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Abstract: Recent studies have emphasized the importance of the long-distance diffusion model in
characterizing tracer transport occurring within both subsurface and surface environments, partic-
ularly in heterogeneous systems. Long-distance diffusion, often referred to as nonlocal diffusion,
signifies that tracer particles may experience a considerably long distance in either the forward
or backward direction along preferential channels during the transport. The classical advection–
diffusion (ADE) model has been widely used to describe tracer transport; however, they often fall
short in capturing the intricacies of nonlocal diffusion processes. The fractional operator has gained
recognition among hydrologists due to its potential to capture distinct mechanisms of transport
and storage for tracer particles exhibiting nonlocal dynamics. However, the hypersingularity of the
fractional Laplacian operator presents considerable difficulties in its numerical approximation in
bounded domains. This study focuses on the development and application of the fractional Laplacian-
based model to characterize nonlocal tracer transport behavior, specifically considering both forward
and backward diffusion processes on bounded domains. The Riesz fractional Laplacian provides a
mathematical framework for describing tracer diffusion processes on a bounded domain, and a novel
finite difference method (FDM) is introduced as an effective numerical solver for addressing the
fractional Laplacian-based model. Applications reveal that the fractional Laplacian-based model can
effectively capture the observed nonlocal tracer transport behavior in a heterogeneous system, and
nonlocal tracer transport exhibits dynamic characteristics, influenced by the evolving heterogeneity
of the media at various temporal scales.

Keywords: fractional Laplacian; forward and backward diffusion; nonlocal model; heterogeneous
systems; finite difference method

1. Introduction

The diffusion of tracer particles in natural systems, such as heterogeneous soils, aquifers,
and rivers, is frequently characterized by non-Fickian behavior, often referred to as “anoma-
lous” diffusion [1–4]. Anomalous diffusion is commonly encountered across various
scales, ranging from soil core [5], laboratory experiments [6–8], to observations at the
field-scale [9,10], among numerous others [11,12]. Anomalous diffusion, which encom-
passes subdiffusion (characterized by an MSD following a power-law relationship with time,
i.e., MSD(t) ∝ tα with an exponent α < 1) and superdiffusion (where α > 1, which is often
associated with active diffusion as investigated in the ten Hagen et al. [13], Ghosh et al. [14])
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is a widespread phenomenon observed in a diverse array of both natural and engineered sys-
tems. These encompass a broad spectrum of domains, including porous media, as evidenced
in Nelissen et al. [15], biological systems, as demonstrated in Taloni and Marchesoni [16],
and turbulent fluid dynamics [17]. The emergence of anomalous diffusion typically arises
due to the intricacies of nonuniform environments, the presence of obstacles, or the involve-
ment of transport mechanisms that defy the conventional principles of Fickian diffusion [12,18].
Anomalous diffusion is significantly influenced by nonlocal transport processes occurring
in spatial domains [18]. Nonlocal diffusion processes are an inherent characteristic of nat-
ural systems, primarily attributed to the occurrence of preferential flow paths [19]. Tracer
particles demonstrate a proclivity to traverse preferred pathways in both forward and
backward directions, ultimately resulting in the manifestation of non-Fickian behavior [18],
as illustrated in the schematic diagram of nonlocal forward and backward diffusion pro-
cesses depicted in Figure 1. The modeling of tracer nonlocal diffusion holds paramount
significance as a research domain, offering profound implications for global-scale endeavors
such as hydrocarbon exploration, groundwater resource management, hydraulic fracturing,
and the secure disposal of high-level radioactive waste.
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Figure 1. Conceptual map of the local and the nonlocal diffusion in both forward and backward directions.

Nonlocal diffusion denotes the characteristic in which the flux of tracer particles at
a specific location is not solely determined by the gradient at that specific point, whether
linear or nonlinear, but is instead an integrated flux that takes into account the heteroge-
neous characteristics of the surrounding environment [20,21]. The conventional depiction
of passive tracer transport has traditionally relied upon a deterministic advection–diffusion
equation (ADE) model, established through an analogy with Fick’s laws of diffusion [22].
Recently, a relatively novel stochastic framework centered on fractional-order derivatives
has garnered growing interest among hydrologists [23–25]. This heightened attention
is primarily due to the capacity of fractional-order derivative models to effectively cap-
ture alternative mechanisms of transportation and storage for tracer particles that exhibit
non-Fickian transport dynamics [26]. In recent years, a considerable amount of research
effort has been dedicated to the advancement of fractional advection–dispersion equation
(FADE) theories, which are designed to comprehensively describe the intricate nature of
anomalous tracer transport phenomena. This research has encompassed various aspects,
including the incorporation of nonlocal boundary conditions into FADE models [27,28],
the development of refined equation formulations that enhance our understanding of
these transport processes [29,30], and the creation and refinement of both analytical and
numerical methods for solving FADE [31]. Furthermore, it is worth noting that fractional
calculus (FC) has emerged as a profound and interdisciplinary field within mathematics,
with wide-ranging applications throughout various scientific and engineering disciplines.
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Comprehensive insights into the manifold applications of FC can be found in the extensive
discussion provided by Sun et al. [12].

Fractional models differ from the classical ADE model due to their ability to ac-
commodate instances where tracer particles make substantial long-distance jumps [18].
This characteristic endows them with considerable utility in elucidating non-Fickian or
nonlocal diffusion behavior that are commonly observed in a wide array of heteroge-
neous natural systems, including porous media, fractured networks, and turbulent flow
environments [32,33]. Fractional operators, such as the fractional Laplacian [34], exhibit
unique nonlocal properties, distinguishing them from their integer-order counterparts.
These operators capture nonlocal effects by accounting for interactions between points in a
system that extend beyond a fixed radius or distance, unlike classical differential operators
that are local and rely on information from the immediate vicinity. The fractional Laplacian,
for instance, characterizes the nonlocal behavior by considering the influence of distant
points, allowing for the analysis of long-range dependencies or correlations within a system.
These nonlocal properties play a significant role in various fields like physics, mathematics,
and signal processing, offering a more nuanced understanding of phenomena that involve
long-range interactions and complex behaviors.

In the realm of fractional models, researchers commonly employ a variety of defini-
tions, including the Grünwald–Letnikov definition [35], the Riemann–Liouville definition [36],
and several other alternatives [37], along with the fractional Laplacian. The fractional Lapla-
cian operator, denoted as (−∆)α/2 with α belonging to the interval (0, 2), possesses various
equivalent characterizations [34]. However, the incorporation of boundary conditions
necessitates distinct mathematical formulations in bounded domains [38,39]. Presently,
there is no consensus within the scholarly literature regarding the most suitable definition
of the fractional Laplacian in bounded domains for a given application. This study employs
the Riesz fractional Laplacian, which introduces a specific nonlocal boundary condition,
wherein the determination of a function’s fractional Laplacian requires the specification of
its values across the entire domain [34]. There are notable advantages associated with the
direct utilization of the fractional Laplacian operator in characterizing the tracer diffusion
process. Firstly, this operator provides a more transparent and physically interpretable
framework compared to various definitions of fractional derivatives in characterizing
the diffusion process [18]. Secondly, in contrast to one-sided definitions of fractional
derivatives [37], the fractional Laplacian operator has the capability to concurrently ac-
count for both forward and backward diffusion processes experienced by tracer particles
owing to its globally defined character. The above knowledge gaps inherent in classical
fractional-derivative models motivated this study. This study aims to develop and employ
a straightforward, physically grounded model for an in-depth examination of the stochastic
aspects of nonlocal tracer transport dynamics, employing the fractional Laplacian operator,
particularly on a bounded domain. A novel finite different method is introduced for solving
the fractional Laplacian-based model on a bounded domain, which offers a solution to a
longstanding challenge in the field of nonlocal tracer transport modeling.

To reach the above goal, the rest of the paper is organized as follows. Section 2 of
this paper presents a nonlocal advection–diffusion model based on the fractional Lapla-
cian operator, and a novel finite difference method is introduced for its implementation.
In Section 3, we delve into the diffusion regime of the model and conduct a sensitivity
analysis of its parameters. Section 4 applies the fractional Laplacian model to simulate
tracer transport scenarios documented in the existing literature. Conclusions are finally
drawn in Section 5.

2. Materials and Methods
2.1. Model Development

In recent decades, researchers have extensively explored the domain of fractional
calculus as a powerful tool for crafting sophisticated mathematical frameworks that can
effectively describe complex anomalous systems [24]. The fractional Laplacian operator,



Fractal Fract. 2023, 7, 823 4 of 15

symbolized as (−∆)β/2, stands out as a nonlocal extension of the classical Laplacian opera-
tor, finding relevance in a wide range of physical systems, including turbulent flows, porous
media flows, pollutant transport, quantum mechanics, stochastic dynamics, and financial
systems [12,19]. An emerging stochastic approach grounded in the framework of fractional
derivatives has been increasingly drawing the interest of hydrologists [2,40]. This attention
is due to its capacity to potentially capture unique mechanisms governing the transport
and storage of tracer particles that display non-Fickian transport behavior. The fractional
Laplacian is an integral operator defined over the domain Rn. It is characterized by its
definition as a pseudodifferential operator with the symbol |k|β, as follows [41]:

(−∆)β/2 = F−1
[
|k|βF [u]

]
, for β > 0 (1)

where F represents the Fourier transform applied over the entire space Rn, and it is
accompanied by its inverse transform F−1. Notably, when β = 2, Equation (1) simplifies
to the familiar spectral representation of the classical Laplace operator (−∆).

The expression for the fractional Laplacian (1) is formulated in relation to the hyper-
singular integral, presented as follows [41]:

(−∆)β/2u(x) = cn,βP.V.
∫
Rn

u(x)− u(y)

|x− y|n+β
dy, for β ∈ (0, 2) (2)

where the notation P.V. signifies the principal value integral, while the symbol cn,β repre-

sents a normalization constant, specifically defined as 2β−1βΓ((β+n)/2)√
πnΓ(1−β/2)

. Here, Γ(x) denotes

the Gamma function.
Equation (2) notably underscores that the evaluation of (−∆)β/2c at a given point

x ∈ Rn is contingent upon the entire domain of values c(y) : y ∈ Rn, given that the
fractional Laplacian’s definition encompasses the entire domain of Rn. Nevertheless,
in practical field applications, the nonlocal characteristics of tracer transport need to be
constrained within bounded domains. It’s important to note that, unlike the classical Lapla-
cian operator, both the theoretical properties of the fractional Laplacian and its numerical
handling are not yet comprehensively elucidated. Specifically, the inherent infinite nonlocal
nature of the fractional Laplacian poses significant challenges when it comes to numerically
approximating it within finite domains, especially in the context of characterizing tracer
transport in heterogeneous media. The introduction of boundary conditions disrupts trans-
lational invariance, while the existence of long-range spatial correlations, inherent to the
nonlocal properties of the fractional Laplacian operator, complicates the analysis of tracer
transport [38]. One approach to define the fractional Laplacian on a bounded domain Ω
is to apply the real space Formula (2) to functions on Ω, leading to the Riesz fractional
Laplacian in Ω as follows [34]:

(−∆)β/2u(x) = cn,β
∫
Rn

u(x)−u(y)
|x−y|n+β dy = cn,β

∫
Ω

u(x)−u(y)
|x−y|n+β dy +

∫
Rn\Ω

u(x)−u(y)
|x−y|n+β dy (3)

This study investigates the fractional Laplacian on a one-dimensional bounded domain.
Specifically, we delve into the discretization of the fractional Laplacian in the context of
a one-dimensional bounded domain denoted as Ω = [0, L], where the domain size is
represented by a constant value L. Consequently, the one-dimensional Riesz fractional
Laplacian (3) can be reformulated as follows:

(−∆)β/2c(x) = −c1,β

 L∫
0

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ +

∞∫
L

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ

 (4)



Fractal Fract. 2023, 7, 823 5 of 15

It is important to highlight that for any x within the interval [0, L] and ξ ≥ L, the func-
tion c(x± ξ) is identically equal to zero in the context of tracer transport. Consequently,
this leads to a simplification of the Riesz fractional Laplacian to the following expression:

(−∆)β/2c(x) = −c1,β

 L∫
0

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ +

∞∫
L

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ


= −c1,β

 L∫
0

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ − 2c(x)

∞∫
L

1
ξ1+β

dξ


= −c1,β

 L∫
0

c(x− ξ)− 2c(x) + c(x + ξ)

ξ1+β
dξ − 2

βLβ
c(x)


(5)

Finally, we incorporate the fractional Laplacian expression (5) into the classical re-
tarded fractional advection–diffusion equation (F-ADE) model, resulting in the derivation
of the following fractional model predicated on the fractional Laplacian operator (5):

R
∂c(x, t)

∂t
= −v

∂c(x, t)
∂x

− D · (−∆)β/2c(x, t), x ∈ [0, L], t > 0, β ∈ (1, 2] (6)

where R represents the retarded factor, v denotes the advection velocity of the tracer, and D
stands for the diffusion coefficient.

Local tracer transport typically involves relatively straightforward particle movements
that can be described based on the local conditions at a specific position x. In contrast,
the fractional Laplacian-based model (6) pertains to nonlocal tracer transport, where par-
ticle motion spans sufficiently long distances forward or/and backward, as depicted in
Figure 1. These nonlocal tracer transport processes encompass particle motions of signifi-
cant scale, necessitating an understanding of how these movements relate to both upslope
and downslope conditions, which may differ from the local conditions at the point x.
A spatially nonlocal process arises when the concentration change at a specific location is
not solely determined by the immediate surroundings but is also significantly impacted by
the characteristics of a more extensive region in both the forward and backward directions
from that point.

2.2. Finite Difference Method Scheme for the Fractional Laplacian-Based Model

As of now, there is a notable scarcity of numerical methods available for the discretiza-
tion of the fractional Laplacian operator [42,43]. The primary numerical challenge in this
context arises from the need to approximate the hypersingular integral accurately. In this
study, a novel finite difference method (FDM) is presented to discretize the fractional
Laplacian-based model (6) [41].

The above FDM introduces a splitting parameter denoted as γ ∈ (β, 2], enabling the
formulation of the fractional Laplacian (5) as the weighted integral of a weak singular
function. Subsequently, this formulation is approximated using the weighted trapezoidal
rule. Specifically, let us define a set of grid points as xi = i · h, where 0 ≤ i ≤ K, and let c be
the vector represented as (c(x1, t), c(x2, t), . . . , c(xK−1, t))T . The numerical scheme can be
formulated in matrix-vector notation, specifically as (−∆)β/2c = Ac, where A represents
the matrix corresponding to the fractional Laplacian operator. The matrix A is expressed as
per the formulation in [41]:

Aij = Ch
β,γ


K−1
∑

s=2

(s+1)ν−(s−1)ν

sγ + Kν−(K−1)ν

Kγ + (2ν + κγ − 1) + 2ν
βKβ , j = i,

− (|j−i|+1)ν−(|j−i|−1)ν

2|j−i|γ , j 6= i, i± 1,

− 1
2 (2

ν + κγ − 1), j = i± 1,

(7)
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where for i, j = 1, 2, . . . , K − 1, we define Ch
β,γ = c1,β/(νhβ), and where ν = γ− β, with

κγ = 1 when γ lies in the interval (0, 2) and κγ = 2 if γ = 2. Additionally, γ is constrained
to the range (β, 2]. Duo et al. [41] proved that various selections of γ yield identical conver-
gence rates, while the numerical errors are usually smaller when choosing γ = 1 + β/2.
Hence, we employ γ = 1+ β/2 in the subsequent numerical calculations. As demonstrated
by Duo et al. [41], for sufficiently smooth functions, the accuracy of the aforementioned
FDM for the fractional Laplacian can be elevated to o(h2) uniformly across the entire range
of β ∈ (0, 2).

As the parameter β approaches 2, the scheme with γ = 2 effectively transforms into
the central difference scheme for the classical Laplacian operator as follows:

−∆hci =
1
h2 (−ci−1 + 2ci − ci+1) (8)

Additionally, we approximate the first-order time and spatial derivatives of model (6)
using the equations below:

∂c(x, t)
∂t

=
ck+1

i − ck
i

∆t
+ o(∆t),

∂c(x, t)
∂x

=
ck+1

i+1 − ck+1
i

h
+ o(h) (9)

By defining vi = v/R and Di = D/R, we establish the matrix denoted as B in the
following manner:

Bij =


1− vi∆t

h , j = i,
vi∆t

h , i = j− 1,
0, i 6= j, j− 1.

(10)

Hence, the equations corresponding to the fractional Laplacian-based model (6) can
be formulated by taking into account an implicit scheme as follows:

Mck+1 = ck (11)

where M = Di ∆t·A + B.
Finally, the following numerical solution is obtained:

ck+1 = M−1ck (12)

Figure 2 illustrates the temporal evolution of c(x, t) with an instantaneous initial con-
dition c(x, 0) = δ(x) and with a Newmann boundary condition ∂c(x,t)

∂x |x=L = 0. The concen-
tration profiles are computed using the aforementioned implicit FDM scheme. The results
demonstrate that this implicit FDM approach provides a stable solution for the fractional
Laplacian-based model (6). Notably, the snapshots in Figure 2a display significant skew-
ness characteristics. This phenomenon can be attributed to the consideration of a bounded
domain (x ∈ [0, 500] m) and the inherent asymmetry in nonlocal regions between upstream
and downstream points. Additionally, Figure 2b indicates that the snapshots at all time
steps exhibit early-arrival behavior. The early arrivals are influenced by spatial nonlocal
transport processes, which are of paramount significance in terms of potential risks.

It is noteworthy that our presented FDM is primarily designed for 1D problems due
to their relative computational tractability. Addressing the hypersingularity associated
with the fractional Laplacian operator in higher dimensions indeed presents a significant
numerical challenge. Future research should encompass a thorough investigation into
numerical algorithms tailored for addressing the challenges posed by high-dimensional
fractional Laplacian problems.
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Figure 2. Simulated tracer concentration of the fractional Laplacian-based model (6) using the implicit
FDM scheme. (a) The snapshots of the fractional Laplacian-based model at different times. (b) The
semilog plot of snapshots at different times. All parameters are set as β = 1.4, v = 0.1 m/min,
D = 0.4 mβ/min, R = 1, and γ = 1.7.

3. Results and Discussion
3.1. Diffusion Regimes

An established method for investigating the stochastic movement of Brownian tracers
involves assessing the mean squared displacement (MSD) of these tracer particles. In a
manner analogous to Brownian motion, this subsection is dedicated to the evaluation of the
fractional Laplacian-based model by employing MSD as a metric for quantifying nonlocal
tracer transport behavior. The MSD is defined as follows [44]:

RMSD(t) ∝ A · tη (13)

The MSD provides insight into the extent to which tracer particles deviate from their
mean position. Equation (13) provides a pivotal insight into classifying the diffusion char-
acteristics of nonlocal tracer transport, primarily contingent on the value of the exponent η.
Specifically, when η > 1, it signifies superdiffusion; when η < 1, it signifies subdiffusion;
and when η = 1, it corresponds to normal diffusion (Brownian motion) [24]. This classi-
fication underscores the significance of the exponent η in discerning different diffusion
regimes within nonlocal tracer transport.

Here, let µ(x) =
c1,β

|x|1+β , and the fractional Laplacian-based model (6) can be rewritten as:

∂c(x, t)
∂t

= −vi
∂c(x, t)

∂x
− Di ·

∫
R

µ(x− x′)c(x, t)dx′ + Di·
∫
R

µ(x− x′)c(x′, t)dx′

= −vi
∂c(x, t)

∂x
+ Di · [µ ∗ c](x, t)− Di · β1 · c(x, t)

(14)

where (∗) denotes the convolution operator [µ ∗ c](x, t) =
∫
R

µ(x− x′)c(x, t)dx′, and

β1 =
∫
R

µ(x)dx.

Taking the Fourier transform of Equation (14), one obtains:

∂ĉ(k, t)
∂t

= (−viki + Di · µ̂(k)− Di · β1)ĉ(k, t) (15)

Taking into account the initial point source condition c(x, 0) = δ(x), which leads to
ĉ(k, 0) = 1, the solution to Equation (15) in the Fourier space can be expressed as follows:

ĉ(k, t) = exp([−viki + Di · µ̂(k)− Di · β1]t) (16)
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To perform the Fourier transform of µ(x), we employ a specific technique involving
the integral

∫
R

µ(x)dx = 1 to facilitate the process:

µ̂(k) = 1− (1− µ̂(k)) = 1−
∫
R

(1− cos kx)µ(x)dx

= 1− 1
k

∫
R

(1− cos y)µ(
y
k
)dy ∼= 1− 1

k

∫
R

(1− cos y)
c1,β

|y/k|1+β
dy

= 1− c1,β|k|β
∫
R

(1− cos y)

|y|1+β
dy = 1− A|k|β

(17)

The integral in the final line of Equation (17) exhibits convergence when β < 2,
and Equation (17) can be expressed as follows:

µ̂(k) = 1−
c1,β · π

Γ(1 + β)sin(πβ/2)
|k|β (18)

with

β1 =
∫
R

µ(x)dx = µ̂(0) = 1 (19)

Finally, the solution of (16) can be expressed as:

c(x, t) = F−1
[

exp
(
−viki− Di ·

c1,β · π
Γ(1 + β) sin(πβ/2)

|k|β
)

t
]

(20)

where F−1 represents the inverse Fourier transform.
The MSD can be calculated for the solution given by Equation (20) in the case of v = 0.

The analytical solution for c(x, t) can be obtained by employing Fox functions, yielding the
following result [18]:

c(x, t) =
1

β|x|H
1,2
2,2

[
|x|

(Kβt)1/β

∣∣∣(1,1/µ),(1,1/2)
(1,1),(1,1/2)

]
(21)

Equation (21) serves as a closed-form representation of a Lévy stable law. As β = 2,
the classical Gaussian solution is regained, as dictated by established theorems concern-
ing Fox functions. In the case of β < 2, the MSD of the fractional Laplacian-based
model diverges:

RMSD(t)→ ∞ (22)

Here, a fractional moment is introduced as a means to quantify the MSD of the
fractional Laplacian-based model described by Equation (6). The generalized MSD can be
expressed as follows [18]:

RMSD(t) ∝ K̃ · t2/β (23)

Equation (23) provides insight into the behavior of the fractional Laplacian-based
model (6). It indicates that the model exhibits superdiffusion characteristics when β < 2,
while normal diffusion behavior is observed when β = 2.

3.2. Sensitivity Analysis of Model Parameters

Fractional order β stands as the sole parameter governing the superdiffusion character-
istics of tracer particles in the fractional Laplacian-based model presented in Equation (6).
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Superdiffusion within tracer transport introduces two notable characteristics to the break-
through curves (BTCs) and snapshots of tracer particles. Firstly, in the BTCs, there is an
early-arrival pattern, indicating the rapid advancement of tracer particles through the
medium. Secondly, heavy-tailed distributions are observed in the snapshots, signifying
the propensity of tracer particles to undergo long-distance displacements. Here, we inves-
tigate the snapshots and BTCs of the model with a different fractional order β using the
above-mentioned FDM.

Figure 3 presents numerical results for the fractional Laplacian-based model described
in Equation (6) under varying fractional orders β with an instantaneous source. The com-
parisons include snapshots and BTCs with four distinct sets of parameters for instantaneous
sources. The simulation outcomes reveal that, as β decreases, the snapshots exhibit in-
creased dispersion, as presented in Figure 3a. Additionally, the tails of the snapshots become
heavier for smaller values of β. This feature is attributed to the fact that smaller β values
correspond to stronger nonlocal interactions within bounded domains for tracer transport.
Moreover, the occurrence of early arrivals in tracer concentration profiles becomes more
pronounced as the fractional order parameter β decreases, as shown in Figure 3b. Early
arrival refers to the detection of a tracer concentration at an earlier time interval at a specific
location. This phenomenon can be articulated as follows: “When conducting sampling
activities in heterogeneous soils or aquifers, tracer particles may encounter various velocity
zones. In the presence of a complex heterogeneity structure, such as spatial connectiv-
ity, particle movement within a certain scale can be facilitated. Under such conditions,
rapid movements may deviate from classical Fick’s law and exhibit a probability density
function that follows a power-law distribution.” The superdiffusion behavior described
by the model (Equation (6)) represents one manifestation of such long-distance move-
ments. The results obtained from the snapshots and BTCs indicate that, as the value of β
approaches 2, the simulated snapshots and BTCs exhibit a notable trend towards symmetry,
resembling a Gaussian plume, as illustrated in Figure 3a,b. Additionally, it is important
to emphasize that, with the approach of β to 2, the nonlocal effects diminish, resulting in
tracer transport behavior predominantly influenced by local conditions.

The early-arrival and heavy-tailed features hold substantial significance in practical
applications. For instance, in groundwater management, an accurate understanding of the
transport behavior of pollutants or solutes is crucial as it directly impacts the quality and
sustainable utilization of water resources. Additionally, comprehending these superdiffu-
sion characteristics is of paramount importance in fields such as hydrocarbon exploration
and development in geological reservoirs and the migration and disposal of hazardous
substances in environmental engineering processes.
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Figure 3. The snapshots and BTCs with different values of fractional order β for the fractional
Laplacian-based model (6). The fractional order β varies from 1.3 to 1.9. (a) The spatial distribution of
tracer particles at T = 60 min. (b) The temporal evolution of tracer particles at X = 100 m. Other
parameters are set as v = 0.6 m/min, D = 0.4 mβ/min, R = 1, and γ = 1 + β/2.



Fractal Fract. 2023, 7, 823 10 of 15

4. Applications
4.1. Case 1: Solute Transport in Groundwater Flow

In this section, we assess the suitability of the fractional Laplacian-based model (6) for
quantifying nonlocal tracer transport as reported in the literature by Yin et al. [45]. Yin et al. [45]
conducted a comprehensive study on tracer particle dynamics in an alluvial setting charac-
terized by heterogeneity. They created a two-dimensional representation of various alluvial
settings with diverse hydrofacies structures using the T-PROGS method and simulated con-
servative tracer transport using the Monte Carlo approach. These structures represent realistic
heterogeneous conditions commonly encountered in natural aquifers and subsurface environ-
ments. Such realism is crucial for evaluating the model’s performance in practical, complex
systems. The dataset includes snapshots of tracer concentrations at different time intervals
(e.g., 27 days, 132 days, 224 days, and 328 days). This temporal evolution is vital because it
allows for the observation of changes in the tracer distribution over time. The model must be
capable of capturing how nonlocal transport behavior evolves as time progresses, making this
dataset ideal for such an analysis, and the detailed information regarding this study can be
found in their publication [45].

The experimental data clearly show observable changes in the trailing edge of the
tracer plume as time advances, and the feature suggests an increasing influence of nonlocal
transport behavior over time. These empirical findings serve as a valuable dataset that en-
able us to examine and validate the applicability of the fractional Laplacian-based model (6)
in describing nonlocal tracer transport dynamics in heterogeneous media. By comparing
the model’s predictions to the observed changes in the tracer distribution over time, we
can assess how well the model captures the evolving nonlocal behavior in such systems.
In our analysis, we utilized the first snapshot of the dataset, specifically the data collected
at 27 days, to estimate the parameters v, D, and R for the fractional Laplacian-based model.
Subsequently, we employed these estimated parameters to predict the behavior observed
in later snapshots, adjusting the fractional order β as needed. For the sake of comparison,
we also calculated results using the classical ADE model.

Figure 4a–d depict the fitting results obtained from the fractional model for each
snapshot. These results illustrate that the fractional Laplacian-based model adeptly captures
the intricate nonlocal transport behavior observed in the dataset. Conversely, the ADE
model falls short in reproducing the observed behavior, highlighting its limitations in
representing such complex phenomena. Table 1 lists the best-fitting parameters of the
fractional-Laplacian model. Notably, the results reveal a decreasing trend in the fractional
order parameter β as time progresses, a trend that closely aligns with the dataset. This
diminishing value of β over time corresponds to an intensified superdiffusion behavior,
indicating that space nonlocal transport processes exhibit dynamic behavior that evolves
across various time scales.

Table 1. The best-fit parameters for the fractional Laplacian model.

Time (Days) v (m/Day) D (mβ/Day) R β

27

0.018 3 10

1.40
132 1.30
224 1.25
328 1.16

Moreover, Figure 5a provides a temporal evolution of the best-fit β values, revealing a
linear correlation between the fractional order parameter β and time. Figure 5b illustrates
the progressive enhancement of superdiffusion behavior over time. Specifically, following
the initial day, the superdiffusion rate significantly surpasses that of normal diffusion.
After the 40th day, a more conspicuous acceleration in the growth of the mean squared
displacement is observed, further accentuating the influence of superdiffusion.
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Figure 4. Comparison between the documented snapshots (symbols) and the best-fit results using
the classical ADE and fractional Laplacian-based models at four times (t = 27, 132, 224, and 328 days)
along the 300 m long heterogeneous media. All parameters are list in Table 1. (a) 27 days, (b) 132 days,
(c) 224 days, and (d) 328 days.
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Figure 5. (a) The fitting results for the fractional order β and its variation with time. (b) The evolution
of the tracer particle mean squared displacement (MSD) with time (red solid line), and the MSD
for normal diffusion (gray solid line) is included for comparison. The gray and blue dashed lines
represent the evolution trend of MSD at early and later times, respectively.

In summary, the application underscores the effectiveness of the fractional Laplacian-
based model, with its variable fractional order β, in capturing the evolving nonlocal
transport behavior evident in the dataset. Conversely, the classical ADE model proves
inadequate in replicating the intricacies of the observed tracer transport dynamics in het-
erogeneous media. These findings emphasize the utility of the fractional Laplacian-based
model in characterizing nonlocal behavior within real-world, heterogeneous subsurface
systems. Moreover, the changing nature of the fractional order parameter β with time high-
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lights the dynamicity of space nonlocal transport processes and their sensitivity to temporal
scales. The variation in diffusion rates at different time intervals further underscores the
significant impact of media heterogeneity on tracer transport dynamics.

4.2. Case 2: Intermediate-Scale Flume Experiments of Bedload Sediments

Laboratory experiments were conducted within a flume measuring 20 m in length,
1 m in width, and 1.2 m in depth. The flume was filled with sediment of varying diameters,
which included 0.45 mm, 1 mm, 3 mm, and 17 mm, as detailed in the grain size distribu-
tion (GSD) information provided in Li et al. [4]. This flume experiment was deliberately
designed to provide data at an intermediate scale, bridging the gap between 2D flume
experiments and real river systems. The dimensions of the flume are approximately one
order of magnitude larger than those of the 2D flume, facilitating a 3D evolution of the
channel bed. Flume experiments were undertaken to investigate the dynamics of bedload
transport under conditions characterized by low Shields stress. The initial slope of the
channel bed was set at 0.004. To ensure a uniform sediment input across the channel
width, a bedload feeder was positioned at the upstream section of the flume. The inflow
discharge, quantified using an electromagnetic flow meter, ranged from 120 L/s to 140 L/s.
The Froude number consistently remained below 1, with values ranging from 0.63 to 0.65,
indicating that the flow within the flume was subcritical in nature.

The experimental findings offer compelling evidence for the presence of nonlocal
bedload transport phenomena. Within the mixed-size gravel beds, a notable phenomenon
emerges as larger particles tend to congregate into clusters as they lack individual resistance
against hydraulic forces. This clustering effect results in the development of microrelief
features within the armor layer, including the formation of these clusters and the occurrence
of what can be termed as “flow accelerating belts” between them [4]. Sediment particles that
were previously trapped within disintegrated clusters may undergo sudden release and
travel significant distances along these “flow accelerating belts” until they are once again
captured by other clusters. This intricate process gives rise to nonlocal bedload transport
behavior, wherein the movement of sediment is not confined to localized areas [4]. Conse-
quently, the flume experiments furnished valuable data for the purpose of model validation.

Figure 6 presents the best-fitting results of three different models: the classical ADE
model (black lines), the PD model (blue lines) [4], and the fractional Laplacian-based model
(red lines). The parameters for each model were determined by fitting the initial snapshot
taken at 155 min and subsequently predicting the behavior at a later time point, specifically
355 min. The fitting results shed light on the limitations of the local model, as it fails
to capture the nonlocal characteristics (heavy-tailed) observed in the bedload sediment
snapshots. In contrast, both the PD model and the fractional Laplacian-based model exhibit
the ability to replicate the heavy-tailed nature of the snapshots. A detailed analysis of two
snapshots reveals that the fractional Laplacian-based model effectively captures the trends
observed from the early to later time, particularly in the upstream region. It is important
to note that the PD model tends to overestimate the upstream sediment concentration in
the early-time scenario while underestimating it at later times. Additionally, unlike the PD
model, which involves the determination of influence domain and influence functions in
simulations, the fractional Laplacian-based model features only one additional parameter
(the order of the fractional derivative). This simplicity in parameter determination renders
the fractional Laplacian-based model more practical and user-friendly in applications.

The applications mentioned above demonstrate that the fractional Laplacian-based
model effectively captures nonlocal tracer transport behavior, providing enhanced insights
into the presence of early-arrival and heavy-tailed features within these tracer transport
systems. For instance, in the context of groundwater management, our model offers the
potential to improve predictions concerning the dispersion of contaminants or solutes
within aquifers, accounting for preferential flow pathways and deviations from Fickian
behavior. In the realm of hydrocarbon exploration, a comprehensive understanding of
nonlocal transport can lead to more accurate prognostications regarding reservoir dynamics
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and the intricate flow patterns of fluids within intricate geological structures. Furthermore,
within environmental engineering processes, our model has the potential to contribute
to the development of more efficient strategies for the transportation and containment of
hazardous substances, taking into consideration the non-Fickian diffusion characteristics
inherent in such processes.
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Figure 6. Modeled (lines) versus observed (symbols) snapshots for bedload sediments with a diameter
of 1 mm; three models were compared: the classical ADE model (black lines), the PD model (a circular
influence domain with radius δ = 80∆x) (blue lines), and the fractional Laplacian-based model
(fractional order β = 1.1) (red lines) at two times (t = 155 min and 355 min) along the 20 m long flume.
(a) t = 155 min, (b) t = 355 min.

5. Conclusions

This study aimed at refining the classical fractional model to quantify the observed
nonlocal diffusion processes in both forward and backward directions during tracer trans-
port within bounded heterogeneous systems. The analysis and application of the fractional
Laplacian-based model enhance our understanding of the complex nature of nonlocal tracer
transport. Three main conclusion can be drawn from this study:

1. Nonlocal dynamics result in early arrivals of tracer particles and the emergence of
heavy-tailed distributions, underscoring the intricate nature of space nonlocal transport
processes. The utilization of the fractional Laplacian-based model proved to be highly
effective in accurately describing nonlocal tracer transport encompassing both forward and
backward diffusion processes;

2. The inherent infinite nonlocal nature of the fractional Laplacian poses significant
challenges when it comes to numerically approximating it within finite domains, and tracer
nonlocal transport must be incorporated into these characterizations in mathematical
ways on bounded domains. The Riesz fractional Laplacian provides a mathematical
framework for describing tracer diffusion processes on a bounded domain, and the novel
FDM demonstrated its suitability as a good solution for the fractional Laplacian-based
model on a bounded domain;

3. The application emphasizes that nonlocal transport processes exhibit dynamic
characteristics, influenced by the evolving heterogeneity of the media at various temporal
scales. The evolving fractional order parameter, denoted as β, holds significant importance
in assessing nonlocal transport behavior. Notably, β displays a decreasing trend over time,
signifying an intensification in the nonlocal aspects of tracer transport as time progresses.
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