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Abstract: Studying the firing dynamics and phase synchronization behavior of heterogeneous cou-
pled networks helps us understand the mechanism of human brain activity. In this study, we propose
a novel small heterogeneous coupled network in which the 2D Hopfield neural network (HNN) and
the 2D Hindmarsh–Rose (HR) neuron are coupled through a locally active memristor. The simulation
results show that the network exhibits complex dynamic behavior and is different from the usual
phase synchronization. More specifically, the membrane potential of the 2D HR neuron exhibits
five stable firing modes as the coupling parameter k1 changes. In addition, it is found that in the
local region of k1, the number of spikes in bursting firing increases with the increase in k1. More
interestingly, the network gradually changes from synchronous to asynchronous during the increase
in the coupling parameter k1 but suddenly becomes synchronous around the coupling parameter
k1 = 1.96. As far as we know, this abnormal synchronization behavior is different from the existing
findings. This research is inspired by the fact that the episodic synchronous abnormal firing of
excitatory neurons in the hippocampus of the brain can lead to diseases such as epilepsy. This helps
us further understand the mechanism of brain activity and build bionic systems. Finally, we design
the simulation circuit of the network and implement it on an STM32 microcontroller.

Keywords: Hindmarsh–Rose neuron; Hopfield neural network; heterogeneous coupled; firing
patterns; phase synchronization

1. Introduction

A memristor [1–5], as the fourth basic electronic component, describes the relationship
between charge and magnetic flux. Due to its nanoscale, memorability, nonlinearity, and
excellent bionic properties, a large number of researchers have introduced it into neural
networks as a synapse [6–9] or an autapse [10], generating rich dynamic behaviors, such
as coexistence [11,12] and multistability [13,14]. Memristors and chaotic systems have
potential application value in the industry. He et al. applied the memristor and chaotic
system to handwritten digit recognition [15] and sensor location optimization within a
wireless sensor network [16], respectively. Remarkable results were reported [15,16].

As the main component of the biological nervous system, the neuron has been widely
studied by many scholars. Some existing neuron models include Hodgkin–Huxley (HH)
neuron [17], Hindmarsh–Rose (HR) neuron [18,19], Fitzhugh–Nagumo (FHN) neuron [20],
Morris–Lecar (ML) neuron [21], Rulkov model [22], and Hopfield neural network (HNN)
model [23–25]. Homogeneous neuron coupling and heterogeneous neuron coupling have
received extensive attention from researchers. Li et al. [26] constructed a homogenous
coupled network containing two HR neurons and studied the dynamic behavior, Hamilto-
nian energy, and phase synchronization behavior of the network. The results showed that
Hamiltonian energy calculation could not only reveal the firing mechanism of the neural
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network but also be used to explore the synchronization control applications of the neural
network. Li et al. coupled HR neurons and FHN neurons through memristors to construct
a small heterogeneous coupled network, and studied the effects of time delay [27] and
external radiation [28] on the heterogeneous coupled network, respectively. The former
shows that the two time delays will make the stable equilibrium point unstable, resulting in
periodic oscillations known as Hopf bifurcation. Such time delays affect the firing activity
of the neural network, and the time delay on different neurons has different effects on
synchronization. The latter shows that different initial conditions will generate different
bifurcation paths in the network, resulting in various coexisting firing patterns. When the
intensity of electromagnetic radiation changes, the network produces opposite bifurcation
paths. In addition, it is observed that when the coupling intensity is reduced to a negative
value, the two neurons can realize phase synchronization. Njitacke et al. [29] studied the
effect of electromagnetic radiation on a heterogeneous coupled network, which has no
equilibrium point and, thus, shows hidden dynamic behavior. Ref. [29] also proved that the
network has Hamiltonian energy to maintain the electrical activity of neurons. In [30], HR
and FHN neurons are coupled into a heterogeneous coupled network through a multistable
memristor, which has no equilibrium point and also shows extreme multistability.

Most of the existing studies on heterogeneous coupling focus on HR neurons and
FHN neurons. There is a lack of studies on the heterogeneous coupling between HNN
and other neurons. Wang et al. [31] realized the heterogeneous coupling of 3D HNN and
2D HR neurons through a memristor and studied the firing behavior and multistability
phenomenon of this novel heterogeneous coupled network. In this study, the 2D HNN and
2D HR neurons are coupled through a locally active memristor, and the firing behavior,
coexistence phenomenon, and phase synchronization of the network are studied. More
specifically, we use a 2D HNN to simulate a specific functional brain region in the brain,
HR neurons to simulate their connected neurons, and a memristor to simulate the synapses
between two neurons. Based on this, we build a small heterogeneous coupled network
that exhibits multiple firing modes, multiple periodic bursters with different spikes, and
coexistence. Interestingly, we also find that the phase synchronization behavior of the
network is different from other networks, that is, when the coupling intensity gradually in-
creases, the network changes from synchronization to asynchronous and suddenly changes
to synchronization when the coupling intensity k1 is near the value of 1.96. We believe that
this abnormal phase synchronization behavior is related to epilepsy and other diseases.
This helps us further understand the mechanism of biological brain activity. However,
because the number of HNN neurons examined in this study is too small, while the number
of neurons in the brain is large, the behavior of a small network is sometimes different
from that of a large network, so some statements in this paper are conjecture and need to
be further verified by experiments. This work also lays a foundation for the next stage of
our research on fraction-order heterogeneous coupled networks, where we will compare
the similarities and differences between integer-order heterogeneous coupled networks
and fraction-order heterogeneous coupled networks, and explore the potential uses of both.
In addition, we also design the simulation circuit of the network to verify the physical
realizability of the system.

The rest of this paper is organized as follows: In Section 2, a novel small heterogeneous
coupled network is proposed. Section 3 reveals the firing modes and phase synchronization
of the network. In Section 4, the network is simulated in a Multisim environment and,
subsequently, implemented on an STM32 microcomputer. Section 5 summarizes this article.

2. Mathematical Model and Equilibrium Point Studies
2.1. Mathematical Model

Neurons in the human brain are numerous and complex. Information needs to be
transmitted between different brain regions or between brain regions and external neurons.
This process often involves different types of neurons. Thus, the study of a heterogeneous
coupled network is essential. We use a locally active memristor as a memristive synapse
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to couple 2D HNN and 2D HR neurons to construct a heterogeneous coupled network.
Equation (1) is the memristor’s mathematical model.{

i = k1(tanh(x) + c0)v
dx
dt = v

(1)

To facilitate the study of the properties of the memristor, we assume c0 = 0.01 and k1 = 1
(c0 is a constant and k1 is a variable.) In Equation (1), v, i, and t are considered the input
voltage, output current, and time constant, respectively. The pinched hysteresis loops of
the memristor model are shown in Figure 1, where A, F, and x(0) stand for the amplitude,
frequency, and initial value, respectively. Keeping A = 1.9, F = 0.5, and the initial state of
the memristor unchanged. The results show that the memristor is locally active.

Figure 1. Pinched hysteresis loops with A = 1.9, F = 0.5, and different initial values.

The mathematical expression of a 2D HR neuron is given as follows:{
dx
dt = y− ax3 + bx2 + I
dy
dt = c− dx2 − y

(2)

In Equation (2), x, y, and I denote the membrane potential, relevant recovery variable,
and external stimulation current, respectively, where a = 1, b = 3, c = 1, and d = 5. The
generic HNN model is expressed as follows:

Ci ẋi = −
xi
Ri

+
n

∑
j=1

wijtanh(xj) + Ii (i, j ∈ N∗) (3)

where the resistance, voltage, and capacitance on the membrane of the neuron are denoted
using Ri, xi, and Ci, respectively. In Equation (3), n = 2, tanh(.), wij, and Ii stand for
the neuron activation function, synaptic weight (represents how closely two neurons are
connected to each other), and current entering the network, respectively. In Equation (4),
we obtain the novel small heterogeneous coupled network’s mathematical expression by
setting Ci = 1, Ri = 1, and Ii = 0 in Equation (3).
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dx
dt = y− x3 + 3x2 + I + k1(tanh(n) + 0.01)(x− z)
dy
dt = 1− 5x2 − y
dz
dt = −z− 3.5tanh(z) + 0.1tanh(u)− k1(tanh(n) + 0.01)(x− z)
du
dt = −u− 0.1tanh(z) + 0.6tanh(u)
dn
dt = x− z

(4)

In order to facilitate readers to more intuitively understand the network listed in
Equation (4), we draw a schematic diagram of its general structure in Figure 2. In Equation (4),
the closeness between the HR neuron and HNN is denoted using k1. The voltage and
recovery variable on the membrane of the HR neuron is denoted using x and y, respectively.
I is the external stimulation current, and the voltages on the cell membrane of the neuron
1 and 2 in Figure 2 are denoted using z and u, respectively. The magnetic flux within the
network is denoted using u. We set I = 0.

HR 

Neuron

Neuron 

1
Neuron 

2

 

-3.5 0.6

Memristive Synapse

Figure 2. Topology diagram of the novel small heterogeneous coupled network.

2.2. The Equilibrium Points of the Small Heterogeneous Coupled Network

The calculation results of the equilibrium point will reveal the dynamic character-
istics of the network. In the same way that self-excited dynamics correspond without a
stable equilibrium point, the absence of the equilibrium point often means that a system
exhibits hidden dynamics. In order to calculate the network’s equilibrium point, we let
ẋ = ẏ = ż = u̇ = ṅ = 0; then, Equation (5) is obtained:

y− x3 + 3x2 + k1(tanh(n) + 0.01)(x− z) = 0
1− 5x2 − y = 0
−z− 3.5tanh(z) + 0.1tanh(u)− k1(tanh(n) + 0.01)(x− z) = 0
−u− 0.1tanh(z) + 0.6tanh(u) = 0
x− z = 0

(5)

The Jacobian matrix is shown in Equation (6).

J =



W1 1 −k1(tanh(n) + 0.01) 0 W3
−10x −1 0 0 0

−k1(tanh(n) + 0.01) 0 W2 0.1(1− tanh2(u)) −W3
0 0 −0.1(1− tanh2(z)) −1 + 0.6(1− tanh2(u)) 0
1 0 −1 0 0

 (6)


W1 = 6x− 3x2 + k1(tanh(n) + 0.01)
W2 = −1− 3.5(1− tanh2(z)) + k1(tanh(n) + 0.01)
W3 = k1(x− z)(1− tanh2(n))

(7)
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The result of solving Equation (5) illustrates that we cannot find the real solution of
the network. Therefore, the network will present hidden dynamic behavior because it is
without an equilibrium point.

3. Numerical Simulation
3.1. Firing Activity of the Small Heterogeneous Coupled Network

For revealing the fundamental properties of the network, some classic nonlinear
analytical means are indispensable. The use of graphs helps to visually show the impact of
certain parameters on the network. We introduce a bifurcation diagram to illustrate the
dynamic behavior of an HR neuron inside the network, where x stands for the membrane
potential on the neuron in Figure 3a. Apparently, the system is period, and then enters into
chaos through forward period-doubling bifurcation, then exits from chaos through reverse
period-doubling bifurcation and enters into period behavior. In Figure 3b, the maximum
Lyapunov exponent is a positive number when 0.69 < k1 < 1.55, which is powerful
evidence that the network is in chaos. In Figure 4, the number of spikes in bursting firing
can be controlled by changing the value of k1, that is, the coupling strength of synapses
affects the number of spikes in bursting firing. Obviously, the coupling strength of synapses
between neurons affects the excitability of the nervous system, which provides a way to
understand how the excitability of the nervous system affects the duration of emotions. In
Figure 5, the increase in synaptic connection strength k1 causes the network to generate five
firing modes, i.e., periodic spiking, chaotic spiking, stochastic bursting, chaotic bursting,
and periodic bursting. A disparate attractor shape implies a disparate firing mode, and
five disparate attractors are displayed in Figure 6. Figure 7a shows the coexisting attractor
phase diagram of the network with disparate initial values. The green curve in the figure
illustrates that the network is in chaos, and it is in the period state when the blue curve
appears. Figure 7b shows the basin of attraction for the coexisting behavior. The dark
blue represents that the system is in a periodic state, and the light blue represents that the
system is in a chaotic state.

(a)
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Figure 3. Bifurcation diagram and the two largest Lyapunov exponents of the coupled network controlled
by k1, with initial states (0.1, 0, 0, 0, 0.1). (a) Bifurcation diagram; (b) Lyapunov exponents diagram.
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Figure 4. Multiple periodic burstings with different spikes of a small heterogeneous coupled network
controlled by k1, and initial states (0.1, 0, 0, 0, 0.1). (a) period-3 bursting with k1 = 0.75; (b) period-4
bursting with k1 = 0.84; (c) period-5 bursting with k1 = 0.91; (d) Period-6 bursting with k1 = 0.99;
(e) period-7 bursting with k1 = 1.083.
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Figure 5. The firing patterns of the membrane potential in a small heterogeneous coupled network
controlled by k1, with initial states (0.1, 0, 0, 0, 0.1). (a) Periodic spiking mode with k1 = 0.63; (b) chaotic
spiking mode with k1 = 0.71; (c) stochastic bursting mode with k1 = 1.178; (d) chaotic bursting mode
with k1 = 1.39; (e) periodic bursting mode with k1 = 1.65.
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Figure 6. The phase diagrams of the coupled network controlled by k1, with initial states (0.1, 0, 0, 0, 0.1).
(a) Periodic spiking mode with k1 = 0.63; (b) chaotic spiking mode with k1 = 0.71; (c) stochastic bursting
mode with k1 = 1.178; (d) chaotic bursting mode with k1 = 1.39; (e) periodic bursting mode with k1 = 1.65.
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Figure 7. Coexistence behavior controlled by initial value, and k1 = 0.83. (a) The coexisting attractor
phase diagram of the network; (b) the basin of attraction for the coexisting behavior.

3.2. Synchronization Behavior of the Small Heterogeneous Coupled Network

Abnormal synchronized behavior in the brain is thought to have certain adverse
effects on the nervous system, possibly leading to illnesses such as epilepsy. In this study,
we examine the phase synchronization of the heterogeneous neuron coupled system and
find that the system shows abnormal synchronization behavior in a certain interval. We
have conducted a preliminary study on this abnormal behavior and tried to eliminate
this abnormal synchronous behavior by introducing external stimuli. Let us introduce the
definition of the burst phase:

θ(t) = 2πn + 2π
t− tn

tn+1 − tn
(tn < t < tn+1) (8)

where tn is the time when the n-th burst emerges, and tn+1 − tn denotes the burst interval.
According to the above definition, every burst leads to a phase increase of 2π. Hence,
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phase synchronization can be detected when the absolute value of the phase difference
|∆θ(t)| = |θ1(t)− θ2(t)| between two neurons is bounded with the value of 2π.

We selected some k1 values to simulate the phase synchronization of the system at
these coupling intensities. As shown in Figure 8, when the coupling strength is very small,
the system tends to be synchronous, and when the coupling strength increases, the system
changes to be asynchronous. Different from the results of previous studies, the system
suddenly changes into the synchronous state when k1 = 1.96. Inspired by the fact that the
episodic synchronous abnormal firing of excitatory neurons in the hippocampus of the
brain can lead to diseases such as epilepsy, it is reasonable to think that this abnormal
synchronous behavior can have some adverse effects on the nervous system. We think that
adding radiation to the neurons may be able to weaken the possible adverse effects of this
abnormal synchronization, but this needs to be confirmed by further experiments.
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Figure 8. The phase synchronization in a small heterogeneous coupled network controlled by k1, with
initial states (0.1, 0, 0, 0, 0.1). (a) k1 = 0.5; (b) k1 = 0.8; (c) k1 = 1.5; (d) k1 = 1.8; (e) k1 = 1.96; (f) k1 = 1.98.

4. Circuit Simulation and Hardware Implementation

The physical realization of the network would facilitate its application to industrial
production. Therefore, we choose to design the analog circuit of the network on Multisim and
verify whether the results of the circuit are consistent with the MATLAB 2021a simulation
results. The network will be further implemented on the STM32 microcontroller if they
are consistent.

4.1. Circuit Simulation

Through the equivalent substitution of Equation (4), we obtain the circuit expression of
the network: 

C dvx
dt =

vy
R1
− g2v3

x
R2

+
gv2

x
R3

+
gk1 (tanh(vn)+0.01e)(vx−vz)

RL

C dvy
dt = e

Rs
− gv2

x
R4
− vy

R5

C dvz
dt = − vz

R + tanh(vz)
R6

+ tanh(vu)
R7

− gk1 (tanh(vn)+0.01e)(vx−vz)
RL

C dvu
dt = − vu

R + tanh(vz)
R9

+ tanh(vu)
R10

C dvn
dt = vx−vz

Rk

(9)
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Equation (10) illustrates the circuit elements values of the network:

VCC = 5 V, VEE = −5 V, RC = 1 KΩ, RF = 520 Ω, I0 = 1.1 mA
RC = 100 us, R0 = 10 KΩ, C = 10 nF, g = 1, gk1 = k1

R1 = 10 KΩ, R2 = 10 KΩ, R3 = 3.33 KΩ, RL = 10 KΩ, Rk = 10 KΩ
Rs = 10 KΩ, R4 = 2 KΩ, R5 = 10 KΩ, E1 = 1 V, E2 = 0.01 V
R6 = 2.857 KΩ, R7 = 100 KΩ, R8 = 100 KΩ, R9 = 16.667 KΩ

(10)

The simulation circuit of the network is shown in Figures 9 and 10. Figure 9 is the
circuit diagram of the hyperbolic tangent function, and the values of the components in
Figures 9 and 10 are shown in Equation (10). The amplifiers used in Figures 9 and 10 are
TL082CP, and the supply voltages are +15 V and−15 V. The circuit’s frequency up to 3 MHz.
The multiplier used is the analog multiplier, g represents the multiplier of the two inputs
of the factor, and the transistor is 2N2222. The −tanh module in Figure 10 is the circuit in
Figure 9. The simulation results of the Multisim circuit are shown in Figure 11. Obviously,
they are consistent with the simulation results of MATLAB 2021a. It is reasonable to think
that the circuit in Figure 10 can physically realize the heterogeneous coupled network of
Equation (4).

-

+ U14

R32

RF

RC2RC1

VCC

R35

R34

R33

-

+ U15

R36

I0

T1T0

-tanh(·)

-tanh

 
Figure 9. A circuit diagram of the hyperbolic tangent function.

Figure 10. A circuit diagram of the coupled network.
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Figure 11. Simulation results of the small heterogeneous coupled network. (a). k1 = 0.63; (b). k1 = 0.71;
(c). k1 = 1.178; (d). k1 = 1.39; (e). k1 = 1.65.

4.2. Microcontroller Implementation

A microcontroller is widely used in industry because of its advantages of high speed,
compactness, and low cost. In this section, we will use the STM32F407ZGT6 microcontroller
to implement this small heterogeneous coupled network and use C language to write
programs. It is produced by STMicroelectronics which was formed by the merger of SGS
Microelectronics of Italy and Thomson Semiconductor of France, and its headquarters are
in Switzerland. It has a frequency up to 168 MHz. The signal generated via the STM32
microcontroller will be displayed on the oscilloscope, and the hardware layout diagram is
shown in Figure 12. This small heterogeneous coupled network is mainly implemented
using the fourth-order Runge–Kutta algorithm, the approximate flowchart of which is
shown in Figure 13. The experimental setup of the small heterogeneous coupled network
on the STM32 single-chip microcomputer is shown in Figure 14, and the result is consistent
with that in Figure 5. It is reasonable to think that the network is implemented on the
single-chip microcomputer.

 

Figure 12. STM32-based hardware layout diagram of the small heterogeneous coupled network.
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h,k1,xi,k1n,k2n,k3n,k4n,

yi, zi, ui, ni, xn, yn, zn, un , nn,

k1x,k2x,k3x,k4x,k1y,k2y,k3y,k4y,

k1z,k2z,k3z,k4z,k1u,k2u,k3u,k4u,

g1(x,y,z,u,n)=y˗x^3+3·x^2+k1·(tanh(n)+0.01)·(x˗z)

g2(x,y,z,u,n)=1˗5·x^2˗y

g3(x,y,z,u,n)=˗z˗3.5·tanh(z)+0.1·tanh(u)˗

k1·(tanh(n)+0.01)·(x˗z)

g4(x,y,z,u,n)=˗u˗0.1·tanh(z)+0.6·tanh(u)

g5(x,y,z,u,n)=x˗z

Start

k1x <= g1(xi,yi,zi,ui,ni)

k1y <= g2(xi,yi,zi,ui,ni)

 

k2x <= g1(xi+k1x·h/2,yi+k1y·h/2,zi+k1z·h/2,ui+k1u·h/2,ni+k1n·h/2)

k2y <= g2(xi+k1x·h/2,yi+k1y·h/2,zi+k1z·h/2,ui+k1u·h/2,ni+k1n·h/2)

 

k3x <= g1(xi+k2x·h/2,yi+k2y·h/2,zi+k2z·h/2,ui+k2u·h/2,ni+k2n·h/2)

k3y <= g2(xi+k2x·h/2,yi+k2y·h/2,zi+k2z·h/2,ui+k2u·h/2,ni+k2n·h/2)

 

k4x <= g1(xi+k3x·h,yi+k3y·h,zi+k3z·h,ui+k3u·h,ni+k3n·h)

k4y <= g2(xi+k3x·h,yi+k3y·h,zi+k3z·h,ui+k3u·h,ni+k3n·h)

 

xn <= xi+h·(k1x+2(k2x+k3x)+k4x)/6

yn <= yi+h·(k1y+2(k2y+k3y)+k4y)/6

 

xi <= xn

yi <= yn

 

Formatting of date (xn,yn,zn,un and nn) to 

be converted by DACs (DAC1 and DAC2)

Sends data (xn,yn,zn,un and nn) to 

convert to DACs (DAC1 and DAC2)

End

Figure 13. STM32-based flowchart of the fourth-order Runge–Kutta integration method.
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(a) (b) (c)

(d) (e)

Figure 14. Microcontroller implementation of the small heterogeneous coupled network. (a). k1 = 0.63;
(b). k1 = 0.71; (c). k1 = 1.178; (d). k1 = 1.39; (e). k1 = 1.65.

5. Conclusions

This study proposes a novel small heterogeneous coupled network, using a locally
active memristor as a memristive synapse to couple 2D HNN and 2D HR neurons. The
calculation results show that the network has no equilibrium point and shows hidden
dynamics. The novel small heterogeneous coupled network exhibits five stable firing
modes as k1 changes. In addition, in the local region of k1, the number of spikes in bursting
firing increases with the increase in k1. The above phenomenon shows that the firing
mode is controlled by the coupling strength and is consistent with the behavior of neurons.
More interestingly, when the coupling intensity k1 increases, the network changes from
synchronous to asynchronous, but suddenly changes to synchronous around the coupling
parameter k1 = 1.96. This abnormal synchronization behavior is different from previous
studies, which provides a new way for us to further understand the mechanism of brain
activity. Finally, the network is simulated in Multisim environment and implemented
experimentally on STM32.
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