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Abstract: We introduce hyperbolic oscillation spaces and mixed fractional lifting oscillation spaces
expressed in terms of hyperbolic wavelet leaders of multivariate signals on Rd, with d ≥ 2. Contrary
to Besov spaces and fractional Sobolev spaces with dominating mixed smoothness, the new spaces
take into account the geometric disposition of the hyperbolic wavelet coefficients at each scale
(j1, · · · , jd), and are therefore suitable for a multifractal analysis of rectangular regularity. We prove
that hyperbolic oscillation spaces are closely related to hyperbolic variation spaces, and consequently
do not almost depend on the chosen hyperbolic wavelet basis. Therefore, the so-called rectangular
multifractal analysis, related to hyperbolic oscillation spaces, is somehow ‘robust’, i.e., does not
change if the analyzing wavelets were changed. We also study optimal relationships between
hyperbolic and mixed fractional lifting oscillation spaces and Besov spaces with dominating mixed
smoothness. In particular, we show that, for some indices, hyperbolic and mixed fractional lifting
oscillation spaces are not always sharply imbedded between Besov spaces or fractional Sobolev
spaces with dominating mixed smoothness, and thus are new spaces of a really different nature.

Keywords: hyperbolic oscillation spaces; mixed fractional lifting oscillation spaces; Besov spaces and
fractional Sobolev spaces with dominating mixed smoothness; hyperbolic wavelet basis; multifractal
analysis of rectangular regularity

1. Introduction

A classical way of describing regularity is to use pointwise Hölder classes Cα(x) at
an arbitrary fixed point x ∈ Rd (with α > 0), Hölder-Zygmund Cα(Rd) spaces, classical
and fractional Sobolev spaces (sometimes denoted as Bessel potential spaces), Besov spaces
and Triebel–Lizorkin spaces. These spaces attracted a lot of attention theoretically and
have been treated systematically with numerous applications given in many areas such
as numerics, signal processing and fractal analysis, to mention only a few of them (for
examples, see [1,2] and references therein).

Unfortunately, these spaces have the disadvantage of not fully capturing changes in
the regularity of multivariate functions f , i.e., d ≥ 2, that have anisotropic structures. In
fact, these spaces only resolve a certain minimal smoothness for functions or signals which
are rather smooth in a Cartesian axis-direction but rough in another axis-direction (such as
layers in the earth, stripes on a shirt, etc.). Anisotropy naturally appears whenever physics
does not act the same in different directions, e.g., geophysics, oceanography, hydrology,
fluid mechanics, or medical image processing (see [3–7], among others).

Great effort has been devoted by many researchers to remedy this by generalizing
the spaces in various ways. New spaces with different anisotropic or mixed degrees of
smoothness along direction axes have been introduced and studied locally and globally.
The function decompositions of these spaces have been investigated. Fourier analytical
approaches were given. Approximations by certain sums of either anisotropic or hyperbolic
tensor product blocks, wavelets or splines have been used. Many fundamental results such
as imbeddings, traces theorem, etc, were obtained.
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In various domains, Besov spaces constitute a natural mathematical setting to study
signals, as they have a convenient wavelet characterization and fit naturally to approxima-
tion problems. They also have the advantage of being sharply imbedded with fractional
Sobolev spaces.

Anisotropic Besov spaces were introduced for the study of semi-elliptic pseudo-
differential operators whose symbols have different degrees of smoothness along different
directions, cf., e.g., [2]; see also [8–11], and references therein, for a recent use of such
spaces for optimal regularity results of the heat equation.

Let D = {1, · · · , d}. For i ∈ D, let ei be the i-th unit vector in Rd. For f : Rd → R,
x = (x1, · · · , xd) ∈ Rd and h ∈ R, the iterated difference of f of order n ∈ N0 = N∪ {0} is
defined as

∆n
h,i f (x) =

n

∑
l=0

(−1)l+n
(

n
l

)
f (x + lhei) .

Then, the anisotropic Besov space As,q
p (Rd), where 1 ≤ p, q ≤ ∞ and s = (s1, · · · , sd)

with 0 < si < ∞, is defined as

As,q
p (Rd) = { f ∈ Lp(Rd) : ‖ f |As,q

p (Rd)‖∆,M < ∞}

, where M = (M1, · · · , Md) ∈ Nd with Mi > si and

‖ f |As,q
p (Rd)‖∆,M = ‖ f |Lp(Rd)‖+

d

∑
i=1

(∫ 1

−1
‖|t|−si ∆Mi

t,i |L
p(Rd)‖q dt

|t|

)1/q

(with a standard appropriate modification to use the sup norm in the case of q = ∞).
As in the isotropic case, anisotropic Besov spaces encompass a large class of classical

anisotropic functional spaces (see [2,12–14] for details). For example, if 1 < p < ∞, s ∈ Nd

and Ws
p(Rd) is the classical anisotropic Sobolev space given by

Ws
p(Rd) := { f ∈ Lp(Rd) : ‖ f |Ws

p(Rd)‖ < ∞}

where

‖ f |Ws
p(Rd)‖ = ‖ f |Lp(Rd)‖+

d

∑
i=1
‖∂si f

∂xsi
i
|Lp(Rd)‖

then
As,2

2 (Rd) = Ws
2(Rd)

and
As,min(p,2)

p (Rd) ↪→Ws
p(Rd) ↪→ As,max(p,2)

p (Rd) .

The latest equality and embeddings remain true if the classical anisotropic Sobolev
space is replaced by the fractional anisotropic Sobolev space Hs

p(Rd) for s /∈ Nd. Actually,
fractional anisotropic Sobolev spaces are special cases of anisotropic Lizorkin–Triebel
spaces, and are therefore sharply imbedded between anisotropic Besov spaces (see [2]).

In order to describe new types of dominating mixed smoothness, mixed differences
and mixed derivatives conditions have been added (see [15–17]). Let n = (n1, · · · , nd) ∈ Nd

0.
For h = (h1, · · · , hd) ∈ Rd, define the mixed differences of order n as

4n
h f (x) = 4n1

h1,1 ◦ · · · ◦ 4
nd
hd ,d f (x).

For A = {i1, · · · , ik} ⊂ D, set

4n
h,A f = 4

ni1
hi1

,i1
◦ · · · ◦ 4

nik
hik

,ik
f .
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Besov (or Nikol’skii) spaces with dominating mixed smoothness are defined as

‖ f |Bs,q
p (Rd)‖∆,M = ‖ f |As,q

p (Rd)‖∆,M

+
d

∑
k=2

∑
A={i1,··· ,ik}⊂D

(∫
[−1,1]k

(
k

∏
l=1
|til |
−sik ‖∆M

t,A f |Lp(Rd)‖
)q k

∏
l=1

dtil
|til |

)1/q

.

The standard appropriate modification to use the sup norm in the case of q = ∞ leads
to the so-called Hölder spaces in Lp with dominating mixed smoothness.

Note that the above norm does not depend on the size of M (equivalent norms).
Write x ≤ x′ (resp. x < x′ (with respect to x ≥ x′ )) if xi ≤ x′i (with respect to xi < x′i

(with respect to xi ≥ x′i)) for all i ∈ D, etc.. . . Put 1 = (1, · · · , 1) and 0 = (0, · · · , 0) ∈ Rd.
Mixed differences ‖∆M

t,A f |Lp(Rd)‖ can also be replaced by mixed moduli of continuity
(or smoothness) sup

−t≤h≤t
‖∆M

h,A f |Lp(Rd)‖ (for example, see [15,18,19]).

Sobolev spaces with dominating mixed derivatives Ws
p(Rd) were also given. They are

subsets of anisotropic Sobolev spaces Ws
p(Rd) with additional mixed derivative conditions:

Ws
p(Rd) := { f ∈ Lp(Rd) : ‖ f |Ws

p(Rd)‖ < ∞}

where

‖ f |Ws
p(Rd)‖ = ‖ f |Ws

p(Rd)‖+
d

∑
k=2

∑
A={i1,··· ,ik}⊂D

‖ ∂
si1

+···+sik f

∂x
si1
i1
· · · ∂x

sik
ik

|Lp(Rd)‖ .

Fractional Sobolev spaces with dominating mixed derivatives were also given and
are sharply imbedded with Besov spaces with dominating mixed derivatives (for example,
see [15,20]).

Many authors have performed a detailed study of the above spaces with dominating
mixed derivatives, for example, see [20] and references therein. These spaces have been
also studied from the viewpoint of function dyadic decomposition [21].

As in the theory of classical Sobolev spaces, alternative definitions in terms of Fourier
transform may be given. They have lead to the representation theorems by Littlewood–Paley
blocks [2,15,17,22]. This allows for a natural extension to parameters p and q which are less
than 1 [2].

Function spaces with dominating mixed smoothness represent a suitable framework
for multivariate appoximation; see [23–25]. For example, it was proved that it suffices to
use entire functions whose spectrals lie in hyperbolic crosses.

The above spaces for the full range of the parameters p, q have been characterized
by more or less elementary building dyadic blocks such as atoms, molecules, quarks,
splines [18] and wavelet bases [15,20] (see also [17,26]). Actually, the standard isotropic
dyadic blocks yield a bad decay for the coefficients and consequently do not contain the
anisotropic smoothness information. Anisotropic or hyperbolic dyadic blocks are better
suited in this scenario [27–29].

These developments together with the interrelations with hyperbolic crosses have
numerous applications in computational mathematics, the numerical solution of partial
differential equations, data analysis and signal processing [17,23,24,30–34]. In particular,
ref. [35] has recently generalized the boundary crossing theorem and the zero exclusion
principle for fractional systems.

Let us recall the wavelet characterization of Besov spaces with dominating mixed
smoothness. Let ψ1 = ψ be the univariate smooth enough and compactly supported
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Daubechies mother wavelet (see [36]). Let ψ−1 = ϕ be the corresponding father wavelet.
Put N−1 = N0 ∪ {−1}. For j ∈ N−1, k ∈ Z and x ∈ R, write

[j] =
{

j if j ∈ N0
0 if j = −1

and ψj,k(x) =
{

ψ1(2jx− k) if j ∈ N0 ,
ψ−1(x− k) if j = −1 .

Then
(

2[j]/2ψj,k

)
j∈N−1,k∈Z

is an orthonormal basis of L2(R).

For j = (j1, · · · , jd) ∈ Nd
−1, put [j] = ([j1], · · · , [jd]) and |j| =

d

∑
i=1

ji.

For k = (k1, · · · , kd) ∈ Zd and x = (x1, . . . , xd) ∈ Rd, put

Ψj,k(x) =
d

∏
i=1

ψji ,ki
(xi) .

Then, the collection {2|[j]|/2 Ψj,k : j ∈ Nd
−1, k ∈ Zd} is an orthonormal basis of

L2(Rd), a called hyperbolic wavelet basis [23,25,37,38]. Thus, any function f ∈ L2(Rd) can
be written as

f = ∑
j∈Nd

−1

∑
k∈Zd

Cj,kΨj,k

with
Cj,k = 2|[j]|

∫
Rd

f (x)Ψj,k(x) dx

called a hyperbolic wavelet coefficient.
For any j ∈ Nd

−1, and k ∈ Zd, let

λ = λ(j, k) =
d

∏
i=1

[
ki2−[ji ], (ki + 1)2−[ji ]

)
.

Set
Cλ = Cj,k , Ψλ = Ψj,k and Λj = {λ(j, k) : k ∈ Zd} .

We have the following proposition.

Proposition 1 ([15,20,26]). Let 0 < p, q ≤ ∞ and s = (s1, · · · , sd) ∈ Rd. A function f belongs
to the Besov (or Nikol’skii) space Bs,q

p with dominating mixed smoothness if

‖ f |Bs,q
p (Rd)‖ = ‖bj‖`q(Nd

−1)
< ∞

with

bj := 2(s1− 1
p )[j1]+···+(sd− 1

p )[jd ]

 ∑
λ∈Λj

|Cλ|p
1/p

.

From now on, we will call it a hyperbolic Besov space. Clearly, hyperbolic Besov spaces
involve simultaneous axes directions behaviors; nevertheless, they are only defined for
positive p’s and are invariant with respect to permutations of the locations k’s of wavelet
coefficients Cλ with λ ∈ Λj at each scale j. In [39,40], it is proved that such locations
affect the fractal geometry of rectangular pointwise singularities of f . Such positions are
important for the computation of the local suprema of a specific family of coefficients of
smaller scales and located at the same place. These suprema are called hyperbolic wavelet
leaders and are given by

dλ = sup
λ′⊂λ

|Cλ′ |,
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where λ′ ⊂ λ means that there exists j′ ≥ j such that λ′ ∈ Λj′ , and λ′ is a subset of
λ. In general, the computation of the hyperbolic wavelet leaders is hard. Nevertheless,
in [39,40], it is shown that the decay of hyperbolic wavelet leaders around each given point
x = (x1, · · · , xd) ∈ Rd characterizes the rectangular regularity L(α1,··· ,αd)(x) of the function
at x. The latest is defined through local oscillations over rectangles around x. For ε > 0, we
denote by B(x, ε) the rectangle

B(x, ε) =
d

∏
i=1

[xi − εi, xi + εi] .

For n ∈ Nd
0 and E ⊂ Rd, the hyperbolic n-oscillation of f in E is defined by

ωn( f , E) = sup
[y,y+nh]⊂E

|∆n
h f (y)| (1)

where

nh = (n1h1, · · · , ndhd) and [y, y + nh] =
d

∏
i=1

[yi, yi + nihi] . (2)

Definition 1. Let α = (α1, · · · , αd) > 0 and x = (x1, · · · , xd) ∈ Rd. We say that f is a
rectangular pointwise regular α at point x, and we write f ∈ Lα(x), if

∀ n > α ∃ C > 0 ∀ ε > 0 , ωn( f , B(x, ε)) ≤ C
d

∏
i=1

ε
αi
i .

Contrary to the classical pointwise Hölder regularity Cα(x) with α > 0, Definition 1
involves simultaneous axes direction behaviors in a neighborhood of x. In [40] (with
respect to [39]), it is shown that rectangular regularity fluctuates widely from point to
point for a large class of self-affine cascade Schauder (with respect to wavelet) series.
These rectangular multifractal series are written as the superposition of similar anisotropic
structures at different scales of j, reminiscent of some possible modelization of turbulent
flows or cascade models. The anisotropy corresponds to self-affine transformations of a
Sierpinski carpet K (see Section 3.1). Note that fractional Brownian sheets are rectangular
monofractal [18,40,41]. Note also that there has been a growing interest in the multifractal
analysis of self-affine functions and measures from a different point of view (see for
example [42–44]).

In [45], it is proved that the knowledge of the p-domain of f allows one to extract some
relevant information concerning the fractal print dimensions of sets of level rectangular
pointwise behaviors. Fractal print dimensions printA distinguish between sets A that are
easily covered by long thin rectangles Rn (with edge-lengths l1(Rn), · · · , ld(Rn)) and sets
which are not. Recall that

printA = {δ = (δ1, · · · , δd) ≥ 0 : sup
ε>0

(
inf

A⊂⋃n Rn ; ld(Rn)≤···≤l1(Rn)<ε
{∑

n∈N

d

∏
i=1

(li(Rn))
δi}
)

> 0} . (3)

For j ∈ Nd
−1 and p > 0, put the following quantity based on the wavelet leaders

Sp,j = 2−|[j]|

 ∑
λ∈Λj

dp
λ

 . (4)

The p-domain of f is defined as

Dp = {s = (s1, · · · , sd) : ∃ C > 0 ∀j ∀λ ∈ Λj Sp,j ≤ C2−p(s1[j1]+···+sd [jd ])} .
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The results were applied for d = 2 for the self-affine cascade wavelet series. In partic-
ular, it was proved that the p-hyperbolic domain depends on the selected generic boxes
of the Sierpinski carpet. Note that this is not the case if the dλs in (4) are replaced by the
|Cλ|s. Thus, hyperbolic Besov and fractional Sobolev spaces are not convenient for the
multifractal analysis of rectangular regularity (see Section 3.1).

The p-domain of f has a functional interpretation.

Definition 2. Let s = (s1, · · · , sd) and p > 0. A function f belongs to the hyperbolic oscillation
space Os

p if
‖ f |Os

p(Rd)‖ = ‖σj‖`∞(Nd
−1)

< ∞

with

σj = σj(s, p) := 2(s1− 1
p )[j1]+···+(sd− 1

p )[jd ]

 ∑
λ∈Λj

dp
λ

1/p

(5)

Clearly
Dp = {s : f ∈ Os

p(Rd)} . (6)

Note that
Os

p(Rd) ↪→ Bs,∞
p (Rd) . (7)

Contrary to Jaffard’s isotropic oscillation spaces [1,46], hyperbolic oscillation spaces
capture axes direction behaviors. Moreover, the p-domain can be extended for p < 0; in this
case, we require that f ∈ B(0,··· ,0),∞

∞ andDp is the set of all s such that for all ε > 0 there exists

C > 0, such that 2(s1 p−1−ε)[j1]+···+(sd p−1−ε)[jd ] ∑
λ∈Λj

 sup
λ′⊂∏d

i=1[(ki−1)2−[ji ] ,(ki+2)2−[ji ])

|Cλ′ |

p

≤

C for j large enough. Hyperbolic oscillation spaces yield good interaction with rectangular
multifractal analysis.

Furthermore, hyperbolic oscillation spaces can be extended via mixed fractional deriva-
tives or primitives. Let s′ = (s′1, · · · , s′d) ∈ Rd. In [20] Definition 1.8, the mixed fractional
lifting operator Is′ of derivatives or primitives is defined by the Fourier transform property

Îs′ f (ξ) = f̂ (ξ)
d

∏
i=1

(1 + |ξi|2)s′i/2 .

Remark 1. In [20], it is shown that Is′ maps Bs,q
p isomorphically onto Bs−s′ ,q

p .

Definition 3. Let p > 0, s ∈ Rd and s′ ∈ Rd. We say that f belongs to the mixed fractional
lifting oscillation space Os,s′

p if Is′ f ∈ Os−s′
p .

Hyperbolic and mixed fractional lifting oscillation spaces are defined through wavelet
leaders. The independence from the chosen hyperbolic wavelet basis is a natural re-
quirement. This will be demonstrated in the next section; we will prove that hyperbolic
oscillation spaces are closely related to hyperbolic variation spaces. Therefore, the rectan-
gular multifractal analysis, related to hyperbolic oscillation spaces, is somehow ‘robust’,
i.e., does not change if the analyzing wavelets were changed.

In the third section, we study optimal relationships between hyperbolic and mixed
fractional lifting oscillation spaces and hyperbolic Besov spaces. In particular, we will
prove that, for some indices, hyperbolic and mixed fractional lifting oscillation spaces are
not always sharply imbedded between hyperbolic Besov spaces, and thus are new spaces
of a really different nature.

The results and proofs are full hyperbolic counterparts of isotropic techniques con-
ducted in [1] Theorem 3 and [46] Proposition 2. This requires many technical efforts to
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overcome a lot of troubles caused by the different dilation factors 2[j1], · · · , 2[jd ] in coordinate
axes and will be demonstrated in detail.

2. Independence from the Chosen Hyperbolic Wavelet Basis

We will prove that hyperbolic and mixed fractional lifting oscillation spaces are almost
independent from the chosen hyperbolic wavelet basis. For that purpose, it suffices to show
that hyperbolic oscillation spaces are closely related to the following hyperbolic variation
spaces.

Definition 4. We say that f belongs to the hyperbolic variation space Vs,p if f ∈ L∞ and ∀n > s

sup
j∈Nd

−1

2(s1− 1
p )[j1]+···+(sd− 1

p )[jd ]
(

∑
k∈Zd

(
ωn( f , 2λ)

)p
)1/p

< ∞,

where

cλ :=
d

∏
i=1

[(ki − c)2−[ji ], (ki + c)2−[ji ]].

and ωn( f , 2λ) is as in (1) and (2).

Theorem 1. The following imbeddings hold

∀ε > 0,∀η > 0 Bε,∞
∞

⋂
Os+η

p ↪→ V s,p ↪→ Os
p .

Proof. It suffices to consider f compactly supported. In fact, if f has no compact support,
then using a partition of unity, we can write f = ∑

k∈Zd

f (.)Θ(.− k), and Θ is a C∞ compactly

supported function such that ∑
k∈Zd

Θ(.− k) = 1. Moreover, we use the fact that

‖ f ‖Os
p ∼

(
∑
k
‖ f (.)Θ(.− k)‖p

Os
p

)1/p

and ‖ f ‖Vs,p ∼
(

∑
k
‖ f (.)Θ(.− k)‖p

Vs,p

)1/p

.

Without any loss of generality, we consider d = 2. Let A > 0 be large enough so
that the support of f is included in [−A, A]2 and the supports of ψ and ϕ are included in
[−A, A].

• We will show the first imbedding.

Let f ∈ Bε,∞
∞

⋂
Os+η

p . Write
f = ∑

j′∈Nd
−1

fj′

with
fj′ = ∑

λ′∈Λj′

Cλ′Ψλ′ .

Clearly
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ωn( f , Aλ) ≤ ∑
j′∈Nd

−1

ωn( fj′ , Aλ)

≤ ∑
j′≤j

ωn( fj′ , Aλ)

+ ∑
j≤j′≤(j21 ,j22)

ωn( fj′ , Aλ)

+ ∑
j′1≥j21

j2≤j′2≤j22

ωn( fj′ , Aλ) + ∑
j′2≥j22

j1≤j′1≤j21

ωn( fj′ , Aλ)

+ ∑
j′1≤j1

j2≤j′2≤j22

ωn( fj′ , Aλ) + ∑
j′1≤j1
j′2≥j22

ωn( fj′ , Aλ)

+ ∑
j′2≤j2

j1≤j′1≤j21

ωn( fj′ , Aλ) + ∑
j′2≤j2
j′1≥j21

ωn( fj′ , Aλ)

+ ∑
j′≥(j21 ,j22)

ωn( fj′ , Aλ) .

We have
ωn( fj′ , Aλ) ≤ C ‖ fj′ ‖L∞(Aλ) .

Using the localization of the wavelets

sup
x

∑
λ′∈Λj′

|Ψλ′(x)| < ∞ . (8)

Since the support of Ψλ′ is included in Aλ′, it follows that

ωn( fj′ , Aλ) ≤ C sup
Aλ′ ⋂ Aλ 6=∅

|Cλ′ |. (9)

In particular, since f ∈ Bε,∞
∞ , then

ωn( fj′ , Aλ) ≤ C2−ε1[j′1]−ε2[j′2] . (10)

It follows that
∑

j′≥(j21 ,j22)

ωn( fj′ , Aλ) ≤ C2−ε1 j21−ε2 j22 . (11)

Let
d̃λ = sup

AR
⋂

Aλ 6=∅
dR . (12)

If j′ ≥ j then by (9)
ωn( fj′ , Aλ) ≤ Cd̃λ. (13)

Therefore
∑

j≤j′≤(j21 ,j22)

ωn( fj′ , Aλ) ≤ Cj21 j22 d̃λ. (14)
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Properties (10) and (13) imply that for all 0 ≤ α ≤ 1

∑
j′1≥j21

j2≤j′2≤j22

ωn( fj′ , Aλ) ≤ Cd̃α
λ ∑

j′1≥j21
j2≤j′2≤j22

2−(ε1[j′1]+ε2[j′2])(1−α) (15)

≤ C2−(1−α)ε1 j21 j22 d̃α
λ .

Similarly

∑
j′2≥j22

j1≤j′1≤j21

ωn( fj′ , Aλ) ≤ C2−(1−α)ε2 j22 j21 d̃α
λ . (16)

On the other hand

4n
h fj′(y) = ∑

λ′∈Λj′

Cλ′

2

∏
i=1
4ni

hi
ψj′i ,k

′
i
(yi).

Let j′ ≤ j. Let y and y + nh be in Aλ. We apply the Taylor’s formula to each4ni
hi

ψj′i ,k
′
i

and we use the localization of wavelets (similar to (8) for the derivatives). We obtain

|4n
h fj′(y)| ≤ C

(
2

∏
i=1

2ni [j′i ]|hi|ni

)
sup

Aλ′ ⋂ Aλ 6=∅

|Cλ′ |.

Clearly, |hi| ≤ A2−[ji ] for all i, and consequently

ωn( fj′ , Aλ) ≤ C

(
2

∏
i=1

2ni([j′i ]−[ji ])
)

sup
Aλ′ ⋂ Aλ 6=∅

|Cλ′ |.

Therefore, if λj′ denotes the dyadic rectangle of scale j′ which includes λ, then

ωn( fj′ , Aλ) ≤ C

(
2

∏
i=1

2ni([j′i ]−[ji ])
)

d̃
λj′ .

Thus

∑
j′≤j

ωn( fj′ , Aλ) ≤ C ∑
j′≤j

2

∏
i=1

2ni([j′i ]−[ji ])d̃
λj′ . (17)

If j′1 ≤ j1 and j′2 ≥ j2, we apply the Taylor’s formula to only4n1
h1

ψj′1,k′1
and we use the

localization of wavelets. We obtain

|4n
h fj′(y)| ≤ C2n1[j′1]|h1|n1 sup

Aλ′ ⋂ Aλ 6=∅

|Cλ′ | ≤ C2n1([j′1]−[j1]) sup
Aλ′ ⋂ Aλ 6=∅

|Cλ′ |.

Therefore
ωn( fj′ , Aλ) ≤ C2n1([j′1]−[j1])2−ε1[j′1]−ε2[j′2] (18)

(thanks to (10)) and
ωn( fj′ , Aλ) ≤ C2n1([j′1]−[j1])d̃

λ
(j′1,j2)

(19)

with λ(j′1,j2) being the dyadic rectangle of scale (j′1, j2), which includes λ.
Thus

∑
j′1≤j1

j2≤j′2≤j22

ωn( fj′ , Aλ) ≤ Cj22 ∑
j′1≤j1

2n1([j′1]−[j1])d̃
λ
(j′1,j2)

. (20)
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Properties (18) and (19) imply that for all 0 ≤ α ≤ 1

∑
j′1≤j1
j′2≥j22

ωn( fj′ , Aλ) ≤ C ∑
j′1≤j1
j′2≥j22

2n1([j′1]−[j1])d̃α

λ
(j′1,j2)

2−(ε1[j′1]+ε2[j′2])(1−α)

≤ C2−(1−α)ε2 j22 ∑
j′1≤j1

2n1([j′1]−[j1])d̃α

λ
(j′1,j2)

2−(1−α)ε1[j′1] . (21)

Similarly

∑
j′2≤j2

j1≤j′1≤j21

ωn( fj′ , Aλ) ≤ Cj21 ∑
j′2≤j2

2n2([j′2]−[j2])d̃
λ
(j1,j′2)

(22)

and

∑
j′2≤j2
j′1≥j21

ωn( fj′ , Aλ) ≤ C2−(1−α)ε1 j21 ∑
j′2≤j2

C2n2([j′2]−[j2)]d̃α

λ
(j1,j′2)

2−(1−α)ε2[j′2] , (23)

where λ(j1,j′2) denotes the dyadic rectangle of scale (j1, j′2) which includes λ.
Inequality

N−p

(
N

∑
i=1
|ai|
)p

≤
N

∑
i=1
|ai|p ,

together with (8), (11), (14)–(17), (20)–(23) imply that

C(([j1] + 1)([j2] + 1))−p
(

ωn( f , Aλ)

)p

≤ ∑
j′≤j

(
2

∏
i=1

2ni([j′i ]−[ji ])d̃
λj′

)p

+(j21 j22 d̃λ)
p

+(2−(1−α)ε1 j21 j22 d̃α
λ)

p + (2−(1−α)ε2 j22 j21 d̃α
λ)

p

+j22 ∑
j′1≤j1

(
2n1([j′1]−[j1])d̃

λ
(j′1,j2)

)p

+j21 ∑
j′2≤j2

(
2n2([j′2]−[j2])d̃

λ
(j1,j′2)

)p

+2−ε2 j22(1−α)p ∑
j′1≤j1

(
2n1([j′1]−[j1])2−ε1[j′1](1−α)d̃α

λ
(j′1,j2)

)p

+2−ε1 j21(1−α)p ∑
j′2≤j2

(
2n2([j′2]−[j2])2−ε2[j′2](1−α)d̃α

λ
(j1,j′2)

)p

+2(−ε1 j21−ε2 j22)p .

When we sum on λ ∈ Λj each d̃
λj′ is repeated C

2

∏
i=1

2[ji ]−[j
′
i ] times in ∑

j′≤j
. So that
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C(([j1] + 1)([j2] + 1))−p ∑
λ∈Λj

(
ωn( f , Aλ)

)p

≤ ∑
j′≤j

 2

∏
i=1

2(ni p−1)([j′i ]−[ji ]) ∑
λ′∈Λj′

d̃p

λj′


+j2p

1 j2p
2 ∑

λ∈Λj

d̃p
λ

+
(

2−p(1−α)ε1 j21 j2p
2 + 2−p(1−α)ε2 j22 j2p

1

)
∑

λ∈Λj

d̃αp
λ

+j2p
2 ∑

j′1≤j1

2(n1 p−1)([j′1]−[j1]) ∑
λ
(j′1,j2)∈Λ(j′1,j2)

d̃p

λ
(j′1,j2)



+j2p
1 ∑

j′2≤j2

2(n2 p−1)([j′2]−[j2]) ∑
λ
(j1,j′2)∈Λ(j1,j′2)

d̃p

λ
(j1,j′2)



+2−ε2 j22(1−α)p ∑
j′1≤j1

2(n1 p−1)([j′1]−[j1])2−pε1[j′1](1−α) ∑
λ
(j′1,j2)∈Λ(j′1,j2)

d̃αp

λ
(j′1,j2)



+2−ε1 j21(1−α)p ∑
j′2≤j2

2(n2 p−1)([j′2]−[j2]) ∑
λ
(j1,j′2)∈Λ(j1,j′2)

d̃αp

λ
(j1,j′2)


+2[j1]+[j2]2−(ε1 j21+ε2 j22)p .

Note that 2[j1]+[j2] in the last term follows from the fact that f is compactly supported.
From (12), d̃λ is a supremum of dλ on at most CAd rectangles, then we can replace d̃λ

by dλ in the previous ∑
λ...∈Λ....

.

Since f ∈ Os+η
p , then

∑
λ′∈Λj′

dp
λ′ ≤ C2[j

′
1]+[j′2]−(s1+η1)p[j′1]−(s2+η2)p[j′2] ∀j′ .

Since f ∈ Os+η
p and f is compactly supported, then, using the third result in Proposition 3,

f ∈ Os+η
αp for all α ∈ [0, 1]. It follows that

∑
λ′∈Λj′

dαp
λ′ ≤ C2[j

′
1]+[j′2]−(s1+η1)αp[j′1]−(s2+η2)αp[j′2] ∀j′ .

Thus
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C(([j1] + 1)([j2] + 1))−3p ∑
λ∈Λj

(
ωn( f , Aλ)

)p

≤ ∑
j′≤j

2(n1 p−1)([j′1]−[j1])+(n2 p−1)([j′2]−[j2])2[j
′
1]+[j′2]−(s1+η1)p[j′1]−(s2+η2)p[j′2] (24)

+2[j1]+[j2]−(s1+η1)p[j1]−(s2+η2)p[j2]

+
(

2−p(1−α)ε1 j21 + 2−p(1−α)ε2 j22
)

2[j1]+[j2]−(s1+η1)αp[j1]−(s2+η2)αp[j2] (25)

+ ∑
j′1≤j1

2(n1 p−1)([j′1]−[j1])2[j
′
1]+[j2]−(s1+η1)p[j′1]−(s2+η2)p[j2] (26)

+ ∑
j′2≤j2

2(n2 p−1)([j′2]−[j2])2[j1]+[j′2]−(s1+η1)p[j1]−(s2+η2)p[j′2] (27)

+2−ε2 j22(1−α)p ∑
j1≤j1

2(n1 p−1)([j′1]−[j1])2−pε1[j′1](1−α)2[j
′
1]+[j2]−(s1+η1)αp[j′1]−(s2+η2)αp[j2] (28)

+2−ε1 j21(1−α)p ∑
j′2≤j2

2(n2 p−1)([j′2]−[j2])2−pε2[j′2](1−α)2[j1]+[j′2]−(s1+η1)αp[j1]−(s2+η2)αp[j′2] (29)

+2[j1]+[j2]2−(ε1 j21+ε2 j22)p . (30)

The coefficient of [j′i ] in (24) is p(ni − (si + ηi)) > 0 if ni > si,
thus (24)∼ 2[j1]+[j2]−(s1+η1)p[j1]−(s2+η2)p[j2].
The coefficient of [j′1] in (26) is p(n1 − (s1 + η1)) > 0 if n1 > s1,
so (26) ∼ 2[j1]+[j2]−(s1+η1)p[j1]−(s2+η2)p[j2].
Similarly (27) ∼ 2[j1]+[j2]−(s1+η1)p[j1]−(s2+η2)p[j2] if n2 > s2.
The coefficient of [j′1] in (28) is p(n1 − ε1(1− α)− α(s1 + η1)) > 0 if n1 > s1; thus, (28)
∼ 2−ε2[j2]2(1−α)p2−ε1[j1](1−α)p2[j1]+[j2]−(s1+η1)αp[j1]−(s2+η2)αp[j2].
Similarly, (29) ∼ 2−ε1[j1]2(1−α)p2−ε2[j2](1−α)p2[j1]+[j2]−(s1+η1)αp[j1]−(s2+η2)αp[j2].
If si

si+ηi
< α < 1 then si p < (si + ηi)αp; thus, (25), together with (28) and (29) are

≤ C2[j1]+[j2]−s1 p[j1]−s2 p[j2].
Finally, it is clear that (30) ≤ C2[j1]+[j2]−s1 p[j1]−s2 p[j2].
We conclude that f ∈ Vs,p.

• Let us now show the second imbedding. Let f ∈ Vs,p.
Assume first that j ≥ 0. By a change of variable

Cλ = Cj,k = 2j1+j2
∫

f (x)Ψλ(x)dx =
∫

f̃λ(y)ψ(y1)ψ(y2)dy

with f̃λ(y) = f
(

y1+k1
2j1

, y2+k2
2j2

)
. If ψ ∈ Cr(R) and r > n ≥ 1, then thanks to the scaling

properties of a multiresolution analysis, there exists a compactly supported function
θn such that ψ = 4n

1
2
θn (see Lemma 2 in [1]), so that

Cλ =
∫

f̃λ(y)
2

∏
i=1
4ni

1
2

θni (yi)dy = (−1)n1+n2

∫
4n
− 1

2 1
f̃λ(y)

2

∏
i=1

θni (yi)dy ,

where 1 = (1, · · · , 1). We can assume that the supports of the θni s are included in
[−A, A]. Then

|Cλ| ≤
(

sup
y∈[−A,A]2

|4n
− 1

2 1
f̃λ(y)|

) ∫
|

2

∏
i=1

θni (yi)|dy.
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If y ∈ [−A, A]2 and h = − 1
2 1 = (− 1

2 ,− 1
2 ), then y + nh := (y1 − n1

2 , y2 − n2
2 ) and

F̃λ(y + nh) = F
(

y1−
n1
2 +k1

2j1
, y2−

n2
2 +k2

2j2

)
. Since −A ≤ yi ≤ A, then

yi − ni
2 + ki

2ji
∈ ki2−ji + 2−ji

[
−(A +

N
2
), (A +

N
2
)

]
with N = max{n1, n2}. Thus

|Cλ| ≤ Cωn
(

f , (A +
N
2
)λ

)
If λ′ ⊂ λ, then

|Cλ′ | ≤ Cωn( f , (A +
N
2
)λ).

So that

∀λ ∈ Λj dλ ≤ Cωn
(

f , (A +
N
2
)λ

)
.

And

2p(s1 j1+s2 j2)2−j1−j2 ∑
λ∈Λj

dp
λ ≤ C2p(s1 j1+s2 j2)2−j1−j2 ∑

λ∈Λj

(
ωn
(

f , (A +
N
2
)λ

))p
.

If j1 = −1 and j2 ≥ 0, then

Cλ = 2j2
∫

f (x)Ψλ(x)dx =
∫

f̃λ(y)ϕ(y1)ψ(y2)dy

with f̃λ(y) = f
(

y1 + k1, y2+k2
2j2

)
. If the support of ϕ is included in [−A, A], then

ϕ(y1) = (−1)n14n1
A ϕ(y1), so that

Cλ = (−1)n1

∫
f̃λ(y)4n1

A ϕ(y1)4n2
1
2

θn2(y2)dy = (−1)n1+n2

∫
4n

(−A,− 1
2 )

f̃λ(y)ϕ(y1)θn2(y2)dy ,

where θn is as above
Therefore

|Cλ| ≤
(

sup
y∈[−A,A]2

|4n
(−A,− 1

2 )
f̃λ(y)|

) ∫
|ϕ(y1)θn2(y2)|dy.

If y ∈ [−A, A]2 and h = (−A,− 1
2 ), then f̃λ(y + nh) = f

(
y1 − An1 + k1, y2−

n2
2 +k2

2j2

)
.

Since the support of f is included in [−A, A]2, then

|Cλ| ≤ Cωn
(

f , (A +
N
2
)λ

)
.

If λ′ = λ′((−1, j′2), k′) ⊂ λ then

|Cλ′ | ≤ Cωn( f , (A +
N
2
)λ).

So that

∀λ ∈ Λj dλ ≤ Cωn
(

f , (A +
N
2
)λ

)
.
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And

2ps2 j22−j2 ∑
λ∈Λj

dp
λ ≤ C2ps2 j22−j2 ∑

λ∈Λj

(
ωn
(

F, (A +
N
2
)λ

))p
.

Analogously, if j1 ≥ 0 and j2 = −1, then

∀λ ∈ Λj dλ ≤ Cωn
(

f , (A +
N
2
)λ

)
.

And

2ps1 j12−j1 ∑
λ∈Λj

dp
λ ≤ C2ps1 j12−j1 ∑

λ∈Λj

(
ωn
(

f , (A +
N
2
)λ

))p
.

Finally, if j = −1, then using the fact that ϕ(yi) = (−1)ni4ni
A ϕ(yi), for i = 1, 2, we

also obtain

∑
λ∈Λj

dp
λ ≤ C ∑

λ∈Λj

(
ωn
(

f , (A +
N
2
)λ

))p
.

In all cases

∀ j ≥ −1 σ
p
j (s, p) ≤ C2p(s1[j1]+s2[j2])2−[j1]−[j2] ∑

λ∈Λj

(
ωn
(

f , (A +
N
2
)λ

))p
. (31)

Now, let j ≥ −1. Let l be such that 2l−1 < A + N
2 < 2l , then

∑
λ∈Λj

(
ωn( f , (A +

N
2
)λ)

)p

≤ C22l ∑
λ′∈Λj−l1

(
ωn( f , 2λ′)

)p

because each λ ∈ Λj is contained in a rectangle λ′ ∈ Λj−l1, and each λ′ ∈ Λj−l1

contains at most C22l rectangles λ ∈ Λj.
Since f ∈ Vs,p, then

∑
λ′∈Λj−l1

(
ωn( f , 2λ′)

)p

≤ C2−(s1[j1−l]+s2[j2−l])p2[j1−l]+[j2−l] .

Then

∑
λ∈Λj

(
ωn( f , (A +

N
2
)λ)

)p
≤ C2−(s1[j1]+s2[j2])p2[j1]+[j2] . (32)

Both (31) and (32) yield f ∈ Os
p.

3. Optimal Relationships with Hyperbolic Besov Spaces
3.1. The Advantage of the Hyperbolic Oscillation Approach Self-Affine Cascade Functions

We will first explain the advantage of the hyperbolic oscillation approach for self-
affine cascade functions. Let N1 and N2 be two integers with N1 < N2. We divide the
unit square R = [0, 1]2 into a uniform grid of 2N1+N2 rectangles of sides 2−N1 and 2−N2 .
Choose A ⊂ {0, 1, . . . , 2N1 − 1} × {0, 1, . . . , 2N2 − 1}. For ω = (a, b) ∈ A, the contraction
Sω(x1, x2) =

(
2−N1(x1 + a), 2−N2(x2 + b)

)
maps the unit square R into the rectangle

Rω = [2−N1 a, 2−N1(1 + a)]× [2−N2 b, 2−N2(1 + b)]. (33)

If G is a subset of R2, we define the mapping S by

S(G) =
⋃

ω∈A
Sω(G) .
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The Sierpinski carpet K (see, for example, [43,44]) is given by

K =
⋂

n∈N
Sn(R) . (34)

Let (γω)ω∈A be scalars with 0 < |γω | < 1. The self-affine cascade function F adapted
to the subdivision A satisfies the self-affine equation

F = Ψ + ∑
ω∈A

γω F ◦ S−1
ω , (35)

where Ψ = Ψ0,0.
The unique solution in L1(R) is given by the hyperbolic wavelet series

F(x) = Ψ(x) +
∞

∑
n=1

∑
(ω1,...,ωn)∈An

γω1 · · · γωn Ψ
(

S−1
ωn · · · S

−1
ω1

(x)
)

. (36)

Define

|γ|max = max
ω∈A
|γω | and Hmin = − log |γ|max

N2 log 2
.

If |γ|max > 2−N2 then F is uniformly Lipschitz. For p > 0, set

τ(p) = − log(∑ω∈A |γω |p)
N1 log 2

.

Let σ =
N1

N2
. It is easy to show that the self-affine cascade function F adapted to the

subdivision A belongs to the hyperbolic Besov space B(s1,s2),q
p iff

σs1 + s2 ≤
1 + σ(1 + τ(p))

p
. (37)

The following result (which can be proved as in [45]) shows that, on the contrary, the p-
domain Dp of F defined in (6) depends on the geometric disposition of the elements of A.
We consider the following two geometric choices:

Each row and column of the grid contains at most one chosen Rω (38)

and
Only one column contains all boxes (Rω)ω∈A. (39)

Proposition 2. 1. Assume that (38) is satisfied. Then, (s1, s2) belongs to Dp if (37) together
with

s1 ≤
1 + τ(p)

p
(40)

and

s2 ≤
1 + στ(p)

p
(41)

hold.
2. Assume that (39) is satisfied. Then, (s1, s2) belongs to Dp if (37) together with (41) and

s1 ≤
1
p
+

Hmin

σ
(42)

hold.
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Thus, as mentioned in the introduction, contrary to hyperbolic Besov and fractional
Sobolev spaces, the new hyperbolic oscillation spaces are convenient for the multifractal
analysis of rectangular regularity.

3.2. Optimal General Relationships

We will now study general optimal relationships between hyperbolic and mixed
fractional lifting oscillation spaces and hyperbolic Besov spaces. In particular, we will
prove that, for 0 < s < 1

p 1 (with respect to s− 1
p 1 < s′ < s), hyperbolic (with respect

to mixed fractional lifting) oscillation spaces are not always sharply imbedded between
hyperbolic Besov spaces, and thus are new spaces of a really different nature.

Proposition 3. Let p > 0. The following embeddings between hyperbolic oscillation spaces hold.

1. If s ≤ s∗ then Os∗
p ↪→ Os

p.

2. If q ≥ p. Then Os
p ↪→ O

s− 1
p 1+ 1

q 1
q .

3. If f is compactly supported and f ∈ Os
p then f ∈ Os

q for all q < p.

Proposition 4. Let p > 0. The following sharp relationships between hyperbolic oscillation spaces
and hyperbolic Besov spaces hold.

1. If s > 1
p 1, then Os

p = Bs,∞
p .

2. B
1
p 1,p
p ↪→ O

1
p 1
p ↪→ B

1
p 1,∞
p .

3. If s < 1
p 1, then B

1
p 1,p
p ↪→ Os

p.

4. If s > 0 then Os
p ↪→ B0,∞

∞ and Bs,∞
∞ ↪→ (Os

p)loc, where (Os
p)loc denotes the spaces of functions

that locally belong to Os
p.

5. If s ≤ 0, then B0,∞
∞ ↪→ (Os

p)loc.

It follows that, for 0 < s < 1
p 1, hyperbolic oscillation spaces are not sharply imbedded

between hyperbolic Besov spaces, and thus are new spaces of a really different nature.

Remark 2. If f = ∑
j∈Nd

−1

∑
k∈Zd

Cj,kΨj,k, then we can replace Is′ f by the mixed fractional lifting

fractional hyperbolic wavelet series

f̃s′ = ∑
j∈Nd

−1

∑
k∈Zd

C̃s′ ,j,kΨj,k

with
C̃s′ ,j,k = 2[j1]s

′
1+···+[jd ]s′d Cj,k .

Using Remark 1, we therefore deduce the following results.

Corollary 1. Let p > 0. The following embeddings between mixed fractional lifting hyperbolic
oscillation spaces hold.

1. If s ≤ s∗ and s′ ≤ s′∗ then Os∗ ,s′∗
p ↪→ Os,s′

p , where s′∗ = (s′∗1 , s′∗2 ).

2. If q ≥ p then Os,s′
p ↪→ O

s− 1
p 1+ 1

q 1,s′

q .

Corollary 2. Let p > 0. The following sharp relationships between mixed fractional lifting
hyperbolic oscillation spaces and hyperbolic Besov spaces hold.

1. If s′ < s− 1
p 1, then Os,s′

p = Bs,∞
p .

2. If s′ = s− 1
p 1. Then Bs,p

p ↪→ Os,s′
p ↪→ Bs,∞

p .
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3. If s− 1
p 1 < s′. Then B

s′+ 1
p 1,p

p ↪→ Os,s′
p .

4. If s > s′. Then Os,s′
p ↪→ Bs′ ,∞

∞ and Bs,∞
∞ ↪→ (Os,s′

p )loc.

5. If s′ ≥ s, then Bs′ ,∞
∞ ↪→ (Os,s′

p )loc.

It follows that, for s − 1
p 1 < s′ < s, mixed fractional lifting hyperbolic oscillation

spaces are not always sharply imbedded between hyperbolic Besov spaces, and thus are
new spaces of a really different nature.

Proof of Proposition 3. 1. The first imbedding follows from the fact that σj(s, p) ≤
σj(s∗, p), where σj(s, p) was given in (5).

2. Let f ∈ Os
p. Clearly

σj(s−
1
p

1 +
1
q

1, q) = 2(s1− 1
p )[j1]+···+(sd− 1

p )[jd ]‖dλ‖`q(Λj)
.

Since q ≥ p then `p ↪→ `q. Thus, the second imbedding holds.
3. Let f be compactly supported. Assume that f ∈ Os

p. Since the wavelets are compactly
supported, then the sum in σj(s, p) bears on at most C2[j1]+···+[jd ] dyadic rectangles at
scale j. Let q < p. Applying the Hölder inequality

∑
λ∈Λj

dq
λ ≤ (C2[j1]+···+[jd ])

1− q
p

 ∑
λ∈Λj

dp
λ

q/p

.

Therefore, σj(s, q) ≤ C(σj(s, p))q/p. Hence, f ∈ Os
q for all q < p.

Proof of Proposition 4. 1. We have already observed (7). Now, we will show that
Bs,∞

p ↪→ Os
p if s > 1

p 1.

σ
p
j (s, p) ≤ 2p(s1[j1]+···+sd [jd ])2−([j1]+···+[jd ]) ∑

k∈Zd
∑
j′≥j

∑
λ′⊂λ

|Cλ′ |p

≤ ∑
j′≥j

∑
k′∈Zd

|Cλ′ |p2(ps1−1)[j′1]+···+(psd−1)[j′d ]2−(ps1−1)([j′1]−[j1]) · · · 2−(psd−1)([j′d ]−[jd ])

≤ ∑
j′≥j

bp
j′(s, p)2−(ps1−1)([j′1]−[j1]) · · · 2−(psd−1)([j′d ]−[jd ]) . (43)

If f ∈ Bs,∞
p , it follows that

σ
p
j (s, p) ≤ ‖ f ‖p

Bs,∞
p

∑
j′≥j

2−(ps1−1)([j′1]−[j1]) · · · 2−(psd−1)([j′d ]−[jd ])

≤ C (because s > 1
p 1) .

Thus, f ∈ Os
p.

2. We have already observed (7). In order to prove the optimality of the embedding

O
1
p 1
p ↪→ B

1
p 1,∞
p , it is easy to show that if

f = ∑
j∈N2

−1

2[j1 ]−1

∑
k1=0

2[j2 ]−1

∑
k2=0

2−
[j1 ]+[j2 ]

p Ψj,k (44)

then f ∈ O
1
p 1
p but f /∈ B

1
p 1,q
p for all q < ∞.
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Let us now prove that B
1
p 1,p
p ↪→ O

1
p 1
p . If f ∈ B

1
p 1,p
p , then by (43)

σj(
1
p

1, p) ≤

∑
j′≥j

bp
j′(s, p)

1/p

≤ ‖ f ‖p

B
1
p 1,1/p
p

.

So f ∈ O
1
p 1
p .

In order to prove the optimality of the embedding B
1
p 1,p
p ↪→ O

1
p 1
p , we take a q > p and

construct a function F in B
1
p 1,q
p , such that F /∈ O

1
p 1
p .

Let j1 = 2 and jn+1 = 2jn for all n ∈ N. Consider

F = ∑
n≥1

C(jn+1−1,jn+1−1),0Ψ(jn+1−1,jn+1−1),0 .

where
C(jn+1−1,jn+1−1),0 =

1(
(jn+1 − 1)(log(jn+1 − 1))2

) 2
q

.

Clearly bj =
1(

(jn+1 − 1)(log(jn+1 − 1))2
) 2

q
if j = (jn+1 − 1, jn+1 − 1), and bj = 0

elsewhere. Since the series ∑
n≥2

1
n(log n)2 converges, then F ∈ Bs,q

p .

On the other hand, if j = jn, then

σj ≥
22jn(

(jn+1 − 1)(log(jn+1 − 1))2
) 2p

q

.

It follows that

lim
n→∞

σj = ∞ ,

therefore F /∈ O
1
p 1
p .

3. Let us now show that B
1
p 1,p
p ↪→ Os

p if s < 1
p 1. Clearly, from above

B
1
p 1,p
p ↪→ O

1
p 1
p ↪→ Os

p.

The embedding B
1
p 1,p
p ↪→ Os

p is optimal since it improves the Sobolev type embedding
obtained by the combination of a sharp result from Proposition 5.6 p. 188 in [17] with
Theorem 1.9 in [20].

4. Let s > 0 and f ∈ Os
p. For [j] = 0, since

σj(s, p) = ‖dλ‖`p(Λj)
≤ C

then
∀ λ′ |Cλ′ | ≤ C .

Therefore f ∈ B0,∞
∞ . The embedding Os

p ↪→ B0,∞
∞ is optimal since it improves the

Sobolev type embedding, see [17] Proposition 5.6 p. 188, which is sharp.
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Let us now show that Bs,∞
∞ ↪→ (Os

p)loc if s > 0. Without any loss of generality, we
focus only on functions f supported on the unit square of R2.
Let A > 0 be such that ψ and ϕ are supported in [−A, A]. Then

f = ∑
j∈N2

−1

∑
|k1|≤A+2[j1 ]

|k2|≤A+2[j2 ]

Cj,kΨj,k . (45)

Assume that f ∈ Bs,∞
∞ . We will prove that

2p(s1[j1]+s2[j2])2−([j1]+[j2]) ∑
|k1|≤A+2[j1 ]

|k2|≤A+2[j2 ]

dp
λ ≤ C . (46)

For j′ ≥ j, set
Λj′(λ) = {λ′ ∈ Λj′ : λ′ ⊂ λ} .

Write
dp

λ ≤ sup
j′≥j

sup
λ′∈Λj′ (λ)

|Cλ′ |p .

Then
∑

|k1|≤A+2[j1 ]

|k2|≤A+2[j2 ]

dp
λ ≤ C2[j1]+[j2] sup

j′≥j
sup

λ′∈Λj′ (λ)

|Cλ′ |p .

Since f ∈ Bs,∞
∞ , then

∑
|k1|≤A+2[j1 ]

|k2|≤A+2[j2 ]

dp
λ ≤ C2[j1]+[j2] sup

j′≥j
sup

λ′∈Λj′ (λ)

2−p(s1[j′1]+s2[j′2]) ≤ C2[j1]+[j2]2−p(s1[j1]+s2[j2]) . (47)

Hence (46) holds.
The optimality is a consequence of the optimality of Bs,∞

∞ ↪→ Bs,∞
p .

5. Let us now show that B0,∞
∞ ↪→ (Os

p)loc if s ≤ 0. Without any loss of generality, we
focus only on functions f supported on the unit square.
Let A > 0 be such that ψ and ϕ are supported in [−A, A]. As in (47)

∑
|k1|≤A+2[j1 ]

|k2|≤A+2[j2 ]

dp
λ ≤ C2[j1]+[j2] .

Since s ≤ 0, then (46) holds.

4. Conclusions

Besov spaces and fractional Sobolev spaces with dominating mixed smoothness are
invariant under permutations of the wavelet coefficients at the same scale. Such permuta-
tions allow one to modify the rectangular singularities and therefore affect the multifractal
analysis of rectangular regularity. This leads us to new functional spaces that we studied
and related to Besov spaces with dominating mixed smoothness. We proved that hyper-
bolic oscillation spaces are closely related to hyperbolic variation spaces, and consequently
do not almost depend on the chosen hyperbolic wavelet basis. Therefore, the so-called
rectangular multifractal analysis, related to hyperbolic oscillation spaces is somehow ‘ro-
bust’, i.e., does not change if the analyzing wavelets were changed. We also showed that,
for 0 < s < 1

p 1 (with respect to s− 1
p 1 < s′ < s), hyperbolic oscillation spaces (with respect

to mixed fractional lifting oscillation spaces) are not sharply imbedded between fractional
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Sobolev spaces with dominating mixed smoothness, and thus are new spaces of a really
different nature.
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