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Abstract: This paper applies two different types of Riemann–Liouville derivatives to solve fractional
differential equations of second order. Basically, the properties of the Riemann–Liouville fractional
derivative depend mainly on the lower bound of the integral involved in the Riemann–Liouville
fractional definition. The Riemann–Liouville fractional derivative of first type considers the lower
bound as a zero while the second type applies negative infinity as a lower bound. Due to the
differences in properties of the two operators, two different solutions are obtained for the present
two classes of fractional differential equations under appropriate initial conditions. It is shown that
the zeroth lower bound implies implicit solutions in terms of the Mittag–Leffler functions while
explicit solutions are derived when negative infinity is taken as a lower bound. Such explicit solutions
are obtained for the current two classes in terms of trigonometric and hyperbolic functions. Some
theoretical results are introduced to facilitate the solutions procedures. Moreover, the characteristics
of the obtained solutions are discussed and interpreted.

Keywords: Riemann–Liouville fractional derivative; fractional differential equations; Laplace
transform; exact solution

1. Introduction

The fractional calculus (FC) is a growing field of research due to its numerous ap-
plications in several areas of sciences and engineering. The FC is a natural extension of
classical calculus (CC) and has been utilized to analyze a considerable number of physical
and engineering problems [1–3]. In this context, various models have been studied in
the literature such as Narahari et al. [4] who applied the FC concept on the dynamics of
the fractional oscillator. Propagation of ultrasonic wave in human cancelous bone was
introduced by Sebaa et al. [5] via the FC approach. The physical aspect of the fractional
Heisenberg equation has been addressed by Tarasov [6]. Application of the FC on the
HIV infectious disease has been discussed by Ding and Yea [7]. In quantum mechanics,
Wang et al. [8] investigated the time-fractional diffusion equation while other fractional
models in different areas of research can be found in Refs. [9–14]. In addition, the frac-
tional models of the projectile motion were solved by Ebaid [15] and Ebaid et al. [16]
utilizing the Caputo fractional derivative (CFD) and by Ahmed et al. [17] by means of the
Riemann–Liouville fractional derivative (RLFD).

In Refs. [18,19], the FC was extended to solve an astronomical model using the
CFD while El-Zahar et al. [20] derived a closed form solution for the same model via
applying the RLFD. Moreover, Aljohani et al. [21] obtained the exact solution of the chlorine
transport model in fractional form in terms of the Mittag–Leffler function. Furthermore,
the application of the RLFD on a class of engineering oscillatory problems was addressed
by Ebaid and Al-Jeaid [22] for a class of first-order fractional initial value problems in
which the dual solution was obtained. In addition, Seddek et al. [23] applied the RLFD
to solve non-homogeneous fractional differential system containing periodic terms. Very
recently, Algehyne et al. [24] presented a promise application of the FC on the concept of
time dilation.
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The objective of this paper is to extend the application of the RLFD to solve the
following two classes:

RL
c D2β

t y(t) + ω2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (1)

and
RL
c D2β

t y(t)−v2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (2)

where β is none-integer order of the Riemann–Liouville derivative and a, ω, Ω, and A are
constants. The two classes are to be solved under the initial conditions (ICs):

RL
c D2β−2

t y(0) = A, RL
c D2β−1

t y(0) = B, (3)

at two different cases for c, mainly when c → 0 and c → −∞. The properties of the
Riemann–Liouville derivatives RL

0 Dt and RL
−∞Dt are completely different and accordingly

the nature of solutions of the present two classes are also different. The exact solution, when
available, is the optimal solution for any physical/engineering model. So, the obtained
exact solution reflects the importance and the main contribution of this paper. The paper
is organized as follows. In Section 2, some preliminaries are introduced. In Section 3,
theoretical results are derived for the particular solution of class (1). Section 4 is devoted
to obtain the exact solution of class (1) while Section 5 presents the solution of class (2) in
addition to the behavior of the obtained solution. The paper is concluded in Section 6.

2. Preliminaries

The Riemann–Liouville fractional integral of order α of function f : [c, d]→ R (−∞ <
c < d < ∞) is defined as [1–3]

c Iα
t f (t) =

1
γ(α)

∫ t

c

f (τ)
(t− τ)1−α

dτ, t > c, α > 0. (4)

The Riemann–Liouville fractional derivative (RLFD) of order α ∈ (1, 2) is [1–3]

RL
c Dα

t f (t) =
1

γ(2− α)

d2

dt2

(∫ t

c

f (τ)

(t− τ)α−1 dτ

)
, t > c. (5)

For t ∈ R and α = 2β ( 1
2 < β ≤ 1), we have the following RLFD of the functions eiωt,

cos(ωt), and sin(ωt) as c→ −∞ [22,23]:

RL
−∞D2β

t eiωt = (iω)2βeiωt,
RL
−∞D2β

t cos(ωt) = ω2β cos(ωt + βπ),
RL
−∞D2β

t sin(ωt) = ω2β sin(ωt + βπ).

(6)

The Laplace transform (LT) of the RLFD (5) as c→ 0 is [22]

L
[

RL
0 Dα

t y(t)
]
= sαY(s)− RL

0 Dα−1
t y(0)− s RL

0 Dα−2
t y(0), (7)

which yields

L
[

RL
0 D2β

t y(t)
]
= s2βY(s)− RL

0 D2β−1
t y(0)− s RL

0 D2β−2
t y(0), (8)

for α = 2β. The Mittag–Leffler function of two parameters is defined by [1–3]

Eδ,γ(z) =
∞

∑
n=0

zn

γ(δn + γ)
, (δ > 0, γ > 0). (9)
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In particular, we have the following properties

E2,1(−z2) = cos(z), E2,1(z2) = cosh(z), E2,2(−z2) =
sin z

z
, E2,2(z2) =

sinh z
z

. (10)

The inverse LT of some expressions can be given via the Mittag–Leffler function as [2,3]

L−1
( sδ−γ

sδ + ω2

)
= tγ−1Eδ,γ(−ω2tα), Re(s) > |ω2|

1
δ , (11)

which gives the equalities [16,22,23]:

L−1
( sδ−1

sδ + 1

)
= Eα(−tδ), (12)

L−1
( 1

sδ + ω2

)
= tδ−1Eδ,δ(−ω2tδ), Re(s) > |ω2|

1
δ , (13)

L−1
( s−1

sδ + ω2

)
= tδEδ,δ+1(−ω2tδ), Re(s) > |ω2|

1
δ . (14)

3. Analysis

Theorem 1. The particular solution yp(t) of the class (1) as c→ −∞ is given by

yp(t) = λ1(β) cos(Ωt) + λ2(β) sin(Ωt), (15)

where λ1(β) and λ2(β) are given by

λ1(β) = a
(

ω2 + Ω2β cos(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, λ2(β) = a

(
Ω2β sin(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, (16)

and hence,

yp(t) = a
(

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
. (17)

Proof. Suppose that yp is in the form of Equation (15), then

RL
−∞D2β

t yp = λ1(β) RL
−∞D2β

t cos(Ωt) + λ2(β) RL
−∞D2β

t sin(Ωt),

= Ω2β cos(Ωt)(λ1(β) cos(πβ) + λ2(β) sin(πβ)) +

Ω2πβ sin(Ωt)(λ2(β) cos(πβ)− λ1(β) sin(πβ)), (18)

and hence

RL
−∞D2β

t yp + ω2yp =
[(

Ω2β cos(πβ) + ω2
)

λ1(β) + Ω2β sin(πβ)λ2(β)
]

cos(Ωt) +

=
[(

Ω2β cos(πβ) + ω2
)

λ2(β)−Ω2β sin(πβ)λ1(β)
]

sin(Ωt). (19)

The unknowns λ1(β) and λ2(β) can be obtained by solving the following coupled
algebraic equations:(

Ω2β cos(πβ) + ω2
)

λ1(β) + Ω2β sin(πβ)λ2(β) = a,(
Ω2β cos(πβ) + ω2

)
λ2(β)−Ω2β sin(πβ)λ1(β) = 0,

(20)

which give

λ1(β) = a
(

ω2 + Ω2β cos(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, λ2(β) = a

(
Ω2β sin(πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
. (21)
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Therefore, yp takes the form:

yp(t) = a
(

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

)
, (22)

which completes the proof.

Lemma 1. The particular solution yp(t) of the class (2) as c→ −∞ is given by

yp(t) = a
(
−v2 cos(Ωt) + Ω2β cos(Ωt− πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

)
. (23)

Proof. The proof follows immediately by replacing ω with−iv in Equation (17) of theorem
1, where i =

√
−1.

4. Solution of the First Class: RL
c D2β

t y(t) + ω2y(t) = a cos(Ωt)

In this section, two types of solutions are to be determined for the class (1) when c→ 0
and c → −∞, respectively. The analysis introduced in Refs. [22,23] is followed here to
obtain such types of solutions.

4.1. Solution in Terms of the Mittag–Leffler Function as c→ 0

In this case, the first class takes the form:

RL
0 D2β

t y(t) + ω2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (24)

under the ICs:
RL
0 D2β−2

t y(0) = A, RL
0 D2β−1

t y(0) = B. (25)

Applying the LT on Equation (24) yields

s2βY(s)− RL
0 D2β−1

t y(0)− s RL
0 D2β−2

t y(0) + ω2Y(s) =
as

s2 + Ω2 . (26)

Solving (26) for Y(s) gives

Y(s) =
As

s2β + ω2 +
B

s2β + ω2 +
as

(s2β + ω2)(s2 + Ω2)
. (27)

Applying the inverse LT on Y(s), then y(t) is given by

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+ aL−1

(
1

s2β + ω2

)
∗ L−1

(
s

s2 + Ω2

)
, (28)

where (∗) refers to the convolution operation, hence

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+

a
∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
cos[Ω(t− τ)]dτ, (29)

which can be written as

y(t) = At2β−2E2β,2β−1

(
−ω2t2β

)
+ Bt2β−1E2β,2β

(
−ω2t2β

)
+ a cos(Ωt)×∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τ2β−1E2β,2β

(
−ω2τ2β

)
sin(Ωτ)dτ.

(30)



Fractal Fract. 2023, 7, 843 5 of 11

The involved integrals are difficult to compute explicitly. However, the solution in the
integral form (30) reduces to the corresponding solution of the ordinary version of the class
(1) as β→ 1.

Special Case as β→ 1

The solution in the integral form (30) as β→ 1 becomes

y(t) = AE2,1

(
−ω2t2

)
+ BtE2,2

(
−ω2t2

)
+ a cos(Ωt)×∫ t

0
τE2,2

(
−ω2τ2

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τE2,2

(
−ω2τ2

)
sin(Ωτ)dτ, (31)

i.e.,

y(t) = A cos(ωt) +
B
ω

sin(ωt) +
a
ω

cos(Ωt)
∫ t

0
sin(ωτ) cos(Ωτ)dτ +

a
ω

sin(Ωt)
∫ t

0
sin(ωτ) sin(Ωτ)dτ. (32)

Performing the integrals, we obtain

y(t) = A cos(ωt) +
B
ω

sin(ωt) + a
(

cos(Ωt)− cos(ωt)
ω2 −Ω2

)
, (33)

which is the corresponding solution of the ordinary version y′′(t) + ω2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.

Remark 1. It is noticed that the solution (30) is not analytic at t = 0 ∀ β ∈ (1/2, 1) for the
existence of the term t2β−2. In the next subsection, we are able to derive the analytic solution in the
whole domain t ≥ 0.

4.2. Solution in Terms of Trigonometric Functions as c→ −∞

As c→ −∞, the first class is in the form:

RL
−∞D2β

t y(t) + ω2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (34)

and the ICs are
RL
−∞D2β−2

t y(0) = A, RL
−∞D2β−1

t y(0) = B. (35)

The solution of Equations (34) and (35) consists of the complementary solution yc
and the particular solution yp(t). However, the yp(t) is already given by Equation (17) in
Theorem 1 while yc(t) can be assumed in the form [22,23]:

yc(t) = c(β)eiσt, (36)

where c(β) and σ are unknowns and to be determined. The assumption (36) satisfies the
homogeneous part of the fractional Equation (34):

RL
−∞D2β

t yc(t) + ω2yc(t) = 0, (37)

if
ceiσt

[
(iσ)2β + ω2

]
= 0, (38)

which implies two values of σ as

σ1 = i
(
−ω2

) 1
2β , σ2 = −i

(
−ω2

) 1
2β , (39)

or simply

σ1 = ν, σ2 = −ν, ν = i
(
−ω2

) 1
2β . (40)
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Accordingly, yc(t) becomes

yc(t) = c1(β)eiνt + c2(β)e−iνt, (41)

where c1(β) and c2(β) are unknown constants. The general solution is

y(t) = c1(β)eiνt + c2(β)e−iνt + yp(t), (42)

where yp(t) is given by Equation (17). From (42), we have

D2β−1
t y(t) = c1(β)(iν)2β−1eiνt + c2(β)(−iν)2β−1e−iνt + D2β−1

t yp(t), (43)

D2β−2
t y(t) = c1(β)(iν)2β−2eiνt + c2(β)(−iν)2β−2e−iνt + D2β−2

t yp(t). (44)

At t = 0, Equations (43) and (44) become

D2β−1
t y(0) = (iν)2β−1[c1(β)− c2(β)] + D2β−1

t yp(0), (45)

D2β−2
t y(0) = (iν)2β−2[c1(β) + c2(β)] + D2β−2

t yp(0). (46)

Applying the ICs (35), we obtain

c1(β) =
(iν)1−2β

2

[
(B + iνA)−

(
D2β−1

t yp(0) + iνD2β−2
t yp(0)

)]
, (47)

c2(β) =
(iν)1−2β

2

[
(−B + iνA) +

(
D2β−1

t yp(0)− iνD2β−2
t yp(0)

)]
. (48)

To calculate D2β−1
t yp(0) and D2β−2

t yp(0), one can use yp(t) in Equation (15) in terms
of λ1 and λ2 to obtain

D2β−1
t yp(0) = Ω2β−1[λ1 sin(πβ)− λ2 cos(πβ)], (49)

D2β−2
t yp(0) = −Ω2β−2[λ1 cos(πβ) + λ2 sin(πβ)], (50)

where λ1 and λ2 are given by Equation (16). Therefor, the solution takes the final form:

y(t) = c1(β)e−(−ω2)
1

2β t + c2(β)e(−ω2)
1

2β t + a
[

ω2 cos(Ωt) + Ω2β cos(Ωt− πβ)

ω4 + Ω4β + 2ω2Ω2β cos(πβ)

]
, (51)

where c1(β) and c2(β) are defined by Equations (47) and (48), respectively.

Remark 2. The solution in the case c → −∞ is obtained in the explicit form (51) unlike the
implicit integral form (30) when c→ 0. Moreover, the solution (51) is analytic in the whole domain
t ∈ R. In addition, the explicit form (51) is also equivalent to the corresponding solution of ordinary
version of the first class as indicated in the below section.

Special Case as β→ 1

To check, we have from (51) as β→ 1 that

y(t) = c1e−iωt + c2eiωt +
a cos(Ωt)
ω2 −Ω2 . (52)

From (49) and (50), we have[
D2β−1

t yp(0)
]

β→1
= Ω[λ2]β→1 = 0,

[
D2β−2

t yp(0)
]

β→1
= [λ1]β→1 =

a
ω2 −Ω2 . (53)
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The quantities c1 and c2 in Equations (47) and (48) become

c1 =
(iν)−1

2

[
(B + iνA)− aiν

ω2 −Ω2

]
= − B

2iω
+

1
2

(
A− a

ω2 −Ω2

)
, (54)

c2 =
(iν)−1

2

[
(−B + iνA)− aiν

ω2 −Ω2

]
=

B
2iω

+
1
2

(
A− a

ω2 −Ω2

)
. (55)

Substituting (54) and (55) into (52), yields

y(t) =
B

2iω

(
eiωt − e−iωt

)
+

1
2

(
A− a

ω2 −Ω2

)(
eiωt + e−iωt

)
+

a cos(Ωt)
ω2 −Ω2 , (56)

or

y(t) =
B
ω

sin(ωt) +
(

A− a
ω2 −Ω2

)
cos(ωt) +

a cos(Ωt)
ω2 −Ω2 , (57)

which is equivalent to the solution of the ordinary version y′′(t) + ω2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.

5. Solution of the Second Class: RL
c D2β

t y(t)− v2y(t) = a cos(Ωt)
5.1. Solution in Terms of the Mittag–Leffler Function as c→ 0

In this case we consider the fractional differential equation:

RL
0 D2β

t y(t)−v2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (58)

under the ICs:
RL
0 D2β−2

t y(0) = A, RL
0 D2β−1

t y(0) = B. (59)

Following the same analysis in Section 4.1, one can obtain the solution in the form:

y(t) = At2β−2E2β,2β−1

(
v2t2β

)
+ Bt2β−1E2β,2β

(
v2t2β

)
+ a cos(Ωt)×∫ t

0
τ2β−1E2β,2β

(
v2τ2β

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τ2β−1E2β,2β

(
v2τ2β

)
sin(Ωτ)dτ.

(60)

As β→ 1, the solution in the integral form (60) reads

y(t) = AE2,1

(
v2t2

)
+ BtE2,2

(
v2t2

)
+ a cos(Ωt)×∫ t

0
τE2,2

(
v2τ2

)
cos(Ωτ)dτ + a sin(Ωt)

∫ t

0
τE2,2

(
v2τ2

)
sin(Ωτ)dτ, (61)

i.e.,

y(t) = A cosh(vt) +
B
v

sin(vt) +
a
v

cos(Ωt)
∫ t

0
sinh(vτ) cos(Ωτ)dτ +

a
v

sin(Ωt)
∫ t

0
sinh(vτ) sin(Ωτ)dτ. (62)

Performing the integrals, we obtain

y(t) = A cosh(vt) +
B
v

sin(vt)− a
(

cos(Ωt)− cosh(vt)
v2 + Ω2

)
, (63)

which is the corresponding solution of the ordinary version y′′(t)− v2y(t) = a cos(Ωt)
under the ICs y(0) = A and y′(0) = B.
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5.2. Solution in Terms of Trigonometric and Hyperbolic Functions as c→ −∞

Here, we consider

RL
−∞D2β

t y(t)−v2y(t) = a cos(Ωt),
1
2
< β ≤ 1, (64)

under the ICs:
RL
−∞D2β−2

t y(0) = A, RL
−∞D2β−1

t y(0) = B. (65)

Following the same procedure of Section 4.2, we can get the solution in the form:

y(t) = c1(β)e−(v
2)

1
2β t + c2(β)e(v

2)
1

2β t + a
[
−v2 cos(Ωt) + Ω2β cos(Ωt− πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

]
, (66)

or

y(t) = c1(β)e−v
1
β t + c2(β)ev

1
β t + a

[
−v2 cos(Ωt) + Ω2β cos(Ωt− πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

]
, (67)

where c1(β) and c2(β) can be determined from Equations (47) and (48) by replacing ω with
−iv (i =

√
−1), thus

c1(β) = −v1/β−2

2

[
B− RL

−∞D2β−1
t yp(0)−v1/β

(
A− RL

−∞D2β−2
t yp(0)

)]
, (68)

c2(β) = −v1/β−2

2

[
−
(

B− RL
−∞D2β−1

t yp(0)
)
−v1/β

(
A− RL

−∞D2β−2
t yp(0)

)]
. (69)

Suppose that

ρ = B− RL
−∞D2β−1

t yp(0), χ = A− RL
−∞D2β−2

t yp(0), (70)

then

c1(β) =
v1/β−2

2

(
−ρ + v1/βχ

)
, (71)

c2(β) =
v1/β−2

2

(
ρ + v1/βχ

)
. (72)

Substituting (71) and (72) into (67), we obtain the solution of the system (64)–(65) in
terms of the hyperbolic and trigonometric functions as

y(t) = v1/β−2
[
ρ sinh

(
v1/βt

)
+ χ cosh

(
v1/βt

)]
+ a
[
−v2 cos(Ωt) + Ω2β cos(Ωt− πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

]
, (73)

where the coefficients ρ and χ are given explicitly in the forms:

ρ = B−Ω2β−1[λ1 sin(πβ)− λ2 cos(πβ)], (74)

χ = A + Ω2β−2[λ1 cos(πβ) + λ2 sin(πβ)], (75)

and λ1 and λ2 are given by

λ1 = a
(

−v2 + Ω2β cos(πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

)
, λ2 = a

(
Ω2β sin(πβ)

v4 + Ω4β − 2v2Ω2β cos(πβ)

)
. (76)

It should be noted that the expression (76) also reduces to the solution of the ordinary
version given in the previous section by Equation (63) as β→ 1.

5.3. Behavior of the Solution

It can be easily observed from Equation (73) that the solution is real at any given real
values of the parameters v and Ω provided that the denominator in Equation (73) does not
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vanish, i.e., v4 + Ω4β − 2v2Ω2β cos(πβ) 6= 0, (1/2 < β < 1). The behavior of the solution
(73) is examined at some selected values for the involved parameters. The influence of
the fractional-order β on the solution is depicted in Figure 1 when A = 1, B = 1, v = 1

3 ,
Ω = 3, and a = 2. It is observed that the curves oscillate in the first part of the domain,
however, such oscillations reduce as the value of β approaches one.

2 4 6 8 10
t

10

20

30

40

50

yHtL

Β=1.00

Β=0.90

Β=0.75

Β=0.60

Figure 1. Plots of y(t) in Equation (73) vs t when A = 1, B = 1, v = 1
3 , Ω = 3, and a = 2 at different

values of β.

Figure 2 shows the variation of the solution (73) at different values of the coefficient
v > 1 when A = 1, B = 1, β = 3

4 , Ω = 3, and a = 2. It is noticed in Figure 2 that the
curves are smooth and have no oscillations. However, the oscillation of the solution y(t) in
Equation (73) returns to appear for another set of the v values that are less than unity. This
point is declared in Figure 3 which displays behavior for the solution when A = 1, B = 1,
β = 3

4 , Ω = 3, and a = 2 at different values of v < 1.

1 2 3 4 5
t

500

1000

1500

yHtL

v=1.4

v=1.3

v=1.2

v=1.1

Figure 2. Plots of y(t) in Equation (73) vs. t when A = 1, B = 1, β = 3
4 , Ω = 3, and a = 2 at different

values of v > 1.
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2 4 6 8 10
t

5

10

15

20

yHtL

v=0.4

v=0.3

v=0.2

v=0.1

Figure 3. Plots of y(t) in Equation (73) vs. t when A = 1, B = 1, β = 3
4 , Ω = 3, and a = 2 at different

values of v < 1.

6. Conclusions

Two classes of fractional differential equations were solved in this paper by means
of two different types of RLFD. The first type considered the lower bound of the integral
involved in the RLFD as a zero. The second type treats the lower bound as negative infinity.
It was also shown that the solution procedure depends mainly on the implemented type of
the RLFD. For the first type of RLFD, the LT method was applied successfully to determine
the solutions of the two classes in terms the Mittag–Leffler functions. In addition, a direct
analysis was presented to obtain the solutions of the two classes governed by the second
type of RLFD, where the solutions were obtained in explicit forms and expressed in terms of
trigonometric and hyperbolic functions. Features of the obtained solutions are theoretically
discussed and explained. The current analysis may deserve further extension to include
other classes of fractional differential equations which describe applications in engineering
and physical sciences. In future investigations, other kinds of the fractional derivatives such
as Caputo [12,15,16], modified Riemann–Liouville derivative [25], and Atangana–Baleanu
derivative [26] will be addressed to solve more complex models such as the nonlinear
duffing-oscillator and the nonlinear relativistic oscillator.
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