vς) ≤ λ2
1τ(ξ, ς) + λ2

2τ(ξ,Vξ) + λ2
3τ(ς,Vς)

+λ2
4(τ(ξ,Vς) + τ(ς,Vξ))

+2λ1λ2

√
τ(ξ, ς)τ(ξ,Vξ)

+2λ1λ3

√
τ(ξ, ς)τ(ς,Vς)

+2λ1λ4

√
τ(ξ, ς)(τ(ξ,Vς) + τ(ς,Vξ))

+2λ2λ3

√
τ(ξ,Vξ)τ(ς,Vς)

+2λ2λ4

√
τ(ξ,Vξ)(τ(ξ,Vς) + τ(ς,Vξ))

+2λ3λ4

√
τ(ς,Vς)(τ(ξ,Vς) + τ(ς,Vξ)). (8)

Now, if we consider some particular values for λi, i = 1, 2, 3, 4 in (8), then we shall obtain some
generalizations of some well-known conditions

• For λ1 = λ4 = 0, then, (8) becomes

[ln(α(ξ, ς))]2τ(Vξ,Vς) ≤ λ2
2τ(ξ,Vξ) + λ2

3τ(ς,Vς)

+2λ2λ3

√
τ(ξ,Vξ)τ(ς,Vς) (9)

which represents a Kannan-type contraction ([27]),
• For λ1 = λ2 = λ3 = 0, then, (8) becomes

[ln(α(ξ, ς))]2τ(Vξ,Vς) ≤ λ2
4(τ(ξ,Vς) + τ(ς,Vξ)) (10)

which represents a Chatterjea-type contraction ([28]),
• For λ4 = 0, then, (8) becomes

[ln(α(ξ, ς))]2τ(Vξ,Vς) ≤ λ2
1τ(ξ, ς) + λ2

2τ(ξ,Vξ) + λ2
3τ(ς,Vς)

+2λ1λ2

√
τ(ξ, ς)τ(ξ,Vξ)

+2λ1λ3

√
τ(ξ, ς)τ(ς,Vς)

+2λ2λ3

√
τ(ξ,Vξ)τ(ς,Vς) (11)

which represents a Reich-type contraction ([29]).

Corollary 1. Let (X ,⊥, τ) be anO-COMS and let V : (X ,⊥, τ)→ (X ,⊥, τ) be an orthogonally
α-admissible, ⊥-continuous and ⊥-preserving mapping. If there exists ξ0 ∈ X such that ξ0 ⊥ Vξ0
with α(ξ0,Vξ0) ≥ 1 and any one of the inequalities (9), (10) or (11) hold, for all ξ, ς ∈ X with
ξ ⊥ ς, τ(Vξ,Vς) > 0. Then, there exists ξ∗ ∈ X such that ξ∗ = Vξ∗. Moreover, if the function
α : X ×X → [0, ∞) satisfies the property (JH), then ξ∗ is unique.

In what follows, we shall present another result in which we replace (J3) and (J4)
with the general condition (J /

3 ).
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Definition 12. Let (X ,⊥, τ) be an O-COMS. A mapping V : (X ,⊥, τ)→ (X ,⊥, τ) is said to
be a orthogonal Θ-contraction if there exist Θ ∈ Ω and λ ∈ (0, 1) such that, for all ξ, ς ∈ X with
ξ ⊥ ς, [τ(Vξ,Vς)] > 0 implies

Θ(τ(Vξ,Vς)) ≤ [Θ(τ(ξ, ς))]λ. (12)

Theorem 4. Let (X ,⊥, τ) be an O-COMS and V : (X ,⊥, τ) → (X ,⊥, τ) a generalized Θ-
contraction, and let V be ⊥-preserving. Then, there exists a unique ξ∗ ∈ X such that ξ∗ = Vξ∗.

Proof. Let ξ0 ∈ X . Since (X ,⊥) is an O-set,

ξ0 ⊥ ξ, for all ξ ∈ X

or
ξ ⊥ ξ0, for all ξ ∈ X .

It follows that ξ0 ⊥ Vξ0 or Vξ0 ⊥ ξ0. Now, we define the sequence {ξ } as

ξ1 = Vξ0, · · ·, ξ +1 = Vξ  = V +1ξ0,

for all  ≥ 0. If ξ  = ξ +1, for any  ∈ N∪ {0}, then it is very clear that ξ  is a fixed point of
V . Thus, we consider that ξ  6= ξ +1, for all  ∈ N∪ {0}. Hence, we have τ(Vξ ,Vξ +1) > 0,
for all  ≥ 0. As V is ⊥-preserving, we obtain

ξ  ⊥ ξ +1 or ξ +1 ⊥ ξ 

for all  ∈ N∪ {0}. It implies that {ξ } is an O-sequence. Thus, we suppose that

0 < τ(ξ ,Vξ ) = τ(Vξ −1,Vξ ),

for all  ∈ N∪ {0}. Now, from (12) and (J1), we have

1 < Θ
(
τ(ξ , ξ +1)

)
= Θ

(
τ(Vξ −1,Vξ )

)
≤

[
Θ
(
τ(ξ −1, ξ )

)]λ.

which implies that

1 < Θ
(
τ(ξ , ξ +1)

)
≤
[
Θ
(
τ(ξ −1, ξ )

)]λ

≤
[
Θ
(
τ(ξ −2, ξ −1)

)]λ2

≤ . . . ≤ [Θ(τ(ξ0, ξ1))]
λ

for all  ∈ N∪ {0}. Now, taking the limit as → ∞ and from using (J2), we obtain

lim
→∞

Θ
(
τ(ξ , ξ +1)

)
= 1 if and only if lim

→∞
τ(ξ , ξ +1) = 0. (13)

Now, we say that {ξ }∞
=1 is an O-Cauchy sequence. Then, suppose, on the contrary, that

{ξ }∞
=1 is not O-Cauchy sequence; then, we suppose that there exist ε > 0 and sequences

{p()}∞
=1 and {q()}∞

=1 of natural numbers such that for p() > q() > , we have

τ(ξp(), ξq()) ≥ ε.

Then
τ(ξp()−1, ξq()) < ε (14)
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for all  ∈ N. Hence, using the triangle inequality and (14), we obtain

ε ≤ τ(ξp(), ξq()) ≤ τ(ξp(), ξp()−1) + τ(ξp()−1, ξq())

≤ τ(ξp()−1, ξp()) + ε.

Taking → ∞ in the above inequality and using the inequality (13), we obtain

lim
→∞

τ(ξp(), ξq()) = ε. (15)

From (13), we can choose 0 ∈ N such that

τ(ξp(), ξp()+1) <
ε

4
and τ(ξq(), ξq()+1) <

ε

4
(16)

for all  ≥ 0. Next, we claim that Vξp() 6= Vξq() for all  ≥ 0; i.e.,

τ(ξp()+1, ξq()+1) = τ(Vξp(),Vξq()) > 0. (17)

Arguing by contradiction, there exists  ≥ 0, such that τ(ξp()+1, ξq()+1) = 0. It follows
from (13), (16), and (17) that

ε ≤ τ(ξp(), ξq()) ≤ τ(ξp(), ξp()+1)

+τ(ξp()+1, ξq()+1) + τ(ξp()+1, ξq())

≤ ε

4
+ 0 +

ε

4
=

ε

2

a contradiction. Hence, (16) holds. Then, from the supposition, we have

Θ(τ(Vξp(),Vξq())) ≤ [Θ(τ(ξp(), ξq()))]
λ. (18)

Letting → +∞ and using (J ′3), (15) and (18), we have

Θ(ε) ≤ [Θ(ε)]λ

which is a contradiction. Thus, {ξ } is a Cauchy O-sequence. Since (X ,⊥, τ) is a complete
orthogonal metric space, there exists ξ∗ ∈ X such that, ξ  → ξ∗ as → ∞. Next, we prove
that ξ∗ is a fixed point of V . Otherwise, Vξ∗ 6= ξ∗.

τ(ξ∗,Vξ∗) = lim
→∞

τ(ξ ,Vξ ) = lim
→∞

τ(ξ , ξ +1) = τ(ξ∗, ξ∗) = 0.

Hence, ξ∗ is a fixed point of V . Now, we assume on the contrary that there is another fixed
point ξ/ ∈ X of V : (X ,⊥, τ)→ (X ,⊥, τ) such that

Vξ∗ = ξ∗ 6= ξ/ = Vξ/, that is, Vξ∗ 6= Vξ/.

Then, from the supposition, we obtain

Θ(τ(ξ∗, ξ/)) = Θ(τ(Vξ∗,Vξ/))

≤ [Θ(τ(ξ∗, ξ/))]λ

which is contradiction because λ ∈ (0, 1). Thus, ξ∗ is unique.

Example 3. Let X= [0, ∞) be a set equipped with the metric

τ(ξ, ς) = |ξ − ς|

for all ξ, ς ∈ X . Define the sequence {x} as follows:
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x1 = 1
x2 = 1 + 4
. . .
x = 1 + 4 + 7 + . . . + (3− 2) = (3−1)

2
for all  ∈ N. Define the orthogonality relation ⊥ on X by

ξ⊥ς if and only if ξς ∈ {ξ, ς} ⊂ {x}.

Then, (X ,⊥, τ) is a O-COMS. Define V : X → X by

V(ξ) =
{

x0, if x0 ≤ ξ ≤ x1,
x−1(x+1−ξ)+x(ξ−x)

x+1−x
, if x ≤ ξ ≤ x+1

for each  ≥ 1. Let Θ : (0, ∞)→ (1, ∞) given by

Θ(t) = etet
, fot t > 0.

Then, Θ ∈ Ω. Now, let ξ, ς ∈ X with ξ⊥ς and τ(V(ξ),V(ς)) > 0. Without any loss of generality,
we suppose that ξ < ς. This signifies that ξ ∈ {x0, x1} and ς = xi for some i ∈ N\{1}.
Subsequently, we obtain

τ(V(ξ),V(ς))
τ(ξ, ς)

eτ(V(ξ),V(ς))−τ(ξ,ς) ≤
(

xi−1

xi − 1

)
e[xi−1−xi+1] < e−1

for λ = e−1 ∈ (0, 1).
Hence, all the conditions of Theorem 4 hold, and ξ = x0 is a unique fixed point of V .

The following theorem is a direct outcome of Theorem 4.

Theorem 5 ([12]). Let (X ,⊥, τ) be an O-COMS and let V : (X ,⊥, τ) → (X ,⊥, τ) be a
mapping such that

(i) there exists λ ∈ (0, 1) such that

τ(Vξ,Vς) ≤ λτ(ξ, ς)

for all ξ, ς ∈ X , with ξ⊥ς,
(ii) V is ⊥-preserving and ⊥-continuous.
Then, V has a unique fixed point ξ∗ ∈ X .

Theorem 6 ([2]). Let (X , τ) be a complete metric space and let V : (X , τ) → (X , τ) be a
Θ-contraction; then, there exists a unique ξ∗ ∈ X such that ξ∗ = Vξ∗.

Proof. Define a binary relation on X by

ξ ⊥ ς⇔
[
τ(Vξ,Vς) > 0 =⇒ Θ(τ(Vξ,Vς)) ≤ (Θ(τ(ξ, ς)))λ

]
.

Fix ξ0 ∈ R. Since V is a Θ-contraction, we have ξ0⊥ς for all ς ∈ X . Hence, from Theorem 4,
there exists a unique fixed point of V .

4. Applications

In this section, we will investigate the solution for the nonlinear fractional differential
equation

CDη(ξ(t)) = f (t, ξ(t)) (19)
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(0 < t < 1, 1 < η ≤ 2) via the integral boundary conditions

ξ(0) = 0 , ξ(1) =
∫ β

0
ξ(s)ds, (0 < β < 1)

where ξ ∈ C([0, 1],R) (family of all continuous functions). We symbolize and define the
Caputo fractional derivative of order η as CDη and

CDη f (t) =
1

Γ(n− η)

∫ t

0
(t− s)n−η−1 f n(s)ds,

where (n− 1 < η < n, n = [η] + 1) and f : [0, 1]×R+ → R is a continuous function. We
take X = {ξ : ξ ∈ C([0, 1],R)} along with ‖ξ‖∞ = supt∈[0,1]|ξ(t)|. Then, (X , ‖·‖∞) is
Banach space. Recall that the Riemann–Liouville fractional integral of order η is given as

Iη f (t) =
1

Γ(η)

∫ t

0
(t− s)η−1 f (s)ds, with η > 0.

Theorem 7. Assume that f : [0, 1]×R+ → R is a continuous function satisfying the following
condition:

| f (t, ξ)− f (t, ς)| ≤ ℵ|ξ − ς|

for all t ∈ [0, 1] and ξ, ς ∈ X such that ξ(t)ς(t) ≥ 0 and a constant ℵ with ℵϑ < 1, where

ϑ =
tη
(
2− β2)(η + 1) + 2t(η + β + 1)

(2− β2)η(η + 1)Γ(η)

for 0 < ϑ < 1. Then, the differential equation (19) has a unique solution.

Proof. For all t ∈ [0, 1], suppose that the orthogonality relation on X is given as

ξ⊥ς if ξ(t)ς(t) ≥ 0.

The set X is orthogonal with this orthogonality relation because, for all ξ ∈ X , there exists
ς(t) = 0 such that

ξ(t)ς(t) = 0.

Then, the metric d, defined by

d(ξ, ς) = sup
t∈[0,1]

‖ξ(t)− ς(t)‖

for all t ∈ [0, 1], is an orthogonal metric, and (X ,⊥, d) is an O-COMS (see ref. [30]). Define
V : C([0, 1],R)→ C([0, 1],R) by

Vξ(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1 f (s, ξ(s))ds

− 2t
(2− β2)Γ(γ)

∫ 1

0
(1− s)γ−1 f (s, ξ(s))ds

+
2t

(2− β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1 f (m, ξ(m))dm

)
ds
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for t ∈ [0, 1]. Then, V is⊥-continuous. Now we show that V is⊥-preserving. Let ξ(t)⊥ς(t),
for all t ∈ [0, 1]. Now, we have

Vξ(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1 f (s, ξ(s))ds

− 2t
(2− β2)Γ(γ)

∫ 1

0
(1− s)γ−1 f (s, ξ(s))ds

+
2t

(2− β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1 f (m, ξ(m))dm

)
ds > 0

which implies that Vξ ⊥ Vς, i.e., that V is ⊥-preserving. Now, for ξ(t)⊥ς(t), we obtain

|Vξ(t)− Vς(t)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(γ)

∫ t

0
(t− s)γ−1 f (s, ξ(s))ds

− 2t
(2−β2)Γ(γ)

∫ 1

0
(1− s)γ−1 f (s, ξ(s))ds

+ 2t
(2−β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1 f (m, ξ(m))dm

)
ds

− 1
Γ(γ)

∫ t

0
(t− s)γ−1 f (s, ς(s))ds

+ 2t
(2−β2)Γ(γ)

∫ 1

0
(1− s)γ−1 f (s, ς(s))ds

− 2t
(2−β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1 f (m, ς(m))dm

)
ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ(γ)

∫ t

0
(s−m)γ−1| f (s, ξ(s))− f (s, ς(s))|ds

+
2t

(2− β2)Γ(γ)

∫ 1

0
(1− s)γ−1| f (s, ξ(s))− f (s, ς(s))|ds

+
2t

(2− β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1| f (m, ξ(m))− f (m, ς(m))|dm

)
ds

which implies that

≤


1

Γ(γ)

∫ t

0
(s−m)γ−1ds

+ 2t
(2−β2)Γ(γ)

∫ 1

0
(1− s)γ−1ds

+ 2t
(2−β2)Γ(γ)

∫ β

0

(∫ s

0
(s−m)γ−1dm

)
ds

ℵ‖ξ − ς‖

=

(
tγ
(
2− β2)(γ + 1) + 2t(γ + β + 1)

(2− β2)γ(γ + 1)Γ(γ)

)
ℵ‖ξ − ς‖

= ℵϑ‖ξ − ς‖

which implies that
‖Vξ(t)− Vς(t)‖ ≤ ℵϑ‖ξ − ς‖.

Thus for each ξ, ς ∈ X , we have

d(Vξ,Vς) ≤ ℵϑd(ξ, ς). (20)

Now, taking Θ : (0, ∞)→ (1, ∞) defined by Θ(u) = e
√

u for each u > 0, then Θ ∈ Ψ, and
we define α : X ×X → [1,+∞) by

α(ξ, ς) = 1
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for all ξ, ς ∈ X . From inequality (20), we have

e
√

d(Vξ,Vς) ≤ e
√
ℵϑd(ξ,ς) =

(
e
√

d(ξ,ς)
)λ1

where λ1 =
√
ℵϑ. Since ℵϑ < 1, λ1 ∈ (0, 1). Thus for λ2 = λ3 = λ4 = 0, we have

α(ξ, ς)Θ(d(Vξ,Vς)) ≤ α(ξ, ς)Θ(τ(Vξ,Vς))

≤ [Θ(τ(ξ, ς))]λ1 · [Θ(τ(ξ,Vξ))]λ2

·[Θ(τ(ς,Vς))]λ3 · [Θ(τ(ξ,Vς) + τ(ς,Vξ))]λ4

for all ξ, ς ∈ X . Thus, all the hypotheses of Theorem 3 are satisfied, and ξ∗ is a solution of
differential Equation (19).

5. Conclusions

In this manuscript, we have proven some fixed point theorems in O-COMS for or-
thogonal Θ-contractions and orthogonal (α, Θ)-contraction. We have also explored the
solution to a nonlinear fractional differential equation as the implementation of our fore-
most results. Furthermore, a significant example is also given to show the authenticity of
the proved result.

In the context ofO-COMS, establishing fixed points and common fixed points of fuzzy
mappings and set-valued mapping for orthogonal Θ-contractions and orthogonal (α, Θ)-
contractions can be an interesting contribution in fixed point theory. Also, the solution to
fractional differential inclusion can be investigated by applying these proposed outlines.

Funding: This research was funded by University of Jeddah grant number No. UJ-23-DR-245.

Data Availability Statement: All data required for this research are included within this paper.

Acknowledgments: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under
grant (No. UJ-23-DR-245). The author, therefore, thanks the University of Jeddah for its technical and
financial support.

Conflicts of Interest: The author declares no onflict of interest.

References
1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181.

[CrossRef]
2. Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 38, 1–8. [CrossRef]
3. Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete

metric spaces. Fixed Point Theory Appl. 2015, 185, 1–17. [CrossRef]
4. Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.J.; Yang, Y.-O. Fixed point results for generalized Θ-contractions. J. Nonlinear Sci. Appl. 2017,

10, 2350–2358. [CrossRef]
5. Imdad, M.; Alfaqih, W.M.; Khan, I.A. Weak θ -contractions and some fixed point results with applications to fractal theory. Adv.

Differ. Equ. 2018, 439, 2018. [CrossRef]
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