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Abstract: This paper studies the stochastic pantograph model, which is considered a subcategory of
stochastic delay differential equations. A more general jump process, which is called the Lévy process,
is added to the model for better performance and modeling situations, having sudden changes and
extreme events such as market crashes in finance. By utilizing the truncation technique, we propose
the diffused split-step truncated Euler–Maruyama method, which is considered as an explicit scheme,
and apply it to the addressed model. By applying the Khasminskii-type condition, the convergence
rate of the proposed scheme is attained in Lp(p ≥ 2) sense where the non-jump coefficients grow
super-linearly while the jump coefficient acts linearly. Also, the rate of convergence of the proposed
scheme in Lp(0 < p < 2) sense is addressed where all the three coefficients grow beyond linearly.
Finally, theoretical findings are manifested via some numerical examples.
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1. Introduction

Stochastic differential models are very important, and many researchers have focused
their attention on them because they have been widely used in many fields, such as physics,
chemistry, engineering, biology, and mathematical finance, to describe dynamical systems
affected by uncertain factors. In order to gain more realistic simulations for stochastic
systems, it is more desirable and efficient to study stochastic models with delay. Stochastic
pantograph models are special kinds of stochastic delay differential equations with un-
limited storage and are used in many fields of pure and applied mathematics, such as
probability and quantum mechanics. Ockendon and Tayler [1] studied the collection of the
electric current via the pantograph of an electric locomotive, from which the name origi-
nates.

On the other hand, the Weiner process is not a convenient approach for modeling
situations, having sudden changes and extreme events. Therefore, jump models are better
for tackling these situations because they play a vital role in describing a sudden change in
the system [2,3]. Merton [4] was the first to propose a jump-diffusion model to update the
black and Scholes model [5], which did not take into account the jumps that can occur at any
time and randomly. Stochastic models interspersed with Poisson jumps have been studied
by many scholars [6–8]. However, if the fluctuations are a random process, then the number
of points where jumps happen and the magnitude of these jumps are also stochastic. For
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modeling such a kind of these fluctuations, it is more powerful to use a general jump
process, arising from Poisson random measures and generated by the Poisson point process
instead of using the Poisson process. Furthermore, studying stochastic models with delay
and jumps is also preferable for better performance and accuracy. Accordingly, this paper
will focus on the stochastic pantograph model with Lévy jumps.

Most of stochastic pantograph models do not have analytical solutions, and numerical
algorithms are needed to tackle this problem. However, most of these numerical algorithms
have been applied under the classical global Lipschitz condition and the linear growth
condition [9,10]. In many applications, these conditions are not common to be satisfied,
and this in turn leads to violation in the convergence properties of these methods. When
the coefficients grow beyond linearly, Hutzenthaler et al. [11] have manifested that the pth
moments of the Euler–Maruyama method blow up to infinity for all p ≥ 1. To tackle this
problem, Hutzenthaler et al. [12] presented the tamed Euler–Maruyama method, which
was a recent approach to deal with this kind of problem. The tamed Euler–Maruyama for
stochastic delay models with Lévy bursts whose drift coefficients grow super linearly was
investigated in [13]. However, it was mentioned in [14] that the tamed methods can cause
significant inaccurate results for even step sizes that are not very small, and this is because
of the disorder of the flow caused by modifying the coefficients of the stochastic model.

Recently, Mao [15] introduced the truncated Euler–Maruyama technique for highly
nonlinear stochastic models and studied the convergence properties in the presence of local
Lipschitz and Khasminskii-type conditions. In 2016, he [16] studied its convergence rate
and stability. Guo et al. [17] applied Mao’s scheme [15] on stochastic delay differential
models. Geng et al. [18] studied the convergence of the truncated Euler–Maruyama method
for stochastic differential equations with piecewise continuous arguments. He et al. [19]
studied the truncated Euler–Maruyama method for stochastic differential equations driven
by fractional Brownian motion with super-linear drift coefficient. An original contribution
was made in [20] by introducing the implicit split-step version of the Euler–Maruyama
technique for stochastic models. However, the core limitation regarding implicit schemes is
the requirement of more computations than explicit ones.

Additionally, as we know, there are not many studies on split-step schemes for stochas-
tic pantograph models with Lévy jumps where coefficients might act super-linearly. There-
fore, motivated by the idea of truncation technique [15], we propose the diffused split-step truncated
Euler–Maruyama method which is explicit for highly nonlinear stochastic pantograph models inter-
spersed with Lévy jumps where all coefficients might exceed linearity and study the convergence
rate in Lp(p ≥ 0) sense.

The following depicts how this paper is sorted. A collection of notations and model
description will be given in Section 2. Section 3 will put the light on the convergence
rate in Lp(p ≥ 2) sense. Convergence rate in Lp(0 < p < 2) sense will be depicted in
Section 4. Numerical examples will be provided in Section 5. Finally, some conclusions will
be mentioned in Section 6.

2. Preliminaries and Model Description

In this section, we are going to present some preliminaries that will help the readers
have the necessary background knowledge to understand the subsequent sections of this
paper and follow the research methodology, analysis, and results effectively.

Definition 1 ([21]). A stochastic process {υ(t)}t≥0 is a collection of random variables on a given
probability space (Ω,F ,P) indexed by time t, where

• For every t ≥ 0, the function ω → υ(t; ω) is a measurable function defined on the probability
space (Ω,F ,P).

• For each ω ∈ Ω, the function t→ υ(t; ω) is named the sample path of the process.
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Definition 2 ([22]). A stochastic process {υ(t)}t≥0, defined on probability space (Ω,F ,P)
equipped with filtration {Ft}{t≥0}, has the Markov property if for any t ≥ 0, ς̄ ≥ 0 and Υ ∈ B,
where B is the set of all Borel sets,

P(υ(t + ς̄) ∈ Υ | Ft) = P(υ(t + ς̄) ∈ Υ | υ(t))

Definition 3 ([23]). The non-anticipating stochastic process W(t) satisfies the following attributes:

• W(0) = 0 and the sample path t→W(t; ω) is continuous a.s.
• The increment W(ς1)−W(ς2) ∼ N(0, ς1 − ς2), where 0 ≤ ς2 ≤ ς1.
• The increments W(ς̄1)−W(ς1) and W(ς̄2)−W(ς2) are independent for 0 < ς1 < ς̄1 <

ς2 < ς̄2.

is called Brownian motion.

Definition 4 ([24]). The non-anticipating stochastic process N(t) satisfies the following attributes

• N(0) = 0 a.s.,
• The increment N(ς1)− N(ς2) ∼ Po(λ∗(ς1 − ς2)), where 0 ≤ ς2 ≤ ς1 and λ∗ > 0.
• The increments N(ς̄1)− N(ς1) and N(ς̄2)− N(ς2) are independent for 0 < ς1 < ς̄1 <

ς2 < ς̄2.

is called Poisson process with intensity λ∗.

Definition 5 ([23]). A right-continuous with left limits and adapted stochastic process L(t),
t ∈ [0, T], defined on probability space (Ω,F ,P) equipped with filtration {Ft}{t≥0}, satisfies the
following attributes

• L(0) = 0 a.s.,
• L(t) has independent and stationary increments.
• L(t) is stochastically continuous, which means ∀ς > 0 and ∀ς̄ ≥ 0.

lim
t→ς̄

P(‖ L(t)− L(ς̄) ‖> ς) = 0

is called the Lévy process.

Definition 6 ([25]). A stochastic differential equation (SDE) is a differential equation where one or
more of its terms are stochastic processes and therefore the solution of it will be a stochastic process.
A typical form is

dυ(t) = ϕ(υ(t))dt + ψ(υ(t))dW(t),

where W(t) is a Brownian motion.

The functions ϕ and ψ are called the drift and diffusion coefficients, respectively.
Stochastic pantograph differential equations [26] are considered special subcategory of
stochastic delay differential equations with the form

dυ(t) = ϕ(υ(t), υ(ηt))dt + ψ(υ(t), υ(ηt))dW(t), (1)

with initial data υ(0−) = υ0 and 0 < η < 1. Most stochastic pantograph models do not
have analytical solutions or are difficult to obtain, and numerical algorithms are needed to
tackle this problem. However the classical existence and uniqueness theorems requires the
coefficients of the stochastic model to satisfy

• Global Lipschitz condition: There exists a constant C > 0 such that for all ς1, ς2, ς̄1, ς̄2 ∈ Rm,

|ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)|2 ∨ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2 ≤ C|ς1 − ς2|2 + |ς̄1 − ς̄2|2).
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• Linear growth condition: There exists a constant C > 0 such that for all ς1, ς2 ∈ Rm,

|ϕ(ς1, ς2)|2 ∨ |ψ(ς1, ς2)|2 ≤ C(1 + |ς1|2 + |ς2|2).

However, these conditions are very restrictive, and there are many stochastic panto-
graph models that do not satisfy the linear growth condition, and this in turn leads to some
violations in the convergence properties of these numerical algorithms. This is considered
one of the motivations behind this paper, where we try to perform some relaxation and
replace the linear growth condition with what is known as the Khasminskii-type condition
(to be discussed later).

There exist two kinds of convergence of the numerical solutions of stochastic mod-
els [25]. The first kind of convergence is strong convergence.

Definition 7. Suppose χ(t) is a continuous-time approximation of the solution υ(t) of Equation (1)
with step size ∆ > 0. Then, χ converges to υ(t) in the strong sense with order ε ∈ (0, ∞) if there
exist positive constants C and ∆∗ such that

E|υ(t)− χ(t)|≤ C∆ε,

where ∆ ∈ (0, ∆∗).

The other kind of convergence is weak convergence.

Definition 8. Suppose χ(t) is a continuous-time approximation of the solution υ(t) of Equation (1)
with step size ∆ > 0. Then, χ converges to υ(t) in the weak sense with order ε̄ ∈ (0, ∞) if for any
function f : Rm → R, there exist positive constants C and ∆∗ such that

|E f (υ(t))−E f (χ(t))|≤ C∆ε̄,

where ∆ ∈ (0, ∆∗).

Throughout this paper, let (Ω,F , {Ft}{t≥0},P) be a complete probability space with
right-continuous and non-decreasing filtration {Ft}t≥0 with F0 encompassing all P-null
sets. Let Lp = Lp(Ω,F ,P) indicate the space of random variables Ψ with expectation
E|Ψ|p < ∞ for p > 0. Furthermore, if Z is a vector or matrix, its transpose is repre-
sented by ZT . Let | · | denote the Euclidean vector norm in Rm, and let 〈ς, ς̄〉 be the inner
product of ς, ς̄ in Rm and ς ∈ R, [ς] refer to the non-fractional part of ς. Also, ς ∨ ς̄
and ς ∧ ς̄ refer to picking up the bigger and smaller between them, respectively. Let
W(t) = (W1(t), W2(t), . . . , Wd(t))T be d-dimensional Brownian motion and U ∈ Rm\{0}
be the scope of abrupt leaps. Let N(·, ·) defined on R+ ×Rm\{0} be a Ft-adapted Poisson
random measure and Ñ(dt, du) = N(dt, du)− π(du)dt be its compensated version with
Lévy measure π defined on U with π(U) = λ. It is assumed that W(t) is independent
of N(t, ·).

Let our analysis be focused on m-dimensional stochastic pantograph model inter-
spersed with Lévy jumps of the form

dυ(t) = ϕ(υ(t−), υ(ηt−))dt + ψ(υ(t−), υ(ηt−))dW(t)

+
∫

U
v(υ(t−), υ(ηt−), u)Ñ(dt, du),

(2)

defined on 0 ≤ t ≤ T with 0 < η < 1 and initial data υ(0−) = υ0, where υ0 is F0-
measurable, right-continuous, and E|υ0|q̄ < ∞ for q̄ > 0. Here υ(t−) := lims→t−υ(s),
υ(ηt−) := lims→ηt−υ(s), ϕ : Rm ×Rm → Rm, ψ : Rm ×Rm → Rm×d and v : Rm ×Rm ×
U → Rm, m, d ∈ N+.
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Remark 1. In this paper, υ(t) and υ(ηt) are used to express υ(t−) and υ(ηt−), respectively, and
C is used to denote a general real positive constant (independent of ∆, l later) changing at different
positions.

3. Convergence Rate in Lp(p ≥ 2)

In some applications, we need to approximate the variance or the higher moment
of the solution. In these situations, we need to have the convergence in the Lp(p ≥ 2)
sense. Therefore, in this section, the convergence rate of the diffused split-step truncated
Euler–Maruyama method for Equation (2) is attained in the Lp(p ≥ 2) sense, where non-
jump coefficients behave beyond linearly while the jump coefficient grows linearly. At first,
some assumptions and lemmas will be presented as helping tools for proving our main
convergence theorem.

Assumption 1. Let k1 > 0, ζ ≥ 0 such that

|ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)| ∨ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|
≤ k1(1 + |ς1|ζ + |ς̄1|ζ + |ς2|ζ + |ς̄2|ζ)(|ς1 − ς2|+ |ς̄1 − ς̄2|)

and ∫
U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|π(du) ≤ k1(|ς1 − ς2|+ |ς̄1 − ς̄2|).

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm and u ∈ U.

By utilizing Assumption 1, it can be concluded that

|ϕ(ς, ς̄)| ∨ |ψ(ς, ς̄)| ≤ C(1 + |ς|ζ+1 + |ς̄|ζ+1) (3)

and ∫
U
|v(ς, ς̄, u)|π(du) ≤ C(1 + |ς|+ |ς̄|) (4)

for all ς, ς̄ ∈ Rm and u ∈ U.

Assumption 2. Let k2 > 0, ξ > 2 such that

(ς1−ς2)
T(ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)) +

ξ − 1
2
|ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2

≤ k2(|ς1 − ς2|2 + |ς̄1 − ς̄2|2)

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm.

Assumption 3. (Khasminskii-type condition) Let k3 > 0, p̄ > ξ such that

ςT ϕ(ς, ς̄) +
p̄− 1

2
|ψ(ς, ς̄)|2 ≤ k3(1 + |ς|2 + |ς̄|2)

for all ς, ς̄ ∈ Rm.

Lemma 1. Under Assumptions 1 and 3, for any q ∈ [2, p̄)

sup
0≤t≤T

E|υ(t)|q ≤ C, ∀T > 0 (5)

Proof. Proving this Lemma can be attained by following the same approach as in [27]. To
define the diffused split-step truncated Euler–Maruyama scheme, a strictly non-decreasing
continuous function β : R+ → R+ is selected, where β(ι)→ ∞ as ι→ ∞ and

sup
|ς|∨|ς̄|≤ι

(|ϕ(ς, ς̄)| ∨ |ψ(ς, ς̄)|) ≤ β(ι), (6)
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sup
0<|ςi |∨|ς̄i |≤ι

|ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)|
(|ς1 − ς2|+ |ς̄1 − ς̄2|)

∨ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|
(|ς1 − ς2|+ |ς̄1 − ς̄2|)

≤ β(ι), (7)

for all ι ≥ 1 and i = 1, 2. Moreover, a strictly non-increasing function γ : (0, 1]→ (0, ∞) is
chosen such that

lim
∆→0

γ(∆) = ∞ and (∆1/ p̄ ∨ ∆1/4)γ(∆) ≤ 1, ∀∆ ∈ (0, 1]. (8)

For a given ∆ ∈ (0, 1], a truncated mapping ν∆ from Rm to the closed ball {ς ∈ Rm :
|ς| ≤ β−1(γ(∆))} is defined by

ν∆(ς) = (|ς| ∧ β−1(γ(∆)))
ς

|ς| , (9)

where we set ς/|ς| = 0 if ς = 0. Then, the truncated functions are defined as follows:

Υ∆(ς, ς̄) = Υ(ν∆(ς), ν∆(ς̄)), (10)

for any ς, ς̄ ∈ Rm, where Υ = ϕ or ψ. It is also obvious that

|ϕ∆(ς, ς̄)| ∨ |ψ∆(ς, ς̄)| ≤ β(β−1(γ(∆))) = γ(∆), ∀ς, ς̄ ∈ Rm (11)

which indicates that ϕ∆, ψ∆ are bounded even though ϕ, ψ may not. Additionally, it can be
concluded

|ν∆(ς)| ≤ |ς|, |ν∆(ς)− ν∆(ς̄)| ≤ |ς− ς̄|, ∀ς, ς̄ ∈ Rm. (12)

Upon utilizing (12) and Assumption 1, it can be concluded that

|ϕ∆(ς1, ς̄1)− ϕ∆(ς2, ς̄2)| ∨ |ψ∆(ς1, ς̄1)− ψ∆(ς2, ς̄2)|
≤ k1(1 + |ς1|ζ + |ς̄1|ζ + |ς2|ζ + |ς̄2|ζ)(|ς1 − ς2|+ |ς̄1 − ς̄2|)

(13)

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm.

Lemma 2. Under Assumption 3, for any ∆ ∈ (0, 1],

ςT ϕ∆(ς, ς̄) +
p̄− 1

2
|ψ∆(ς, ς̄)|2 ≤ C(1 + |ς|2 + |ς̄|2), ∀ς, ς̄ ∈ Rm (14)

Proof. The verification follows the one discussed in [28]. Now, the diffused split-step
truncated Euler–Maruyama scheme for Equation (2) is defined by Y0 = υ0 and Yn+1 is
computed by

Zn = Yn + ψ∆(Yn, Y[ηn])∆Wn (15)

Yn+1 = Zn + ∆ϕ∆(Zn, Z[ηn]) +
∫ tn+1

tn

∫
U

v(Zn, Z[ηn], u)Ñ(dt, du), (16)

for n = 0, 1, . . ., where Yn approximates υ(tn) at tn = n∆, ∆Wn := W(tn+1) −W(tn).
Wang and Li [29] introduced the fully explicit split-step forward methods for solving Itô
stochastic differential models. However, the main limitation of these schemes is that the
derivatives of the drift and diffusion coefficients must be calculated at each iteration that is
considered computationally intensive. Our proposed scheme is considered as an explicit
and derivative-free scheme that does not require the calculation of the derivative at each
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step with good properties in terms of convergence rate and accuracy. For all t ∈ [tn, tn+1)
and ∆ ∈ (0, 1], we define

χ∆(t) : = Yn + (t− tn)ϕ∆(Zn, Z[ηn]) + ψ∆(Yn, Y[ηn])(W(t)−W(tn))

+
∫ t

tn

∫
U

v(Zn, Z[ηn], u)Ñ(dt, du)
(17)

and denote

κ1(t) =
∞

∑
r=0

Yr I[tr ,tr+1)
(t), κ2(t) =

∞

∑
r=0

Y[ηr] I[tr ,tr+1)
(t),

and

κ∗1(t) =
∞

∑
r=0

Zr I[tr ,tr+1)
(t), κ∗2(t) =

∞

∑
r=0

Z[ηr] I[tr ,tr+1)
(t),

where IZ(Ψ) = 1 if Ψ ∈ Z. Accordingly, Equation (17) can be rewritten in integral form as

χ∆(t) = Y0 +
∫ t

0
ϕ∆(κ

∗
1(s), κ∗2(s))ds +

∫ t

0
ψ∆(κ1(s), κ2(s))dW(s)

+
∫ t

0

∫
U

v(κ∗1(s), κ∗2(s), u)Ñ(ds, du).
(18)

Lemma 3. Under Assumption 1,

E|χ∆(t)− κ1(t)|$̂ ∨E|χ∆(t)− κ∗1(t)|$̂

≤ C((γ(∆))$̂∆$̂/2 + ∆(1 +E|κ∗1(t)|$̂ +E|κ∗2(t)|$̂)), $̂ ≥ 2,
(19)

E|χ∆(t)− κ1(t)|$̂ ∨E|χ∆(t)− κ∗1(t)|$̂

≤ C((γ(∆))$̂∆$̂/2 + ∆$̂/2(1 +E|κ∗1(t)|$̂ +E|κ∗2(t)|$̂)), 0 < $̂ < 2.
(20)

Proof. Select any ∆ ∈ (0, 1], $̂ ≥ 2. Then, ∃ a unique r where r∆ ≤ t ≤ (r + 1)∆. From
Equation (18), we have the following:

E|χ∆(t)− κ1(t)|$̂ = E|χ∆(t)− χ∆(r∆)|$̂

= E

∣∣∣∣∣
∫ t

r∆
ϕ∆(κ

∗
1(s), κ∗2(s))ds +

∫ t

r∆
ψ∆(κ1(s), κ2(s))dW(s)

+
∫ t

r∆

∫
U

v(κ∗1(s), κ∗2(s), u))Ñ(ds, du)

∣∣∣∣∣
$̂

.

(21)

Once utilizing (11), Assumption 1 and the properties of the Itô integral [21], we obtain

E|χ∆(t)− κ1(t)|$̂ ≤ C∆$̂−1E
∫ t

r∆
|ϕ∆(κ

∗
1(s), κ∗2(s))|$̂ds

+ C∆($̂−2)/2E
∫ t

r∆
|ψ∆(κ1(s), κ2(s))|$̂ds

+ CE
(∫ t

r∆

∫
U
|v(κ∗1(s), κ∗2(s), u)|2π(du)ds

)$̂/2

+ CE
∫ t

r∆

∫
U
|v(κ∗1(s), κ∗2(s), u)|$̂π(du)ds

≤ C((γ(∆))$̂∆$̂/2 + ∆(1 +E|κ∗1(s)|$̂ +E|κ∗2(s)|$̂)).

(22)
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Therefore

E|χ∆(t)− κ1(t)|$̂ ≤ C((γ(∆))$̂∆$̂/2 + ∆(1 +E|κ∗1(s)|$̂ +E|κ∗2(s)|$̂)). (23)

By utilizing (11) and (15), it can be concluded that

E|κ1(t)− κ∗1(t)|$̂ ≤ C∆($̂−2)/2E
∫ t

r∆
|ψ∆(κ1(s), κ2(s))|$̂d(s) ≤ C(γ(∆))$̂∆$̂/2. (24)

By utilizing (23) and (24), we obtain

E|χ∆(t)− κ∗1(t)|$̂ ≤ C(E|χ∆(t)− κ1(t)|$̂ +E|κ1(t)− κ∗1(t)|$̂)
≤ C((γ(∆))$̂∆$̂/2 + ∆(1 +E|κ∗1(s)|$̂ +E|κ∗2(s)|$̂)).

(25)

By utilizing the Hölder inequality, (23), and (25), we have for any 0 < $̂ < 2 the
following:

E|χ∆(t)− κ1(t)|$̂ ≤ (E|χ∆(t)− κ1(t)|2)$̂/2

≤ C((γ(∆))2∆ + ∆(1 +E|κ∗1(s)|2 +E|κ∗2(s)|2))$̂/2

≤ C((γ(∆))$̂∆$̂/2 + ∆$̂/2(1 +E|κ∗1(s)|$̂ +E|κ∗2(s)|$̂)),

(26)

and
E|χ∆(t)− κ∗1(t)|$̂ ≤ (E|χ∆(t)− κ∗1(t)|2)$̂/2

≤ C((γ(∆))2∆ + ∆(1 +E|κ∗1(s)|2 +E|κ∗2(s)|2))$̂/2

≤ C((γ(∆))$̂∆$̂/2 + ∆$̂/2(1 +E|κ∗1(s)|$̂ +E|κ∗2(s)|$̂)).

(27)

Corollary 1. Under Assumption 1,

E|χ∆(ηt)− κ2(t)|$̂ ∨E|χ∆(ηt)− κ∗2(t)|$̂

≤ C((γ(∆))$̂∆$̂/2 + ∆(1 +E|κ∗1(t)|$̂ +E|κ∗2(t)|$̂)), $̂ ≥ 2,
(28)

E|χ∆(ηt)− κ2(t)|$̂ ∨E|χ∆(ηt)− κ∗2(t)|$̂

≤ C((γ(∆))$̂∆$̂/2 + ∆$̂/2(1 +E|κ∗1(t)|$̂ +E|κ∗2(t)|$̂)), 0 < $̂ < 2.
(29)

Proof. The proof of this corollary can be attained by proceeding the same approach as in
Lemma 3.

Lemma 4. Under Assumptions 1 and 3, for q ∈ [2, p̄)

sup
0<∆≤1

sup
0≤t≤T

E|χ∆(t)|q ≤ C, ∀T > 0. (30)

Proof. For fixed ∆ ∈ (0, 1], we obtain via the Itô formula [30] and (18)
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|χ∆(t)|q ≤ |υ0|q +
∫ t

0
q|χ∆(s)|q−2

(
κT

1 (s)ϕ∆(κ1(s), κ2(s)) +
q− 1

2
|ψ∆(κ1(s), κ2(s))|2

)
ds

+
∫ t

0
q|χ∆(s)|q−2

(
(χ∆(s)− κ1(s))T ϕ∆(κ1(s), κ2(s))

)
ds

+
∫ t

0
q|χ∆(s)|q−2

(
χT

∆(s)(ϕ∆(κ
∗
1(s), κ∗2(s))− ϕ∆(κ1(s), κ2(s)))

)
ds

+
∫ t

0
q|χ∆(s)|q−2χT

∆(s)ψ∆(κ1(s), κ2(s))dW(s)

+
∫ t

0

∫
U

q|χ∆(s)|q−2χT
∆(s)v(κ∗1(s), κ∗2(s), u)Ñ(ds, du)

+
∫ t

0

∫
U

[
|χ∆(s) + v(κ∗1(s), κ∗2(s), u)|q − |χ∆(s)|q

− q|χ∆(s)|q−2χT
∆(s)v(κ∗1(s), κ∗2(s), u)

]
N(ds, du).

(31)

Applying Assumption 3, using the Taylor formula [30] and the Young inequality, and
then taking the expectation will lead to

E|χ∆(t)|q ≤ |υ0|q + L1 + L2 + L3 + L4, (32)

where

L1 = CE
∫ t

0
|χ∆(s)|q−2(1 + |κ1(s)|2 + |κ2(s)|2)ds, (33)

L2 = CE
∫ t

0
|χ∆(s)|q−2

(
(χ∆(s)− κ1(s))T ϕ∆(κ1(s), κ2(s))

)
ds, (34)

L3 = CE
∫ t

0
|χ∆(s)|q−2

(
χT

∆(s)(ϕ∆(κ
∗
1(s), κ∗2(s))− ϕ∆(κ1(s), κ2(s)))

)
ds, (35)

and

L4 = CE
∫ t

0

∫
U

(
|χ∆(s)|q−2|v(κ∗1(s), κ∗2(s), u)|2 + |v(κ∗1(s), κ∗2(s), u)|q

)
π(du)ds. (36)

From (8), (11) and (15), we obtain

E|κ∗1(t)|q ≤ 2q−1(E|κ1(t)|q + (γ(∆))qE|∆Wr|q) ≤ C + CE|κ1(t)|q. (37)

By the same analogy, we obtain

E|κ∗2(t)|q ≤ C + CE|κ2(t)|q. (38)

Utilizing the Young inequality aq−2b ≤ q−2
q aq + 2

q bq/2 leads to

L1 ≤ CE
∫ t

0
|χ∆(s)|qds + CE

∫ t

0
(1 + |κ1(s)|q + |κ2(s)|q)ds

≤ C + C
∫ t

0
(E|χ∆(s)|q +E|κ1(s)|q +E|κ2(s)|p)ds

≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds

(39)
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By applying the Young inequality, Lemma 3, (10), (11), (37), and (38), we obtain

L2 ≤ C + CE
∫ t

0
|χ∆(s)|qds + CE

∫ t

0
|χ∆(s)− κ1(s)|q|ϕ∆(κ1(s), κ2(s))|qds

≤ C + CE
∫ t

0
|χ∆(s)|qds

+ C(γ(∆))q
∫ t

0
((γ(∆))q∆q/2 + ∆(1 +E|κ∗1(t)|q +E|κ∗2(t)|q))ds

≤ C + CE
∫ t

0
|χ∆(s)|qds

+ C(γ(∆))q
∫ t

0
((γ(∆))q∆q/2 + ∆(1 +E|κ1(t)|q +E|κ2(t)|q))ds

≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds

(40)

By the Young inequality, (7), (10), (11), (12), and (24), we have

L3 ≤ CE
∫ t

0
|χ∆(s)|qds + CE

∫ T

0
|ϕ∆(κ

∗
1(s), κ∗2(s))− ϕ∆(κ1(s), κ2(s))|qds

≤ CE
∫ t

0
|χ∆(s)|qds

+ CE
∫ T

0
|ϕ(ν∆(κ

∗
1(s)), ν∆(κ

∗
2(s)))− ϕ(ν∆(κ1(s)), ν∆(κ2(s)))|qds

≤ CE
∫ t

0
|χ∆(s)|qds

+ C(γ(∆))q
∫ T

0
(E|ν∆(κ

∗
1(s))− ν∆(κ1(s))|q +E|ν∆(κ

∗
2(s))− ν∆(κ2(s))|q)ds

≤ CE
∫ t

0
|χ∆(s)|qds + C

∫ T

0
(γ(∆))2q∆q/2ds

≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds.

(41)

By utilizing the Young inequality and Assumption 1, then proceeding the same as
before, we obtain

L4 ≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds. (42)

By plugging (39), (40), (41), and (42) into (32), we obtain

E|χ∆(t)|q ≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds, (43)

where the R.H.S of (43) is increasing in t. Then,

sup
0≤r≤t

E|χ∆(r)|q ≤ C + C
∫ t

0
sup

0≤r≤s
E|χ∆(r)|qds. (44)

By the Gronwall inequality,

sup
0≤r≤t

E|χ∆(r)|q ≤ C. (45)

Because this is valid regardless, the value of ∆, (30) is obtained.
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Lemma 5. Under Assumptions 1 and 3,

E|χ∆(t)− κ1(t)|$
∗ ∨E|χ∆(t)− κ∗1(t)|$

∗ ≤ C((γ(∆))$∗∆$∗/2 + ∆), 2 ≤ $∗ ≤ p̄, (46)

E|χ∆(t)− κ1(t)|$
∗ ∨E|χ∆(t)− κ∗1(t)|$

∗ ≤ C((γ(∆))$∗∆$∗/2 + ∆$∗/2), 0 < $∗ < 2. (47)

Proof. By utilizing Lemma 4, (19), and (37), the required assertion (46) is directly attained.
For any 0 < $∗ < 2, by utilizing Hölder’s inequality, we obtain

E|χ∆(t)− κ1(t)|$
∗ ≤ (E|χ∆(t)− κ1(t)|2)$∗/2

≤ (C((γ(∆))2∆ + ∆))$∗/2

≤ C((γ(∆))$∗∆$∗/2 + ∆$∗/2).

Similarly,
E|χ∆(t)− κ∗1(t)|$

∗ ≤ C((γ(∆))$∗∆$∗/2 + ∆$∗/2).

The proof is complete.

Lemma 6. Suppose that Assumptions 1 and 3 hold. Then, for any real number l > |υ(0)| and
∆ ∈ (0, 1], we define the stopping time ρl = inf{t ≥ 0 : |υ(t)| ≥ l} such that

P(ρl ≤ T) ≤ C
lq (48)

Proof. By utilizing (5), we have

sup
0≤u≤T

E|υ(u ∧ ρl)|q ≤ C.

Then, by applying Chebyshev’s inequality, we have

lqP(ρl ≤ T) ≤ C. (49)

The proof is complete.

Lemma 7. Suppose that Assumptions 1 and 3 hold. Then, for any real number l > |υ(0)| and
∆ ∈ (0, 1], we define stopping times ϑ∆,l = inf{t ≥ 0 : |χ∆(t)| ≥ l} and ϑ̄∆,l = inf{t ≥ 0 :
|κ∗1(t)| ≥ l} such that

P(ϑ∆,l ≤ T) ∨ P(ϑ̄∆,l ≤ T) ≤ C
lq (50)

Proof. Upon proceeding in the same manner as in in Lemma 4, it can be shown that

sup
0≤u≤T

E|χ∆(u ∧ ϑ∆,l)|q ≤ C.

Then, by applying Chebyshev’s inequality, we obtain

lqP(ϑ∆,l ≤ T) ≤ C. (51)

Then, by utilizing (37) and Chebyshev’s inequality, we can obtain

lqP(ϑ̄∆,l ≤ T) ≤ C. (52)
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Theorem 1. Let Assumptions 1–3 hold, q ∈ (2, p̄) such that q > (1 + ζ)ξ. Then, for p ∈ [2, ξ)
and ∆ ∈ (0, 1]

E|e∆(T ∧ τ∆,l)|p ≤ C((β−1(γ(∆)))pζ+p−q + (γ(∆))p∆p/2 + ∆(q−pζ)/q), (53)

where e∆(t) = υ(t)− χ∆(t) and τ∆,l = ρl ∧ ϑ∆,l ∧ ϑ̄∆,l .

Proof. Let τ∆,l = τ be a sort of simplicity, and note that q > (1 + ζ)ω if ω ∈ (p, ξ). Upon
applying the Itô formula, using the Taylor formula, and taking the expectation, we have

E|e∆(t ∧ τ)|p

≤ E
∫ t∧τ

0
p|e∆(s)|p−2

(
eT

∆(s)[ϕ(υ(s), υ(ηs))− ϕ∆(κ
∗
1(s), κ∗2(s))]

+
p− 1

2
|ψ(υ(s), υ(ηs))− ψ∆(κ1(s), κ2(s))|2

)
ds

+ CE
∫ t∧τ

0

∫
U
|e∆(s)|p−2|v(υ(s), υ(ηs), u)−v(κ∗1(s), κ∗2(s), u)|2π(du)ds

+ CE
∫ t∧τ

0

∫
U
|v(υ(s), υ(ηs), u)−v(κ∗1(s), κ∗2(s), u)|pπ(du)ds.

(54)

Applying the Young inequality leads to

p− 1
2
|ψ(υ(s), υ(ηs))− ψ∆(κ1(s), κ2(s))|2

≤ p− 1
2
×
((

1 +
ω− p
p− 1

)
|ψ(υ(s), υ(ηs))− ψ(χ∆(s), χ∆(ηs))|2

+
(

1 +
p− 1
ω− p

)
|ψ(χ∆(s), χ∆(ηs))− ψ∆(κ1(s), κ2(s))|2

)
=

ω− 1
2
|ψ(υ(s), υ(ηs))− ψ(χ∆(s), χ∆(ηs))|2

+
(ω− 1)(p− 1)

2(ω− p)
|ψ(χ∆(s), χ∆(ηs))− ψ∆(κ1(s), κ2(s))|2.

(55)

Plugging (55) into (54) yields

E|e∆(t ∧ τ)|p ≤ J1 + J2 + J3, (56)

where

J1 = E
∫ t∧τ

0
p|e∆(s)|p−2

(
eT

∆(s)[ϕ(υ(s), υ(ηs))− ϕ(χ∆(s), χ∆(ηs))]

+
ω− 1

2
|ψ(υ(s), υ(ηs))− ψ(χ∆(s), χ∆(ηs))|2

)
ds,

(57)

J2 = E
∫ t∧τ

0
p|e∆(s)|p−2

(
eT

∆(s)[ϕ(χ∆(s), χ∆(ηs))− ϕ∆(κ
∗
1(s), κ∗2(s))]

+
(ω− 1)(p− 1)

2(ω− p)
|ψ(χ∆(s), χ∆(ηs))− ψ∆(κ1(s), κ2(s))|2

)
ds,

(58)

and

J3 = CE
∫ t∧τ

0

∫
U
|e∆(s)|p−2|v(υ(s), υ(ηs), u)−v(κ∗1(s), κ∗2(s), u)|2π(du)ds

+ CE
∫ t∧τ

0

∫
U
|v(υ(s), υ(ηs), u)−v(κ∗1(s), κ∗2(s), u)|pπ(du)ds.

(59)
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By utilizing Assumption 2, it can be directly concluded that

J1 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds. (60)

J2 ≤ E
∫ t∧τ

0
p|e∆(s)|p−2

(
eT

∆(s)[ϕ(χ∆(s), χ∆(ηs))− ϕ∆(χ∆(s), χ∆(ηs))]

+
(ω− 1)(p− 1)

(ω− p)
|ψ(χ∆(s), χ∆(ηs))− ψ∆(χ∆(s), χ∆(ηs))|2

)
ds

+E
∫ t∧τ

0
p|e∆(s)|p−2

(
eT

∆(s)[ϕ∆(χ∆(s), χ∆(ηs))− ϕ∆(κ
∗
1(s), κ∗2(s))]

+
(ω− 1)(p− 1)

(ω− p)
|ψ∆(χ∆(s), χ∆(ηs))− ψ∆(κ1(s), κ2(s))|2

)
ds

= J21 + J22.

(61)

By utilizing the Young inequality, Hölder’s inequality, (10), and Assumption 1 and
(12), we obtain

J21 ≤ CE
∫ t

0
|e∆(s ∧ τ)|pds + CE

∫ T

0

(
|ϕ(χ∆(s), χ∆(ηs))− ϕ∆(χ∆(s), χ∆(ηs))|p

+ |ψ(χ∆(s), χ∆(ηs))− ψ∆(χ∆(s), χ∆(ηs))|p
)

ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + CE

∫ T

0

[
(1 + |χ∆(s)|pζ + |χ∆(ηs)|pζ + |ν∆(χ∆(s))|pζ

+ |ν∆(χ∆(ηs))|pζ)× (|χ∆(s)− ν∆(χ∆(s))|p + |χ∆(ηs)− ν∆(χ∆(ηs))|p)
]
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0

[
E(1 + |χ∆(s)|q + |χ∆(ηs)|q)

]pζ/q

×
[
E|χ∆(s)− ν∆(χ∆(s))|pq/(q−pζ) +E|χ∆(ηs)− ν∆(χ∆(ηs))|pq/(q−pζ)

](q−pζ)/q
ds.

(62)

Utilizing Lemma 4 leads to

J21 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0
[E|χ∆(s)− ν∆(χ∆(s))|pq/(q−pζ)](q−pζ)/qds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0
[E(I|χ∆(s)|>β−1(γ(∆))|χ∆(s)|pq/(q−pζ))](q−pζ)/qds.

(63)

By exploiting the fundamental bridge and Chebyshev’s inequality, we reach

J21 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0

(
[P(|χ∆(s)| > β−1(γ(∆)))](q−pζ−p)/(q−pζ)

× [E|χ∆(s)|]p/(q−pζ)
)(q−pζ)/q

ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0

( E|χ∆(s)|q
(β−1(γ(∆)))q

)(q−pζ−p)/q
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C(β−1(γ(∆)))pζ+p−q.

(64)
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Applying the Young inequality and (13) yields

J22 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + CE

∫ t∧τ

0
|e∆(s)|p−2(1 + |χ∆(s)|2ζ + |χ∆(ηs)|2ζ

+ |κ∗1(s)|2ζ + |κ∗2(s)|2ζ)× (|χ∆(s)− κ∗1(s)|2 + |χ∆(ηs)− κ∗2(s)|2)ds

+ CE
∫ s∧τ

0
|e∆(s)|p−2(1 + |χ∆(s)|2ζ + |χ∆(ηs)|2ζ + |κ1(s)|2ζ + |κ2(s)|2ζ)

× (|χ∆(s)− κ1(s)|2 + |χ∆(ηs)− κ2(s)|2)ds

= C
∫ t

0
E|e∆(s ∧ τ)|pds + J221 + J222,

(65)

where

J221 = CE
∫ t∧τ

0
|e∆(s)|p−2(1 + |χ∆(s)|2ζ + |χ∆(ηs)|2ζ + |κ∗1(s)|2ζ + |κ∗2(s)|2ζ)

× (|χ∆(s)− κ∗1(s)|2 + |χ∆(ηs)− κ∗2(s)|2)ds,
(66)

and

J222 = CE
∫ t∧τ

0
|e∆(s)|p−2(1 + |χ∆(s)|2ζ + |χ∆(ηs)|2ζ + |κ1(s)|2ζ + |κ2(s)|2ζ)

× (|χ∆(s)− κ1(s)|2 + |χ∆(ηs)− κ2(s)|2)ds.
(67)

Upon applying the Young inequality, Hölder’s inequality, and Lemmas 4 and 5, and
utilizing Inequalities (37) and (38) and pq/(q− pζ) ≥ 2, we obtain

J221 ≤ CE
∫ t

0
|e∆(s ∧ τ)|pds + CE

∫ T

0

(
1 + |χ∆(s)|pζ + |χ∆(ηs)|pζ

+ |κ∗1(s)|pζ + |κ∗2(s)|pζ
)
×
(
|χ∆(s)− κ∗1(s)|p + |χ∆(ηs)− κ∗2(s)|p

)
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds

+ C
∫ T

0

[
E(1 + |χ∆(s)|q + |χ∆(ηs)|q + |κ∗1(s)|q + |κ∗2(s)|q)

]pζ/q

×
[
E|χ∆(s)− κ∗1(s)|pq/(q−pζ) +E|χ∆(ηs)− κ∗2(s)|pq/(q−pζ)

](q−pζ)/q
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0

(
(γ(∆))pq/(q−pζ)∆pq/2(q−pζ) + ∆

)(q−pζ)/q
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C((γ(∆))p∆p/2 + ∆(q−pζ)/q).

(68)

By following the same approach as for J221, it can be concluded that

J222 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C((γ(∆))p∆p/2 + ∆(q−pζ)/q). (69)

Therefore by plugging (68) and (69) into (65) and substituting with (64) and (65) into
(61), we obtain

J2 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C((β−1(γ(∆)))pζ+p−q + (γ(∆))p∆p/2 + ∆(q−pζ)/q). (70)
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By applying Assumption 1, the Young inequality, and Lemmas 4 and 5,

J3 ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C

∫ T

0
E(|υ(s)− κ∗1(s)|p + |υ(ηs)− κ∗2(s))|p)ds

≤ CE
∫ t

0
|e∆(s ∧ τ)|pds + C

∫ T

0
E(|χ∆(s)− κ∗1(s)|p + |χ∆(ηs)− κ∗2(s)|p)ds

≤ CE
∫ t

0
|e∆(s ∧ τ)|pds + C((γ(∆))p∆p/2 + ∆).

(71)

Then, by plugging (60), (70) and (71) into (56), we reach

E|e∆(t ∧ τ)|p ≤ C
∫ t

0
E|e∆(s ∧ τ)|pds + C((β−1(γ(∆)))pζ+p−q + (γ(∆))p∆p/2

+ ∆(q−pζ)/q).
(72)

Then, the Gronwall inequality leads to

E|e∆(T ∧ τ)|p ≤ C((β−1(γ(∆)))pζ+p−q + (γ(∆))p∆p/2 + ∆(q−pζ)/q). (73)

Corollary 2. Let Assumptions 1 and 2 hold and Assumption 3 holds for all p̄ ∈ (ξ, ∞). Define

β(x) = Cx1+ζ , x ≥ 0, and γ(∆) = ∆−ε, ε ∈ (0, 1/4∧ 1/q]. (74)

Then, for any

p ∈ [2, ξ), q ∈ ((1 + ζ)p ∨ ξ, p̄) and ε ∈ (0, 1/4∧ 1/q], (75)

we have
E|e∆(T)|p ≤ C∆ε(q−(1+ζ)p)/(1+ζ)∧(q−ζ p)/q. (76)

Proof. By utilizing (75), it can be concluded that

ε ≤ 1
q
<

p(1 + ζ)

2q

which implies
ε(q− (1 + ζ)p)/(1 + ζ) < p(1− 2ε)/2.

Then, by applying Theorem 1 and (74), the required assertion (76) can be easily
obtained.

4. Convergence Rate in Lp(0 < p < 2)

In some applications, we need to approximate the mean value of the solution or
the European call option value. In these situations, we need to have the convergence
in Lp(0 < p < 2) sense. Therefore, in this section the convergence rate of the diffused
split-step truncated Euler–Maruyama method for Equation (2) is attained in Lp(0 < p < 2)
sense where all the coefficients behave beyond linearly. Also, we first will present some
assumptions and lemmas for helping us in proving the convergence theorem.

Assumption 4. Let kR > 0 such that

|ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)| ∨ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)| ≤ kR(|ς1 − ς2|+ |ς̄1 − ς̄2|)
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and ∫
U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|π(du) ≤ kR(|ς1 − ς2|+ |ς̄1 − ς̄2|),

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm with |ς1| ∨ |ς2| ∨ |ς̄1| ∨ |ς̄2| ≤ R and u ∈ U.

Assumption 5. Let k > 0 such that

2〈ς, ϕ(ς, ς̄) +
∫

U
v(ς, ς̄, u)π(du)〉+ |ψ(ς, ς̄)|2 +

∫
U
|v(ς, ς̄, u)|2π(du) ≤ k(1 + |ς|2 + |ς̄|2) (77)

for all ς, ς̄ ∈ Rm and u ∈ U.

By following the same approach and procedures as for proving Lemma 1, we have the
following lemma.

Lemma 8. Under Assumptions 4 and 5,

sup
0≤t≤T

E|υ(t)|2 < ∞, ∀T > 0. (78)

In Section 3, the jump term was acting linearly, but in this section, according to
Assumptions 4 and 5, the jump term is permitted to grow super-linearly; therefore drift,
diffusion, and jump coefficients will be truncated. By proceeding the same as in in Section 3,
β is selected such that β(ι)→ ∞ as ι→ ∞ and

sup
|ς|∨|ς̄|≤ι

(|ϕ(ς, ς̄)| ∨ |ψ(ς, ς̄)| ∨ |v(ς, ς̄, u)|) ≤ β(ι), ∀ι ≥ 1. (79)

Moreover, a strictly non-increasing function γ : (0, 1]→ (0, ∞) is chosen such that

lim
∆→0

γ(∆) = ∞ and ∆1/4γ(∆) ≤ 1, ∀∆ ∈ (0, 1]. (80)

For a given ∆ ∈ (0, 1], ν∆ is the same as (9) and

φ∆(ς, ς̄) = φ(ν∆(ς), ν∆(ς̄)) and v∆(ς, ς̄, u) = v(ν∆(ς), ν∆(ς̄), u) (81)

for all ς, ς̄ ∈ Rm and u ∈ U where φ = f or g. It is also obvious that

|ϕ∆(ς, ς̄)| ∨ |ψ∆(ς, ς̄)| ∨ |v∆(ς, ς̄, u)| ≤ β(β−1(γ(∆))) = γ(∆) (82)

for all ς, ς̄ ∈ Rm and u ∈ U. Additionally, by utilizing (12), (82), and Assumption 5, it can
be concluded that for any ς, ς̄ ∈ Rm,

2〈ς, ϕ∆(ς, ς̄) +
∫

U
v∆(ς, ς̄, u)π(du)〉+ |ψ∆(ς, ς̄)|2 +

∫
U
|v∆(ς, ς̄, u)|2π(du)

≤ C(1 + |ς|2 + |ς̄|2).
(83)

Now, the diffused split-step truncated Euler–Maruyama scheme for Equation (2) is
established by the initial value Y0 = υ0, and Yn+1 is computed by

Zn = Yn + ψ∆(Yn, Y[ηn])∆Wn (84)

Yn+1 = Zn + ∆ϕ∆(Zn, Z[ηn]) +
∫ tn+1

tn

∫
U

v∆(Zn, Z[ηn], u)Ñ(dt, du) (85)
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for n = 0, 1, . . . and χ∆(t) is defined by

χ∆(t) = Y0 +
∫ t

0
ϕ∆(κ

∗
1(s), κ∗2(s))ds +

∫ t

0
ψ∆(κ1(s), κ2(s))dW(s)

+
∫ t

0

∫
U

v∆(κ
∗
1(s), κ∗2(s), u)Ñ(ds, du),

(86)

where κ1(t), κ2(t), κ∗1(t) and κ∗2(t) are the same as defined before.

Lemma 9. Under Assumptions 4 and 5,

E|χ∆(t)− κ1(t)|$
∗ ∨E|χ∆(t)− κ∗1(t)|$

∗ ≤ C(γ(∆))$∗∆, $∗ ≥ 2 (87)

E|χ∆(t)− κ1(t)|$
∗ ∨E|χ∆(t)− κ∗1(t)|$

∗ ≤ C(γ(∆))$∗∆$∗/2, 0 < $∗ < 2 (88)

Proof. By utilizing |v∆(ς, ς̄, u)| ≤ γ(∆) for all u ∈ U and following the same approach
and procedures performed in Lemma 3, the required assertions (87) and (88) can be easily
attained.

Lemma 10. Under Assumptions 4 and 5, we have

sup
0<∆≤1

sup
0≤t≤T

E|χ∆(t)|2 ≤ C, ∀T > 0 (89)

Proof. For fixed ∆ ∈ (0, 1], we obtain via the Itô formula and Equation (86)

E|χ∆(t)|2 ≤ E|x0|2 +E
∫ t

0
(2κT

1 (s)ϕ∆(κ1(s), κ2(s)) + |ψ∆(κ1(s), κ2(s))|2)ds

+E
∫ t

0
2(χ∆(s)− κ1(s))T ϕ∆(κ1(s), κ2(s))ds

+E
∫ t

0
2χT

∆(s)(ϕ∆(κ
∗
1(s), κ∗2(s))− ϕ∆(κ1(s), κ2(s)))ds

+E
∫ t

0

∫
U

2κT
1 (s)v∆(κ1(s), κ2(s), u)π(du)ds

+E
∫ t

0

∫
U

2(χ∆(s)− κ1(s))Tv∆(κ1(s), κ2(s), u)π(du)ds

+E
∫ t

0

∫
U

2χT
∆(s)(v∆(κ

∗
1(s), κ∗2(s), u)−v∆(κ1(s), κ2(s), u))π(du)ds

+ 2E
∫ t

0

∫
U
|v∆(κ1(s), κ2(s), u)|2π(du)ds

+ 2E
∫ t

0

∫
U
|v∆(κ

∗
1(s), κ∗2(s), u)−v∆(κ1(s), κ2(s), u)|2π(du)ds.

(90)

Applying (81), (82), and (83), Assumption 4 leads to

E|χ∆(t)|2 ≤ C + CE
∫ t

0
(|χ∆(s)|2 + |κ1(s)|2 + |κ2(s)|2)ds

+ Cγ(∆)
∫ t

0
E|χ∆(s)− κ1(s)|ds

+ C
∫ t

0
E(|κ∗1(s)− κ1(s)|2 + |κ∗2(s)− κ2(s)|2)ds.

(91)
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Then, by using Lemma 9 and noting from (80) that ((γ(∆))2∆1/2 ≤ 1), we could obtain

E|χ∆(t)|2 ≤ C

(
1 +

∫ t

0
E|χ∆(s)|2 +E|κ1(s)|2 +E|κ2(s)|2

)
ds

≤ C

(
1 +

∫ t

0
sup

0≤r≤s
E|χ∆(r)|2ds

)
.

(92)

Upon proceeding in a similar fashion as for Lemma 4, (89) is obtained.

The following Lemma can be obtained by the same approach in Lemmas 6 and 7.

Lemma 11. Under Assumptions 4 and 5, for any real number l > |υ(0)| and ∆ ∈ (0, 1],

P(ρl ≤ T) ≤ C
l2 and P(ϑ∆,l ≤ T) ∨ P(ϑ̄∆,l ≤ T) ≤ C

l2 , (93)

where ρl , ϑ∆,l and ϑ̄∆,l are the same as defined before.

Assumption 6. Let c1 > 0 such that

2〈ς1−ς2, (ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)) +
∫

U
(v(ς1, ς̄1, u)−v(ς2, ς̄2, u))π(du)〉

+ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2 +
∫

U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|2π(du)

≤ c1(|ς1 − ς2|2 + |ς̄1 − ς̄2|2)

(94)

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm and u ∈ U.

Assumption 7. Let c2 > 0, ζ̄ ≥ 0 such that

|ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)| ∨
∫

U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|π(du)

≤ c2(1 + |ς1|ζ̄ + |ς̄1|ζ̄ + |ς2|ζ̄ + |ς̄2|ζ̄)(|ς1 − ς2|+ |ς̄1 − ς̄2|)
(95)

for all ς1, ς2, ς̄1, ς̄2 ∈ Rm and u ∈ U.

Lemma 12. Under Assumptions 4, 5, 6, and 7, let l > |υ0| be a real number and ∆ be small enough
such that β−1(γ(∆)) ≥ l. Then,

E|e∆(T ∧ τ∆,l)|2 ≤ C(γ(∆))2∆, (96)

where e∆(t), τ∆,l = ρl ∧ ϑ∆,l ∧ ϑ̄∆,l are the same as defined before.

Proof. For simplification, we denote τ∆,l = τ. By the Itô formula,
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E|e∆(t ∧ τ)|2

≤ E
∫ t∧τ

0
2(υ(s)− κ1(s))T(ϕ(υ(s), υ(ηs))− ϕ∆(κ1(s), κ2(s)))

+ |ψ(υ(s), υ(ηs))− ψ∆(κ1(s), κ2(s))|2)ds

+E
∫ t∧τ

0

∫
U

2(υ(s)− κ1(s))T(v(υ(s), υ(ηs), u)−v∆(κ1(s), κ2(s), u))π(du)ds

+E
∫ t∧τ

0

∫
U
|v(υ(s), υ(ηs), u)−v∆(κ1(s), κ2(s), u)|2π(du)ds

+E
∫ t∧τ

0
2(κ1(s)− κ∆(s))T(ϕ(υ(s), υ(ηs))− ϕ∆(κ1(s), κ2(s)))ds

+E
∫ t∧τ

0
2(υ(s)− χ∆(s))T(ϕ∆(κ1(s), κ2(ηs))− ϕ∆(κ

∗
1(s), κ∗2(s)))ds

+E
∫ t∧τ

0

∫
U

2(κ1(s)− χ∆(s))T(v(υ(s), υ(ηs), u)−v∆(κ1(s), κ2(s)), u)π(du)ds

+E
∫ t∧τ

0

∫
U

2(υ(s)− χ∆(s))T(v∆(κ1(s), κ2(ηs), u)−v∆(κ
∗
1(s), κ∗2(s), u))π(du)ds

+E
∫ t∧τ

0

∫
U
|v∆(κ1(s), κ2(ηs), u)−v∆(κ

∗
1(s), κ∗2(s), u)|2π(du)ds.

(97)

It is observable that for s ∈ [0, t ∧ τ],

|υ(s)| ∨ |υ(ηs)| ∨ |κ1(s)| ∨ |κ2(s)| ∨ |κ∗1(s)| ∨ |κ∗2(s)| ≤ l.

But due to β−1(γ(∆)) ≥ l,

|υ(s)| ∨ |υ(ηs)| ∨ |κ1(s)| ∨ |κ2(s)| ∨ |κ∗1(s)| ∨ |κ∗2(s)| ≤ β−1(γ(∆)).

Due to (81), we have for s ∈ [0, t ∧ τ]

φ∆(i, j) = φ(i, j), v∆(i, j, u) = v(i, j, u), ∀u ∈ U, (98)

where φ = ϕ or ψ whereas i = κ1(s) or κ∗1(s) and j = κ2(s) or κ∗2(s). Therefore, applying
(98), Assumptions 6 and 7 to (97) yields

E|e∆(t ∧ τ)|2

≤ CE
∫ t∧τ

0
(|υ(s)− κ1(s)|2 + |υ(ηs)− κ2(s)|2)ds

+ CE
∫ t∧τ

0
(κ1(s)− χ∆(s))T(1 + |υ(s)|ζ̄ + |υ(ηs)|ζ̄ + |κ1(s)|ζ̄ + |κ2(s)|ζ̄)

× (|υ(s)− κ1(s)|+ |υ(ηs)− κ2(s)|)ds

+ CE
∫ t∧τ

0
(υ(s)− χ∆(s))T(1 + |κ1(s)|ζ̄ + |κ2(s)|ζ̄ + |κ∗1(s)|ζ̄ + |κ∗2(s)|ζ̄)

× (|κ1(s)− κ∗1(s)|+ |κ2(s)− κ∗2(s)|)ds

+ CE
∫ t∧τ

0
(1 + |κ1(s)|2ζ̄ + |κ2(s)|2ζ̄ + |κ∗1(s)|2ζ̄ + |κ∗2(s)|2ζ̄)

× (|κ1(s)− κ∗1(s)|2 + |κ2(s)− κ∗2(s)|2)ds

(99)
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Utilizing the Young inequality, Hölder’s inequality, Lemmas 8, 9, and 10 cause

E|e∆(t ∧ τ)|2

≤ C
∫ t

0
E|e∆(s ∧ τ)|2ds + C

∫ T

0
E(|χ∆(s)− κ1(s)|2 + |χ∆(ηs)− κ2(s)|2)ds

+ C
∫ T

0

(
1 +E|υ(s)|2 +E|υ(ηs)|2 +E|κ1(s)|2 +E|κ2(s)|2

)ζ̄

×
(
E|χ∆(s)− κ1(s)|2/(1−ζ̄) +E|χ∆(ηs)− κ2(s)|2/(1−ζ̄)

)(1−ζ̄)
ds

+ C
∫ T

0

(
1 +E|κ1(s)|2 +E|κ2(s)|2 +E|κ∗1(s)|2 +E|κ∗2(s)|2

)ζ̄

×
(
E|κ1(s)− κ∗1(s)|2/(1−ζ̄) +E|χ2(ηs)− κ∗2(s)|2/(1−ζ̄)

)(1−ζ̄)
ds

≤ C
∫ t

0
E|e∆(s ∧ τ)|2ds + C(γ(∆))2∆.

(100)

By the Gronwall inequality,

E|e∆(T ∧ τ)|2 ≤ C(γ(∆))2∆. (101)

The proof is complete.

Theorem 2. Under Assumptions 4, 5, 6 and 7. Let p ∈ (0, 2) and constant c > 0 such that

γ(∆) ≥ β
(
c−(1+ζ̄)((γ(∆))p∆p/2)−1/(2−p)) (102)

holds for small values of ∆ ∈ (0, 1]. Then, for these small values of ∆

E|e∆(T)|p ≤ C(γ(∆))p∆p/2. (103)

Proof. Let e∆(t), ρl , ϑ∆,l , ϑ̄∆,l , and τ be the same as defined before. By [20], for any $ > 0
and p ∈ (0, 2),

E|e∆(T)|p = E(|e∆(T)|p I{τ>T}) +E(|e∆(T)|p I{τ≤T})

≤ E(|e∆(T)|p I{τ>T}) +
p$

2
E|e∆(T)|2 +

2− p

2$
p

2−p
P(τ ≤ T). (104)

By Lemmas 8 and 10,

E|e∆(T)|2 ≤ 2E(|υ(T)|2 + |χ∆(T)|2) ≤ C. (105)

By Lemma 11, we obtain

P(τ ≤ T) ≤ P(ρl ≤ T) + P(ϑ∆,l ≤ T) + P(ϑ̄∆,l ≤ T) ≤ C
l2 (106)

By plugging (105) and (106) into (104), we obtain

E|e∆(T)|p ≤ E|e∆(T ∧ τ)|p + Cp$

2
+

C(2− p)

2l2$
p

2−p
. (107)

holds for any ∆ ∈ (0, 1), l > |x0| and $ > 0. Then, by selecting

$ = (γ(∆))p∆p/2, l = c−(1+ζ̄)$−1/(2−p),



Fractal Fract. 2023, 7, 861 21 of 26

and substituting in (107), we obtain

E|e∆(T)|p ≤ E|e∆(T ∧ τ)|p + C(γ(∆))p∆p/2. (108)

Furthermore, by Condition (102), we obtain

β−1(γ(∆)) ≥ c−(1+ζ̄)((γ(∆))p∆p/2)−1/(2−p) = l. (109)

Therefore, by applying Lemma 12, we obtain

E|e∆(T)|p ≤ (E|e∆(T)|2)p/2 ≤ C((γ(∆))2∆)p/2 = C(γ(∆))p∆p/2. (110)

Corollary 3. Under Assumptions 4, 5, 6 and 7. Define

β(x) = cx1+ζ̄ , x ≥ 0, and γ(∆) = ∆−ε, ε ∈
[ p(1 + ζ̄)

4 + 2pζ̄
,

1
4

]
, (111)

where 0 < p < 2/(2 + ζ̄). Assume also that (102) holds for small values of ∆ ∈ (0, 1]. Then, for
these small values of ∆

E|e∆(T)|p ≤ C∆p(1−2ε)/2. (112)

Proof. By utilizing Theorem 2 and (111), the required assertion (112) can be easily obtained.

5. Numerical Examples

In this section, we will present two examples to verify our theoretical results that were
obtained in the previous sections, and to open up new avenues as a future objective (to be
taken into consideration) in our upcoming papers to mention that stochastic pantograph
models with Lévy jumps can be applied in real-life applications, such as financial markets,
where the proposed diffused split-step truncated Euler–Maruyama method can be applied
for capturing the stock price behavior with nonlinear drift, diffusion, and Lévy jumps,
allowing for better pricing and risk management in financial markets. Also, stochastic
pantograph models can be employed to study the spread of infectious diseases and analyze
the effectiveness of control strategies where the applicability of the proposed scheme can
be utilized for simulating the epidemic’s progression accurately, capturing the impact
of delays and sudden changes in the infection rate, and aiding in designing effective
intervention strategies.

Example 1. Consider a stochastic pantograph model for modeling stock prices with Lévy jumps

dυ(t) = −2(υ5(t) + υ5(ηt))dt + (υ2(t) + υ(ηt))dW(t) +
∫

U
(υ2(t) + υ2(ηt))u2Ñ(dt, du), (113)

with initial data υ(0) = 1, η = 0.5 and the compensator given by π(du)dt = λ f (u)dudt, where
λ = 1 and f (u) is the pdf of the standard normal random variable

f (u) =
1√
2π

e−
u2
2 , −∞ < u < ∞.

Therefore, we deduce that ϕ(υ(t), υ(ηt)) = −2(υ5(t) + υ5(ηt)), ψ(υ(t), υ(ηt)) = υ2(t) +
υ(ηt) and v(υ(t), υ(ηt), u) = (υ2(t) + υ2(ηt))u2. Then, it can be easily noticed that Assump-
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tions 4 and 7 are satisfied. For Assumption 6, by utilizing 2ςς̄ ≤ ς2 + ς̄2 and noting that
−(ς3ς̄ + ς2ς̄2 + ςς̄3) ≤ 0.5(ς4 + ς̄4), we have

2〈ς1 − ς2, ( f (ς1, ς̄1)− f (ς2, ς̄2))〉
= 2(ς1 − ς2)(−2(ς5

1 + ς̄1
5) + 2(ς5

2 + ς̄2
5))

= −4(ς1 − ς2)(ς
5
1 − ς5

2)− 4(ς1 − ς2)(ς̄1
5 − ς̄2

5)

= −4(ς1 − ς2)(ς1 − a2)(ς
4
1 + ς3

1a2 + a2
1a2

2 + ς1a3
2 + ς4

2)

− 4(ς1 − ς2)(ς̄1 − ς̄2)(ς̄1
4 + ς̄1

3ς̄2 + ς̄1
2ς̄2

2 + ς̄1ς̄2
3 + ς̄2

4)

≤ [−2(ς4
1 + ς4

2)− 2(ς̄1
4 + ς̄2

4)](|ς1 − ς2|2 + |ς̄1 − ς̄2|2).

(114)

Also,
2〈ς1 − ς2,

∫
U
(v(ς1, ς̄1, u)−v(ς2, ς̄2, u))π(du)〉

= 2(ς1 − ς2)
∫

U
(ς2

1 + ς̄1
2 − ς2

2 − ς̄2
2)u2 f (u)du

≤ 2(ς1 + ς2)(ς1 − ς2)
2 + 2(ς1 − ς2)(ς̄1 + ς̄2)(ς̄1 − ς̄2)

≤ [2(ς2
1 + ς2

2) + 2(ς̄1
2 + ς̄2

2)](|ς1 − ς2|2 + |ς̄1 − ς̄2|2).

(115)

|ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2 +
∫

U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|2π(du)

= |ς2
1 + ς̄1 − ς2

2 − ς̄2|2 +
∫

U
|ς2

1 + ς̄1
2 − ς2

2 − ς̄2
2|2u4 f (u)du

≤ 2|ς2
1 − ς2

2|2 + 2|ς̄1 − ς̄2|2 + 6|ς2
1 − ς2

2|2 + 6|ς̄1
2 − ς̄2

2|2

≤ [16(ς2
1 + ς2

2) + 12(ς̄1
2 + ς̄2

2) + 2](|ς1 − ς2|2 + |ς̄1 − ς̄2|2).

(116)

Then, combining (114), (115), and (116) and utilizing the inequality ςς̄ ≤ ς2 + ς̄2/4 yield

2〈ς1−ς2, (ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)) +
∫

U
(v(ς1, ς̄1, u)−v(ς2, ς̄2, u))π(du)〉

+ |ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2 +
∫

U
|v(ς1, ς̄1, u)−v(ς2, ς̄2, u)|2π(du)

≤ [−2(ς4
1 + ς4

2)− 2(ς̄1
4 + ς̄2

4) + 2(ς2
1 + ς2

2) + 2(ς̄1
2 + ς̄2

2) + 16(ς2
1 + ς2

2)

+ 12(ς̄1
2 + ς̄2

2) + 2](|ς1 − ς2|2 + |ς̄1 − ς̄2|2)
≤ c1(|ς1 − ς2|2 + |ς̄1 − ς̄2|2).

(117)

Therefore, Assumption 6 is satisfied. Furthermore,

2〈ς, ϕ(ς, ς̄) +
∫

U
v(ς, ς̄, u)π(du)〉+ |ψ(ς, ς̄)|2 +

∫
U
|v(ς, ς̄, u)|2π(du)

= −4ς6 − 4ςς̄5 +
∫

U
(2ς3 + 2ςς̄2)u2 f (u)du + |ς2 + ς̄|2 +

∫
U
|ς2 + ς̄2|2u4 f (u)du

≤ −14
3

ς6 − 10
3

ς̄6 + 2ς3 + ς2 + ς̄4 + 2ς4 + 2ς̄2 + 6ς4 + 6ς̄4

≤ −14
6

ς6 + 8ς4 + 2ς3 − 14
6

ς6 − 10
3

ς̄6 + 7ς̄4 + 2ς̄2 + ς2

≤ −14
6

ς2(ς4 − 24
7

ς4)− 1
6

ς6 + 1− 10
3

ς̄2(ς̄4 − 21
10

ς̄2) + 2ς̄2 + ς2

≤ −14
6

ς2

[(
ς2 − 12

7

)2
− 144

49

]
− 1

6
ς6 − 10

3
ς̄2
[(

ς̄2 − 21
20

)2
− 441

400

]
+ 1 + ς2 + 2ς̄2

≤ c(1 + |ς|2 + |ς̄|2).

(118)
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Hence, Assumption 5 is also satisfied. It can be noticed that

sup
|ς|∨|ς̄|≤ι

(|ϕ(ς, ς̄)| ∨ |ψ(ς, ς̄)| ∨ |v(ς, ς̄, u)|) ≤ 2ι5, ∀ι ≥ 1.

Therefore, we can select β : R+ → R+ by β(ι) = 2ι5, r ≥ 0 with c = 2 and ζ̄ = 4.

β−1(ι) = ( ι
2 )

1/5, ι ≥ 0. Also, let 0 < p < 2/(2 + ζ̄) and define γ(∆) = ∆−ε, ε ∈
[

p(1+ζ̄)
4+2pζ̄

, 1
4

]
,

then all conditions in (80) and (102) are satisfied for all ∆ ∈ (0, 1]. Therefore, with these selected
functions β and γ, the diffused split-step truncated Euler–Maruyama scheme (85) can be utilized to
gain the numerical solution of Equation (113), and by utilizing Corollary 3, we obtain

E|e∆(T)|p ≤ C∆p(1−2ε)/2, (119)

Example 2. Consider a stochastic pantograph model for modeling the transmission dynamics of a
viral outbreak with delays and Lévy jumps.

dυ(t) = −2υ5(t)dt + (υ2(t) + υ(t) sin2(υ(ηt)))dW(t) +
∫

U
(υ(t) + υ(ηt)uÑ(dt, du), (120)

with initial data υ(0) = 2, η = 0.7 and compensator given by π(du)dt = λ f (u)dudt, where
λ = 2 and f (u)

f (u) =
1√
2πu

e−
(ln u)2

2 , 0 ≤ u < ∞.

Here, it is noticed that ϕ(υ(t), υ(ηt)) = −2υ5(t), ψ(υ(t), υ(ηt)) = υ2(t)+ υ(t) sin2(υ(ηt))
and v(υ(t), υ(ηt), u) = (υ(t) + υ(ηt))u. Then, it can be easily checked that Assumption 1 is
satisfied. For Assumption 2, it can be seen that

(ς1−ς2)(ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)) +
ξ − 1

2
|ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2

= (ς1 − ς2)(−2(ς5
1 − ς5

2)) +
ξ − 1

2
|ς2

1 + ς1 sin2 ς̄1 − ς2
2 − ς2 sin2 ς̄2|2

≤ (ς1 − ς2)(−2(ς1 − ς2)(ς
4
1 + ς3

1ς2 + ς2
1ς2

2 + ς1ς3
2 + ς4

2))

+ (ξ − 1)(|ς2
1 − ς2

2|2 + |(ς1 − ς2) sin2 ς̄1 + ς2(sin2 ς̄1 − sin2 ς̄2)|2).

Then, by performing a little bit of simplification and utilizing the elementary inequalities
ςς̄ ≤ ς2 + ς̄2/4 and −(ς3

1ς2 + ς2
1ς2

2 + ς1ς3
2) ≤ 0.5(ς4

1 + ς4
2), we obtain

(ς1−ς2)(ϕ(ς1, ς̄1)− ϕ(ς2, ς̄2)) +
ξ − 1

2
|ψ(ς1, ς̄1)− ψ(ς2, ς̄2)|2

≤
[
−(ς4

1 + ς4
2) + 2(ξ − 1)(ς2

1 + ς2
2) + (ξ − 1)(1 + ς2

1 + ς2
2)

]
× (|ς1 − ς2|2 + |ς̄1 − ς̄2|2)

≤ [
1
4
+ 6(ξ − 1)2](|ς1 − ς2|2 + |ς̄1 − ς̄2|2)

≤ k2(|ς1 − ς2|2 + |ς̄1 − ς̄2|2)
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Therefore, Assumption 2 is satisfied. Furthermore,

ςϕ(ς, ς̄) +
p̄− 1

2
|ψ(ς, ς̄)|2 = −2ς6 +

p̄− 1
2
|ς2 + ς sin2 ς̄|2

≤ −2ς6 + ( p̄− 1)(|ς|4 + |ς|2)

≤ −2ς2

[(
ς2 − p̄− 1

4

)2

−
(

p̄− 1
4

)2]
+( p̄− 1)|ς|2

≤ 9
8
( p̄− 1)2(1 + |ς|2 + |ς̄|2)

≤ k3(1 + |ς|2 + |ς̄|2).

(121)

Hence, Assumption 3 is also satisfied for all p̄ ∈ (ξ, ∞). It should be also noted that

sup
|ς|∨|ς̄|≤ι

(|ϕ(ς, ς̄)| ∨ |ψ(ς, ς̄)|) ≤ 2ι5, ∀ι ≥ 1.

Therefore, we select β(ι) = 2ι5, ι ≥ 0 with C = 2 and ζ = 4. Then, by selecting ξ > 2,
letting 2 ≤ p < ξ, choosing p̄ ∈ (ξ, ∞) large enough such that q ∈ ((1 + ζ)p ∨ ξ, p̄) and defining
γ(∆) = ∆−ε, ε ∈ (0, 1

4 ∧ 1/q] such that all conditions in (8) hold for all ∆ ∈ (0, 1], it can be
concluded by utilizing Corollary 2 that

E|e∆(T)|p ≤ C∆ε(q−(1+ζ)p)/(1+ζ)∧(q−ζ p)/q. (122)

6. Conclusions

This paper studied the stochastic pantograph model with Lévy jumps, which can be
applied in real-life applications such as financial markets and biology. This paper also
contributed to the field of stochastic modeling by providing a robust and efficient numerical
method, which is called the diffused split-step truncated Euler–Maruyama method, for
analyzing stochastic pantograph models with Lévy jumps. The finite time Lp(p ≥ 2)
convergence rate was obtained where non-jump coefficients behaved beyond linearly,
while the jump coefficient increased linearly and this can be utilized to approximate the
variance or the higher moment of the solution. Also, when 0 < p < 2, the Lp convergence
rate was addressed with drift, diffusion, and jump coefficients exceeding linearity, and this
can be used to approximate the mean value of the solution or the European call option
value in financial mathematics. The obtained convergence rates and numerical examples
demonstrated the effectiveness and practical relevance of the proposed approach, which in
turn opened up new avenues for studying and understanding complex dynamical systems
influenced by random factors.
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