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Abstract: The segmentation of crack detection and severity assessment in low-light environments
presents a formidable challenge. To address this, we propose a novel dual encoder structure, denoted
as DSD-Net, which integrates fast Fourier transform with a convolutional neural network. In this
framework, we incorporate an information extraction module and an attention feature fusion module
to effectively capture contextual global information and extract pertinent local features. Furthermore,
we introduce a fractal dimension estimation method into the network, seamlessly integrated as an
end-to-end task, augmenting the proficiency of professionals in detecting crack pathology within
low-light settings. Subsequently, we curate a specialized dataset comprising instances of crack
pathology in low-light conditions to facilitate the training and evaluation of the DSD-Net algorithm.
Comparative experimentation attests to the commendable performance of DSD-Net in low-light
environments, exhibiting superlative precision (88.5%), recall (85.3%), and F1 score (86.9%) in the
detection task. Notably, DSD-Net exhibits a diminutive Model Size (35.3 MB) and elevated Frame
Per Second (80.4 f/s), thereby endowing it with the potential to be seamlessly integrated into edge
detection devices, thus amplifying its practical utility.

Keywords: crack detection; crack segmentation; deep learning; fractal dimension estimation;
low-light environment

1. Introduction

Cracks, as apparent damage to infrastructure construction, can lead to safety hazards,
structural damage, and high maintenance costs and can also be considered as an early
warning phenomenon before serious damage to the building structure occurs. Timely
detection of surface cracks in concrete facilities and determining their severity can help
develop a scientific maintenance program to avoid disaster. Traditional manual crack dis-
ease detection methods are time-consuming, labor-intensive, subjective, and have limited
efficiency and credibility. In recent years, with the development of image processing tech-
nology and machine learning technology, scholars have conducted much research on crack
detection technology for identifying and quantifying crack disease and have developed
many computer vision-based crack detection algorithms.

These algorithms can be divided into two categories: target detection and semantic
segmentation. Target detection methods can use bounding boxes to help accurately locate
and mark the position of concrete cracks, while semantic segmentation separates cracks
from the background and provides information about crack boundaries. In practice, it is
important to locate the cracks and obtain their segmentation information [1]. Earlier algo-
rithms based on traditional image processing, such as thresholding [2,3], edge detection [4],
morphological methods [5], and texture feature methods [6], locate cracks by pixel-level
processing and feature extraction from the image. In the case where the environmental
pixels are similar to the crack pixels, they often cannot meet the application requirements.

Fractal Fract. 2023, 7, 820. https://doi.org/10.3390/fractalfract7110820 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7110820
https://doi.org/10.3390/fractalfract7110820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract7110820
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7110820?type=check_update&version=1


Fractal Fract. 2023, 7, 820 2 of 16

With the development of artificial intelligence technology in recent years, deep learning-
based crack detection algorithms have become a mainstream method due to their potential
to improve efficiency and accuracy.

Convolutional neural networks (CNNs) can effectively capture local features due to
their local perception property, avoiding the complex process of feature extraction and data
reconstruction in traditional recognition algorithms. Faster-RCNN [7] and YOLO [8] are
two of the most representative target detection algorithms based on CNN. To improve the
accuracy of crack detection and to meet the needs of real-world deployment, researchers
have improved these networks in various ways. Sekar et al. [9] used the global average
pool (GAP) and Region of Interest (RoI) alignment techniques to reduce information loss
and detect road cracks. Li et al. [10] proposed a new proposal generation architecture to
solve the problem of detecting small defects; Zhou et al. [11] solved the problem of YOLO
v4 training by introducing residual blocks and an efficient channel attention module to
address the problems of gradient vanishing and gradient explosion may occur during
YOLO v4 training; Chu et al. [12] proposed a multiscale feature fusion network TCN with
attention mechanism for learning the hierarchical features of tiny cracks. In addition,
some feature fusion modules, such as the skip-squeeze-and-excitation module (SE) [13]
and convolutional block attention module (CBAM) [14], can be added to the network
to enhance the model’s multiscale feature extraction capability. However, CNN models
usually perform convolutional operations based on local receptive fields, which cannot
establish the dependencies between global features, have difficulty dealing with complex
crack patterns, and are less adaptable to different environmental conditions. Capturing
targets in low light is still a difficult task.

Semantic segmentation is similar to target detection, with the difference that semantic
segmentation is pixel-level classification, which assigns a label to each pixel in the image
and can delineate crack boundaries. The full convolutional network (FCN) is the first deep
learning-based segmentation method. There are also several segmentation models built using
CNNs with an encoder-decoder architecture, such as SegNet, U-Net, PSPNet, and DeepLab.
These native models can be applied in the field of crack detection. Huang et al. [15] used a full
convolutional neural network model for iterative training based on deep learning principles
as a way to perform intelligent semantic segmentation of defective images; Shang [16] et al.
proposed the fusion of the dual attention mechanism and atrous spatial pyramid pooling
(ASPP) of the U-Net network. The dual-encoder structure shows advantages in capturing
local and global contextual information. Xiang [17] et al. proposed dual-encoder structure
crack segmentation algorithms fusing transformers and convolutional neural networks.
However, there is still a need to address the limitations of the existing segmentation
methods, such as the difficulty in handling cracks of varying complexity and the inability
to meet the challenge of segmentation under low-light conditions.

Accurately determining the severity of surface cracks on a structure helps to assess
the condition of the structure to determine the repair plan, which is important for ensuring
the safety of the structure. Existing methods for measuring crack severity are mainly
based on the morphological characteristics of cracks, i.e., length, width, and area [18].
Using the crack skeleton (medial axis) obtained from the segmentation process, the crack is
approximated into a series of curved segments, and the Euclidean distance between the
two endpoints of each segment is counted to calculate the length [19], or the shortest path
inside the crack is generated using the A∗ algorithm [20]. The width and area are calculated
based on the positional relationship and the number of pixel points after segmentation [21].
These methods cannot determine the direction of the crack, and the approximations used
in the calculation are less accurate. The tunnel lining crack index (TCI) [22,23], which is
drawn based on the crack tensor theory, can characterize the distribution and direction of
cracks and is widely used in Japan; however, this method does not take into account the
intersection of cracks.

Accurate detection, segmentation, and quantification of cracks, especially in low light
conditions, remain challenging tasks. Incorporating advanced signal processing techniques
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like the fast Fourier transform (FFT) can significantly enhance detection effectiveness. The
FFT method, known for its efficacy in expediting convolution [24], leverages the principle
that convolution in the temporal domain is equivalent to convolution in the frequency
domain. Additionally, the application of fractal dimension analysis for crack quantification
has demonstrated effectiveness [25]. This study endeavors to integrate fractal dimension
estimation methods into the crack detection network, thereby empowering professionals to
assess crack severity with greater efficiency. Our main contributions are as follows:

1. Supplementary crack detection dataset with the open source crack segmentation
dataset for network training and testing.

2. Designed an automated methodology capable of detecting, segmenting, and estimat-
ing the fractal dimension of cracks in an end-to-end manner called DSD-Net.

3. Designed a dual encoder structure based on FFT and CNN. The FFT-based target
detection module effectively captures crack patterns and enhances crack localization.
The CNN-based segmentation module accurately delineates the crack boundary by
considering local and global context information.

4. Extensive performance evaluation of the proposed method using several evaluation
metrics and comparison with mainstream sum detection and segmentation methods.

2. Methods
2.1. Crack Detection and Segmentation System

As shown in Figure 1, in our proposed deep learning model for locating and segment-
ing concrete cracks, FFT-based frequency-domain convolution is used as the first compiler
module to acquire and locate the high-frequency and low-frequency information in the
image. The spatial domain convolutional CNN branch has a powerful fine-grained feature
extraction capability due to its unique structural properties [26], which can effectively
extract feature information from crack images. To enhance its ability to extract global
information from images, an information extraction module is designed in this paper to
achieve contextual aggregation of different regions and is embedded in the CNN branch. A
spatial attention mechanism feature fusion detection module (ADM) is designed to achieve
the fusion of encoded training weight maps and decoded feature information.
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Figure 1. DSD-Net Network Architecture.

The role and detailed structure of each network component is described below.

2.1.1. Frequency Domain Encoder

Recent studies on recurrent neural networks have shown that complex numbers may
have a richer ability to characterize information [27,28]. Complex number neural networks
can better capture detailed image features and reduce the need for data enhancement
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by preserving phase information when processing images. To perform the equivalent of
conventional 2-dimensional convolution in the complex domain, in the frequency domain
encoder proposed in this paper, the image is first subjected to a downsampling operation to
reduce the number of operations and then input into the frequency domain structure FFT
Neck after a 3 × 3 convolution. The FFT Neck consists of a fast Fourier positive inverse
transform and a complex convolution operation, as shown in Figure 2.
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Figure 2. Diagram of FFT Neck.

The Fourier transform transforms the spatial domain representation and frequency
domain representation of an image. The input 2D grayscale image can be considered as
a grayscale matrix, which is transformed into a frequency distribution function by a 2D
off Fourier transform, which is beneficial for extraction to achieve finer feature extraction
and crack edge detection. The Fourier positive inverse transform is given by the following
equation [29]:

F(u, v) =
1

N2

N−1

∑
x=0

N−1

∑
y=0

f (x, y)e
−2πi

N (ux+vy) (1)

f (x, y) =
1

N2

N−1

∑
x=0

N−1

∑
y=0

F(u, v)e
−2πi

N (ux+vy) (2)

where f (x, y) is the preprocessed image, N is the number of pixels in the x and y directions
(N = 256 in our model), and u and v are the new coordinates corresponding to the spatial
frequencies in directions x and y, respectively. Matrix notation is used to represent the real
and imaginary parts of the convolution operation [30]:[

<(W × h)
=(W × h)

]
=

[
A −B
B A

]
×

[
x
y

]
(3)

where A and B are real matrices and x and y are real vectors. These N × N matrices
containing complex numbers will be fed into the coding module FFT Block. The FFT
block consists of two layers of complex convolutional layers (kernel size = 3, stride = 1,
padding = 1) and two layers of complex residual structure as shown in Figure 3.

To perform backpropagation in complex-valued neural networks, it is a sufficient con-
dition that the cost function and the activation are microscopic for the real and imaginary
parts of each complex parameter in the network. Although some authors have shown that
restricting the activation function to all-pure functions is not necessary [30], for computa-
tional efficiency purposes, the use of complex ReLU (CReLU) sharing gradient values that
satisfy the Cauchy-Riemann equation is used. Complex activation of ReLU applied to real
and imaginary parts of neurons separately, where z ∈ C [30]:

CReLU(z) = ReLU(<(z)) + iReLU(=(z)) (4)

As in Figure 3, in Complex Res, jump connections are used between input and output
feature mappings [31]. Similar to the spatial domain residual structure, residual networks
constructed in this way are easier to optimize [32]. Formally, in this paper, we consider the
building blocks defined as:

Xout = X + 3Complex_Conv(X) (5)
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X is the feature mapping of the input, Xout is the feature mapping of the output, and
Complex_Conv is a 3 × 3 complex convolutional layer.
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Figure 3. Diagram of the FFT block.

2.1.2. CNN Encoder

The feature pyramid is a computer vision technique for multiscale target detection
and image segmentation. It extracts and fuses multiscale feature information in different
levels of feature maps to capture target or image details at different scales. Inspired by
the pyramid scene parsing network (PSPNet) [33] and strip pooling [34], in this paper,
we constructed a feature pyramid-based information extraction module strip extractor, as
shown in Figure 4.
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Figure 4. Diagram of the Strip-Extractor.

This module can mine global context information based on context aggregation in
different regions. In the strip extractor, we make all the convolutional layers share the
same number of channels with the input vectors, split the original input into four bin-sized
feature maps (1 × H, 1 ×W, H × 3, 3 ×W) by a strip pooling layer, and then obtain the
same size as the original feature maps by bilinear interpolation and splicing. Finally, it is
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superimposed with the original feature map. For a two-dimensional tensor, X ∈ RH×W ,
the horizontal output yh ∈ RH is [34]:

yh
i =

1
W ∑

0≤j<W
xi,j (6)

Similarly, the vertical output yv ∈ RW is [34]:

yv
i =

1
H ∑

0≤i<W
xi,j (7)

The CNN encoder is an alternating stack of four strip extractors and maximum pooling
layers, as in Figure 5:
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Figure 5. Diagram of the CNN Encoder.

The feature map passes through each maximal pooling layer, where the number of
channels C is doubled while the spatial height H and spatial width W are halved. The CNN
encoder collects contextual global information by capturing remote connections in isolated
regions through successive stripe pooling and extracts local semantic information from the
original cracked image through stepwise maximal pooling.

2.1.3. Attention Fusion Detection Module

Conventional decoder-encoder architectures usually process the entire image as a
whole output, which makes it tend to be heavily influenced by background and other
unimportant information, leading to inaccurate crack detection. The nature of the attention
mechanism is to calculate the attention weights to show the importance of different elements
in the input, which is beneficial to mining the overall contextual and channel information
and is beneficial for crack detection [35]. In this paper, a spatial attention mechanism feature
fusion detection module (ADM) is constructed based on ResNet 34. By applying attention
to the feature information, the feature fusion detection module can more accurately locate
the crack category in the image, and its work is schematically shown in Figure 6.
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Crack localization is based on a large global receptive domain. By sequentially apply-
ing linear transformations and nonlinear activation functions, the feature map xl , which
is progressively decoded by the decoder, is used as the header input and passes through
three-layer layers, each of which doubles the number of channels, eventually becoming
256 channels. The undecoded feature weights, W, are increased in channels using convo-
lutional layers, again becoming 256 channels. Both are then weighted and aggregated by
the dot product method and, after convolution, are superimposed with the original feature
map. The global pooling and fully connected layer (FC) maps the feature space to the
sample labeling space by linear variation, outputting the crack localization coordinates.

2.1.4. Loss Functions

Choosing an appropriate loss function can help the model fit the data better and
improve detection and segmentation performance. The cross-entropy loss function is a
common loss function in image segmentation tasks, but the problem of positive and nega-
tive sample imbalance in crack images makes it less effective. Positive and negative sample
imbalance means that a large number of predicted anchor frames select the background
(negative samples), and a small number of anchor frames select the true target (positive
samples). To address this problem, we view crack segmentation as a two-stage process.
For an image containing a crack, the detection part of the model locates the crack for
framing by global information analysis, and then the segmentation head segments the
crack. We calculate L1 loss and focal loss based on cross-entropy improvement [36] for the
two processes.

L1 loss, also known as mean absolute error (MAE), is the average of the absolute
difference between the model’s predicted value f(x) and the true value of y. The bounding
box regression loss is defined as follows [36]:

MAE =
∑n

i=1| f (xi)− yi|
n

(8)

The focal loss coordinates the sample imbalance by balancing the cross entropy and
increasing the moderator to assign difficult sample training weights. It is defined as
follows [36]:

FL(pt) = −αt(1− pt)
γ log(pt) (9)

pt ∈ [0, 1] denotes the predictive confidence score of a candidate object, (1− pt)
γ is

the moderator, and αt balances the importance of positive and negative samples.

2.2. Fractal Computing System

The fractal dimension (FD) is a mathematical concept used to describe complex geo-
metric structures. Fractal shapes are fractal geometries and approximate self-similar shapes
that have similar structures at all scales, and their complexity can be described using the
concept of fractal dimension, which is a small number between 1 and 2 [37]. The larger the
fractal dimension, the higher the complexity. The box-counting algorithm is a method to
calculate the fractal dimension of complete and approximate self-similar patterns and is
widely used in many systems in nature or man-made things [38–40].

Algorithm 1 shows the implementation details for estimating the fractal dimension
of a crack image. To calculate the fractal dimension of a color crack image, it needs to be
grayscaled. The bounding box is defined by the crack detection network section by placing
the fixed point of the bounding box (in this case, the lower left corner) at the origin of the
Cartesian coordinate system O. A grid of squares r of different sizes is created, and the
number of these boxes containing the crack objects en is calculated. The fractal dimension
estimate of the crack image is defined as [37]:

FD = lim
r→0

log Nr

log
(

1
r

) (10)
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where N(r) is the total number of boxes having an r size required to fill the curve totally,
and FD stands for the fractal dimension characterizing the aforementioned curve.

Algorithm 1 Calculate Fractal Dimension

Require: image_path (image path), min_box_size (minimum box size), max_box_size
(maximum box size)

1: Read the image from image_path and convert it to grayscale.
2: If max_box_size is not provided then
3: Set max_box_size to half the minimum dimension of the image.
4: end if
5: Function box_count(box_size):
6: Initialize count to 0.
7: for each box with size box_size do
8: if the box contains a crack then
9: Increment count by 1
10: end if
11: end for
12: return count
13: Function fractal_dimension():
14: Initialize an empty list counts.
15: for each box_size from min_box_size to max_box_size do
16: Calculate the number of boxes that cover cracks using box_count(box_size)

and store it in counts.
17: end for
18: Fit a line to the pairs of box sizes and counts using the np.polyfit function.

Calculate the fractal dimension using the fitted line.
19: return Fractal Dimension
20: Function caculate_fractal_dimension (image_pathe, min_box_size, max_box_size):
21: Convert the image at image_path to grayscale.
22: if max_box_size is not provided then
23: Set max_box_size to half the minimum dimension of the image.
24: end if
25: Call fractal_dimension() to calculate the fractal dimension.
26: return Fractal Dimension

3. Implementation
3.1. Public Crack Datasets

To evaluate the performance of the DSD-Net proposed in this paper, experimental vali-
dation was carried out using five open-source crack segmentation datasets, where some low-
quality images were excluded from the original datasets. The CFD was 118 datasets reflect-
ing the condition of urban pavements in Beijing, China, captured by an iPhone5, containing
noises such as oil spots, water stains, shadows, etc., with the size of 480 × 320 pixels [41].
Concrete crack images for classification (CCIC) contains 445 pavements used in Tem-
ple University Smartphone collected pavement images with a pixel size of 3264 × 2448.
Crack500 [42] is a dataset of 476 pavement cracks with pixel-level labeling of approximately
2000 × 1500 in size, collected from Temple University’s main campus. German Asphalt
Pavement Distress (GAPs384) describes German pavement distresses with different cate-
gories of pavement distresses such as cracks, potholes, and mosaic patches. We selected
509 of these images with crack distresses with an image resolution of 1920 × 1080 pixels.
SDNET2018 [43] is an annotated concrete crack dataset with multiple hindrances, including
shadows, surface roughness, scaling, edges, holes, and background fragments, acquired at
Utah State University using a digital camera with a resolution of 256 × 256 pixels.

The cracks in these datasets are of varying widths, with different crack patterns,
background materials, and a more complete representation of the various types of detection
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scenarios. The cracks were labeled using the image labeling tool X-AnyLabeling with box
selection. To reduce the background pixel weight, only one labeling box was used for each
image. The data image brightness was adjusted using gamma correction, i.e., each image
(I) was normalized to [0–1], and a power law transformation was performed using the
equation O = Iγ for performance testing [44]. The divided two datasets (Original, Low
brightness) example images with labeling styles are shown in Figure 7.
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Figure 7. Sample images from the datasets used in this study.

3.2. Implementation Details

The model development language is Python, and the deep learning framework Py-
Torch 1.10 was used for training and testing. The operating system is Ubuntu 20.04. The
graphics processor (GPU) is NVIDIA GeForce RTX 3090.

All experiments use the stochastic gradient descent (SGD) algorithm to update the net-
work weights, with the learning rate initially set to 0.01 momentum to 0.9 and the weights
decayed to 0.0005 to share the training pressure and accelerate network convergence. The
learning rate decay strategy uses the cosine annealing algorithm. All input images were
scaled to 256 × 256 pixels before training. Various data enhancement techniques, such
as random rotation, horizontal flipping, and color dithering, are used to increase sample
diversity, prevent overfitting, and enhance model generalization. The training loss was cho-
sen to measure the predictive performance of the model and guide the network parameters
(weights and biases) during the learning process.

3.3. Evaluation Metrics

DSD-Net’s performance in crack detection, segmentation, and complexity recognition
is comprehensively evaluated using precision (Pr), recall (Re), F1 score (F1), intersection-to-
union ratio (IoU), and frames per second (FPS). Precision and recall provide insight into
the accuracy and sensitivity of the model, while the F1 score provides a balance between
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the two. IoU measures spatial alignment and emphasizes the ability of the model to
accurately segment cracks. Finally, model size (MB) and FPS are crucial for evaluating the
computational efficiency of the algorithm, with smaller MB and higher FPS values ensuring
that it can be deployed in mobile devices and run in real-time scenarios. Specific formulas
for these metrics can be found in the literature [45].

4. Experiments and Analyses

We divided the training set and test set using random partitioning at a ratio of 9:1. We
selected two classical algorithms in the field of target detection and semantic segmentation
for comparison with DSD-Ne. For the crack detection algorithm, we compared it with
Faster RCNN, YOLO v5, YOLO v7 [46] and SSD [47]. For crack segmentation algorithms,
we chose to compare U-Net [48], Deeplabv3+ [49], PSPNet, and Seg-Net [50]. To be fair, all
networks were trained using the same dataset and parameter configuration.

4.1. Crack Detection Results

Pretraining on open-source datasets and then fine-tuning the data can shorten the
convergence time of the model [51]; however, the fine-tuning method is ineffective in
preventing model overfitting. We want our model to apply to application requirements
in various brightness contexts, and our training method does not use other open-source
datasets for pretraining but uses a delineated training set. This training method bears
the time cost of training the model, with the benefit of facilitating better satisfaction in
the accuracy and localization sensitivity requirements of the crack detection task. Table 1
gives the model weight sizes and FPS values for mobile device deployment. The detection
performance of each model is evaluated in Table 2. Figure 8 records the accuracy, recall,
and F1 scores of the DSD-Net algorithm and other comparative algorithms under normal
brightness and low light test sets.

Table 1. Comparison of different target detection algorithms for lightweight.

Method MS (MB) FPS (f/s)

Faster RCNN 97.6 25.9
YOLO v5 58.3 30.1
YOLO v7 69.8 28.6

SSD 65.9 57.8
Ours 35.3 80.4

Table 2. Crack Detection Performance Evaluation.

Method
Original Low Brightness

Pr Re F1 Pr Re F1

Faster
RCNN 85.80% 87.10% 86.45% 82.20% 83.60% 82.89%

YOLO v5s 89.20% 84.20% 86.63% 84.30% 80.60% 82.41%
YOLO
v7-tiny 88.60% 85.60% 87.07% 84.70% 82.40% 83.53%

SSD 86.40% 85.90% 86.15% 79.80% 73.40% 76.47%
Ours 92.10% 91.40% 91.75% 88.50% 85.30% 86.87%

Figure 9 shows the results of our tests on the proposed method, where the present
algorithm can detect the target crack lesions more accurately on both test sets without
visual interference. However, concrete splice joints may still be incorrectly recognized as
cracks when the light is low.
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Figure 9. Test results of crack detection.

4.2. Crack Segmentation Results

Similarly, Table 3 evaluates the segmentation performance of each model. As shown
in Figure 10, we tested the model’s precision, recall, F1, and IoU over other mainstream
semantic segmentation models on both test sets. As shown in Figure 11, we tested the
proposed model for segmentation, giving the original crack image, the weak light crack
image, the segmentation result, and the labeled image, respectively. Our model can
accurately locate the crack boundary, produce clear and accurate segmentation masks,
and extract most of the concrete crack pixels, and the test results are close to the real
situation on the ground. It also shows stability under low-light conditions, as shown in the
last set of Figure 11, and can accurately detect crack lesions when judging some cracks that
are easily overlooked by human visual inspection.
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Table 3. Crack Segmentation Performance Evaluation.

Method
Original Low Brightness

Pr Re F1 IoU Pr Recall F1 IoU

U-Net 83.90% 81.20% 82.53% 60.90% 70.40% 75.90% 73.05% 57.80%
Deeplabv3+ 84.70% 85.00% 84.85% 63.70% 72.80% 74.60% 73.69% 53.40%

PSPNet 85.60% 81.80% 83.66% 67.00% 73.70% 72.10% 72.89% 51.60%
Seg-Net 82.40% 80.50% 81.44% 60.30% 71.50% 70.80% 71.15% 58.90%

Ours 86.30% 89.20% 87.73% 68.00% 76.30% 78.10% 77.19% 62.60%
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Figure 11. Test results of crack segmentation.

4.3. Fractal Dimension Estimate

Benoit 1.01 [52] software implemented box-counting methods to estimate the approxi-
mate fractal dimension (AFD) of 2D and 3D geometric patterns. We compared our proposed
estimation method with it and tested the AFDs for straight lines, squares, and Koch curves,
as shown in Figure 12. The results of the tests are shown in Table 4, and the error of the
fractal method we used is less than 2%.
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Figure 12. Fractal dimensions of different complex geometric patterns: (a) line segments, (b) squares,
(c) sixth-order Koch curves.

Table 4. Fractal dimension estimation test.

Method Line Segments Squares Sixth-Order Koch Curves

Benoit 0.973 1.996 1.268
Ours 0.986 1.994 1.267

Figure 13 demonstrates the results of fractal dimension estimation of crack disease
using DSD-Net, which increases as the complexity of the crack increases and can be used
to determine the severity of the disease.
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Figure 13. Estimation of the fractal dimension of cracks with different complexities.

5. Conclusions

To fulfill the tasks of crack detection, segmentation, and fractal dimension estimation
under low-light conditions, this paper proposes a novel dual encoder network structure
(DSD-Net) fusing fast Fourier transform and CNN. The frequency domain branch de-
signs the FFT neck structure for image spatial domain and frequency domain conversion,
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which is conducive to mitigating the environmental impact of insufficient brightness. The
CNN coding branch designs the information extraction module for mining contextual
information. The feature fusion detection module is used to apply attention to specific
information, which can significantly improve the accuracy of crack disease localization.
The fractal system is based on the box-counting method, which estimates the fractal dimen-
sion of the crack image after localization and segmentation, providing the basis for crack
severity discrimination.

The crack detection and segmentation ability of DSD-Net under low-light conditions
was tested using a brightness-adjusted dataset. The results show that the crack detection
and segmentation abilities of DSD-Net are better than those of the current mainstream
target detection and semantic segmentation algorithms, and they can also have good
performance under low-light conditions. In addition, as an end-to-end network integrating
crack detection, segmentation, and fractal dimension estimation, DSD-Net has a small
model footprint and fast processing speed of a single image, which can be deployed in
edge devices to achieve real-time detection of crack damage.

In future work, we will further improve the generalization ability of the model to
extend more application scenarios. In addition, we will also work on exploring more
accurate fractal dimension estimation for crack segmentation images and researching
explicit criteria for assessing the apparent damage of infrastructure using fractal dimension.
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