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Abstract: This review article delves into the growing recognition of fractal structures in mesoscale
phenomena. The article highlights the significance of realistic fractal-like aggregate models and
efficient modeling codes for comparing data from diverse experimental findings and computational
techniques. Specifically, the article discusses the current state of fractal aggregate modeling, with a
focus on particle clusters that possess adjustable fractal dimensions (D f ). The study emphasizes the
suitability of different models for various D f –intervals, taking into account factors such as particle
size, fractal prefactor, the polydispersity of structural units, and interaction potential. Through an
analysis of existing models, this review aims to identify key similarities and differences and offer
insights into future developments in colloidal science and related fields.
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1. Introduction

The fractal theory [1] has found its wide application in many areas of science, including
growth processes [2], surface roughness [3], viscosity [4,5], geophysics [6], polymers [7], as
well as technology, including mineral extraction [8], environmental protection [9], drying
technology [10], aerosol synthesis [11,12], solar geoengineering [13], composite material [14],
cellular morphology [15], drug delivery [16], stock markets [17], etc. Various fractal and
multifractal approaches are actively used to describe disordered branched systems in
terms of structure or connections. In the generally accepted concept of the scientific search
for the structure–property relationship, fractal modeling is certainly important both for
direct problems, when a given scale-invariant microstructure determines the macroscopic
properties of a physical system, and in inverse problems, which are devoted to restoring
fine details of the structure by analyzing macroparameters.

Fractal geometry in particular was used to develop a better understanding of aggrega-
tion kinetics and physical properties in micro- and nanostructured materials (Figure 1). The
fractality of aerogels, colloidal sols, emulsions, porous systems and so on is determined
by the fact that they can be represented as irregular agglomerates of fine particles [18–22].
The exceedingly low densities observed in certain systems may be explained based on
a hierarchy of aggregates-within-aggregates [23]. It is the features of physicochemical
processes at the stage of synthesis which lead to the fact that materials are characterized
by self-similar or self-affine structural correlations on many scales. It is the dissimilarity
with quasi-homogeneous media that distinguishes them from the traditional multiphase
composite systems, which are locally homogeneous in significant parts compared to the
total size of the system. At the present much of our understanding of the structure and
properties of fractal aggregates has come from computer simulations [24]. Consequently,
modeling the structure of such fractal aggregates (agglomerates or clusters) is of genuine
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interest since a detailed description of the morphology makes it possible to compare the
results of different methods.
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Most observed mesoscale fractals are self-similar. Their fractal dimension, D f , can be
determined either from the mass–radius relation:

N = k f
(

Rg/R
)D f , (1)

or from the behavior of density, ρ, autocorrelation function at intermediate distances,
R < r < Rg: 〈

ρ
(→

r
′)

ρ
(→

r +
→
r
′)〉

∝ rD f−3, (2)

where Rg is the gyration radius of an aggregate containing N particles of radius R (or
characterized by mean radius 〈R〉) [1]. The fractal prefactor, k f , is a dimensionless constant
of the order of unity. It is a local characteristic dependent on the distribution of empty
areas within the aggregate. By Mandelbrot k f parameter is approximately inversely propor-
tional to lacunarity [25,26]. Along with the common approaches for calculating the fractal
dimension (Equations (1) and (2)), it is worth noting many others [1,8].

Today, various methods are used to study fractal clusters incorporated into media
in various states of matter [27]. Experimental techniques are based, for example, on
the scattering of various types of radiation, including visible light, X-rays and thermal
neutrons [28–30], microscopic techniques [31,32], the study of aerodynamics [33–35], rheo-
logical research [36] or the adsorption of small particles [37,38]. In addition to the value
of the fractal dimension, D f , the sizes of aggregates and their structural units, the fractal
prefactor, and some other parameters can be determined. As an alternative, approaches to
the three- [39] or five-parameter [40,41] description of fractal clusters are presented in the
literature. Even so, some model assumptions are often needed to extract structural infor-
mation. The pool of models of fractal clusters and their correspondence to certain types of
physicochemical synthesis processes is an important tool for precision structural analysis.

Historically, the first such model was Diffusion Limited Aggregation (DLA) [42,43].
The simplest principles of the growth algorithm, based on the alternate attachment of
diffusing particles to the seed, gave a striking resemblance to a number of clustering
phenomena, primarily in terms of the value of the fractal dimension parameter (D f = 2.5 in
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three-dimensional space). Since natural and artificially created fractal clusters of particles
can have a fractal dimension in the entire range of connected systems, 1 ≤ D f ≤ 3, active
development of models capable of giving different dimension values began in the 1980s.
The next step was to abandon the sequential approach, which is valid for highly dilute
systems, in favor of the simultaneous diffusion of all particles in the system. So, within
the model of Diffusion Limited Cluster Aggregation (DLCA) [44,45], particles move along
Brownian trajectories, and when they meet another particle or cluster, they join it. Thus,
small clusters formed at the initial stage are assembled into larger ones, and so on. The
algorithm provides for a slowdown of the movement of the cluster with mass, M. The
translation diffusion coefficient is proportional to the M−1/D f factor. As a result, one cluster
is generated containing all the particles in the system and having a fractal dimension within
the range 1.74–1.86 [46]. If the sticking probability for particles/clusters is set to be less
than unity, this leads to denser fractal structures, since it becomes possible to somewhat
penetrate deep into the aggregate due to non-100% attachment to the periphery. This
idea was implemented within the framework of the Reaction Limited Cluster Aggregation
(RLCA) algorithm [47–50], which is characterized by 2 ≤ D f ≤ 2.1 values. In addition to
the variation in the probability of sticking, the scientists also took the path of analyzing the
influence of the motion trajectory on the resulting structure of the aggregates. Replacing
Brownian trajectories with multidirectional rectilinear motions formed the basis of the
Ballistic Limited Aggregation, namely BLA and BLCA models [51], which makes it possible
to achieve 1.89 ≤ D f ≤ 2.95. Also, restructuring approaches were applied to the already
generated clusters, which somewhat increased the value of the fractal dimension [52]. In
addition, fractal properties were found in polymeric materials [53], percolation systems [8],
surface roughness [3] and in the vicinity of critical points on the state diagram of various
substances, which indicated new possibilities for exclusive approaches to modeling micron
and submicron fractals of various D f values [54,55].

All these undoubtedly important milestones in the science of modeling fractal clusters
are described in detail in the remarkable reviews of the end of the last century (see, for
example, [24,56–60]). These publications gave a systematic idea of the relationship between
the kinetics of the process and the resulting fractal properties and even made it possible to
divide algorithms into conventional “universality classes” in accordance with the value
of the fractal dimension. For instance, the structures formed by cluster–cluster aggrega-
tion via either Brownian or linear trajectories probably lie in the same universality class
which is distinctly different from that associated with the diffusion limited particle-cluster
aggregation [61].

However, such a simplified view of the problem somewhat overlooked systems with
D f values that do not correspond to classical models. Moreover, in experiments, there
are cases of a continuous change in the fractal dimension of already formed particle
aggregates, which clearly cannot be described by the synthesis kinetics [62–64]. Incidentally,
the approaches of limited diffusion or ballistics themselves are quite time-consuming to
generate a representative array of clusters, which additionally stimulated the development
of new approaches. The substantial interest on the part of various scientific and technical
fields demanded that the shape of particles [65], their size distribution over a certain
range [21,66–68] and boundary conditions [69] be included in the consideration. However,
the main parameter to which attention is paid, and which is sought to be modeled close to
the experimental value, remains the fractal dimension, D f [1,70].

The description of experimental data, on the one hand, and the prediction of physical
properties, on the other hand, require approaches in which it is possible to simulate a
fractal cluster with any predetermined dimension (Figure 2). In this review, I am trying to
look at the latest achievements in the field of modeling fractal clusters from the viewpoint
of the possibility of controlling the fractal dimension value as an input model parameter
within the framework of one or a few similar algorithms. The focus is primarily on self-
similar fractals, as the most common in practice. I review the most popular numerical
models, briefly comparing the fundamental differences in the underlying mathematical
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or physical principles. The question under consideration is how wide the range of D f can
be covered using one or another generation algorithm. Particular attention is paid to the
possibility of controlling additional structural parameters and estimates of computer time
consumption. Thus, the comparison given in the article allows one to choose an algorithm
for constructing fractal aggregates that will satisfy requests in terms of compliance with the
scientific problem and implementation convenience. Given the constantly growing array of
topical publications, a critical analysis of this kind seems necessary and timely.
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Figure 2. Visualization of the principal question of the review: how can a cluster of particles with a
predetermined fractal dimension be assembled?

An important disclaimer is that this review concerns primarily stochastic fractal
models, which most closely describe the objects observed in the experiments. That is, I
deliberately exclude deterministic fractals from consideration. A detailed description of
their certainly interesting properties can be found elsewhere [1,28,71–73].

I start the list of models with population balance equations (Section 2.1). Then, the
results of modeling based on the Langevin equation (Section 2.2) are considered. In
Section 2.3, I outline the current state of the numerical generation of fractal clusters us-
ing various modifications of the classical Monte Carlo approaches described above. A
significant block of models concerns the geometric construction of fractal clusters with a
predetermined fractal dimension by a hierarchical assembly of structural units, maintaining
the specific mass–size ratio at each stage of simulation (Section 2.4). Models of topologically
linear fractals are also considered to some extent (Section 2.5). Section 2.6 is devoted to
some selected examples of the fractal aggregation modeling. Finally, possible research
directions and open challenges are pointed out in summarizing part.

2. Fractal Cluster Models

Considerable effort has been devoted to the development of realistic models to simu-
late specific experimental results. They are listed below in this section.

2.1. Population Balance Equations

Population balance equations method describes the kinetics of aggregation and size
distribution. It is based on the generalized Smoluchowski equation [19,74,75]:

dnk
dt

=
1
2∑k−1

j=1 βk−j,jnk−jnj − nk∑∞
j=1 β j,knj, (3)
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where nk is the concentration of clusters of size k, and β j,k = β j,k

(
D f

)
is the dimension-

dependent aggregation kernel for two clusters of sizes j and k that determines features of
kinetics through the probability of particle collisions. These kernels are also dependent on
the particle’s morphology, the flow regime, the viscosity of the carrier and the temperature.
The solution of the system of coupled ordinary differential Equation (3) using appropriate
discretization techniques gives the evolution of size distribution function.

The Smoluchowski equation was developed primarily for coalescence phenomena, but
it has been adapted extensively to describe different particle aggregation processes. This
method is widely used for simulating particles agglomeration, as it allows time-dependent
structural phenomena to be followed and provides a quantification of the influence of
the fractal dimension value. However, the population balance equations approach is
not suitable for studying the morphology of clusters, particularly considering that no
universal kernel exists. The proposed analytical expressions for β j,k must be constantly
compared with experiments. These are significant limitations relative to the main goal of
this review—modeling the structure of fractal clusters.

Nonetheless, the corresponding mathematical apparatus is constantly developing
and finds its application in the physics of fractal systems. Improved population balance
equations were proposed (e.g., refs. [74,76,77]) to refine the numerical accuracy, stability
and computational efficiency. Multiple available models have been reviewed [78].

2.2. Langevin Dynamics and Its Derivatives

The Molecular Dynamics technique involves the simulation of a model system of
interacting molecules by numerically integrating Newton’s laws of motion [19]. However,
for investigations of aggregating colloidal systems, where the characteristic timescale
of particle motion is much greater than that of solvent molecular motion, alternative
numerical techniques should be considered as more appropriate. For example, these can
be various versions of Langevin Dynamics: Brownian Dynamics or Stokesian Dynamics.
Both simulation types provide a full description of the N particles motion by solving the
Langevin equation [20]:

mk

..
→
r k = ∑N

j=1

→
F k,j

(→
r ij

)
+
→
F

B

k −
→
F

D

k , (4)

where mk and
..
→
r k are the mass and the acceleration of the k-th particle, respectively;

→
F k,j is

the interparticle force;
→
F

B

k is the Brownian stochastic force acting on the k-th particle (the

random kicks from collisions with solvent molecules);
→
F

D

k is the external force acting on the
k-th particle (first of all, the viscous friction opposing particle motion); and particle inertia
is neglected. In a situation where the primary particles become joined together into rigid
clusters, the scalar diffusion coefficient may be replaced by a size-dependent coefficient
corrected by factor nk

−1/D f [20,79]. Many other physicochemical factors can be explicitly
taken into account.

Both methods treat the solvent in a continuum approximation via the addition of
stochastic forces. In the case of Stokesian Dynamics hydrodynamic interactions among
particles are rigorously accounted for [80,81]. Stokesian Dynamics refers to the numerical
simulation of the dynamic behavior of non-dilute suspensions under conditions in which
hydrodynamic interactions make a predominant contribution to macroscopic properties
such as rheology or sedimentation. In the case of the prevalence of effects of the random
kicks from collisions with solvent molecules, and the viscous friction opposing particle
motion, the formalism of Brownian dynamics is used [82]. Nevertheless, for the Brownian
Dynamics formalism, Equation (4) can be extended to consider hydrodynamic interactions
within the Ermak–McCammon algorithm [83] or the Heyes–Mitchell approach [84].

Time-consuming calculations in Langevin Dynamics are the price for a precise descrip-
tion of the cluster formation in real time. In contrast to the Population Balance Equations
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approach, detailed structural information about the resulting aggregates is available. The
fractal dimension, D f , and the fractal prefactor, k f , can be calculated through Equation (1).
However, modeling clusters with a predetermined fractal dimension using Langevin Dy-
namics is manageable but not obvious.

Another Langevin-equation-based method for simulating colloidal particle aggrega-
tion is Dissipative Particle Dynamics, for which the fluid medium between the colloidal
particles is modeled as an assembly of small particles which act as momentum carri-
ers [85,86]. That sort of coarse-grained representation of the hydrodynamic medium leads
to an effective short-range attraction induced by the structuring of the small fluid particles
in gaps between closely approaching colloidal particles that complicates the simulation
of colloidal dispersions. Again, when working with such a formalism, it is difficult to
unambiguously prescribe the desired dimension of the final fractal aggregates.

Ferri et al. proposed a purely geometric aggregation morphological model able
to mimic the aggregates arrangement obtained with a Brownian Dynamics simulation,
wherein the fractal dimension is tuned between 1.2 and 3 with two compactness param-
eters [87]. These parameters describe the probabilities of the preliminary disposition of
the subsequently attached particle relative to the potential attachment site (α), as well as
potential attachment sites relative to the center of mass of the aggregate (β ≤ α). Brownian
Dynamics results are used to parametrize this model, in order to constrain the morphology
of the aggregates created. The given morphological model builds single aggregates of parti-
cles of any shape, replicating the Brownian Dynamics aggregates successfully (Figure 3).
The particles are either in contact or at a controlled distance. The simplified version of the
generation process is also proposed for the case of monodisperse spheres on a discrete grid.
For this case, the strategy for the parametrization of the aggregation algorithm is presented
in detail. The limitations of the technique are related to the fact that for large aggregates the
available range of fractal dimensions is somewhat reduced (for N > 40 it is 2 ≤ D f ≤ 3).
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ratio of 20:8:3 and compactness parameters α = 0.1, β = 0.05; (b) cylinders with height/diameter
ratio of 5, α = 0, β = 0; (c) spheres, α = 0.1, β = 0.05.

However, Langevin Dynamics is rather computationally expensive [19,88]. On the
other hand, the classical Monte Carlo methods (diffusion, ballistic and reaction limited
aggregation models) given below are faster but limited by the simplified iterative particle
dynamics and to the specific agglomeration regimes.

2.3. Monte Carlo Techniques
2.3.1. Modifications of DL(C)A

Monte Carlo (MC) models follow the structural evolution of an agglomerating system.
Typically, a given number of primary particles is randomly placed in a three-dimensional
space and allowed to move and “interact” according to specific rules, including probabilities.
At the end of the simulation, a population of clusters with a given morphology is obtained.
It is possible to estimate D f as well as the fractal prefactor, k f , by employing Equation (1).
Notably, these simulations face limitations in the replication of aggregation processes
involving interactions beyond the scope of potential functions, including hydrodynamic
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effects such as hydrodynamic interactions or shear-induced aggregation [20]. In contrast to
Langevin Dynamics, which is commonly used to study the agglomeration of nanoparticles,
the MC method relies on an artificial description of time, making it difficult to obtain a
physical description of the agglomeration process [19,22].

In the aggregation of particle–cluster models, the trajectory plays a decisive role, in
contrast to cluster–cluster models [61]. DLA leads to structures with a considerably smaller
fractal dimension than particle–cluster aggregations via linear particle trajectories, namely
BLA. The effective dimension of particle–cluster aggregates can be continuously varied
between the limits of the DLA and BLA models with the exponent, which describes the
distribution of step lengths in the Levy-flight trajectory [89]. The impact of Brownian motion
on the structure of aggregates resulting from cluster–cluster aggregation is much more
diminutive, because the clusters cannot penetrate each other by means of any trajectory.

Accounting for some factors can affect the value of D f in comparison with classical val-
ues pointed out in the Introduction section for the MC algorithms [60,90]. These include im-
portant improvements such as the consideration of the effects of cluster restructuring [52,91],
flexibility [92], the effects of inter-particle interactions [57,93,94], etc.

The modified two-dimensional hierarchical model for cluster–cluster aggregation,
incorporating partial reorganization following initial cluster contact, was investigated [91].
After two clusters contacted each other, one cluster was allowed to rotate about the center
of the contacting particle in the other cluster until a second bond is formed. In some cases,
the second cluster is also allowed to rotate to form a third bond. The results showed
that the inclusion of rotational effects led to significantly increased cluster compactness
at short length scales, with only a marginal increase in fractal dimensionality on longer
scales (∆D f ≤ 0.05). Findings from both Brownian and linear trajectory aggregations were
presented. Thereafter, the effects of basic restructuring mechanisms on cluster geometry in
diffusion-limited, ballistic, and reaction-limited cluster–cluster aggregation were explored
more precisely using three-dimensional off-lattice models, revealing comparable increases
in fractal dimensionality (D f = 2.09 for DLCA (Figure 4); D f = 2.25 for RLCA) [52].
To achieve the fractal dimension of about 2.5, additional restructuring processes are re-
quired, involving the bending and twisting of particle loops and/or fragmentation with
cluster reformation.
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Another type of cluster restructuring has also been proposed for the three-dimensional
hierarchical cluster–cluster aggregation models [95]. In these algorithms, it was assumed
that contacts between pairs of particles once formed cannot be broken but may move on
the surface of particles in one cluster which come into contact with particles in another
cluster. Such structural readjustment processes increase the fractal dimension up to 2.13
and 2.21 for DLCA and BLCA, respectively. As in the previous case, the most striking
changes occur at the first level of restructuring (Figure 5). In general, restructuring has a



Fractal Fract. 2023, 7, 866 8 of 25

more important effect on the short-range structure of simulated agglomerates than on the
long-range morphology, which determines their fractal dimension.
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The DLCA model was modified by including cluster deformations using the bond
fluctuation algorithm [92]. In addition to rigid motions of clusters, some internal move-
ments are introduced with a controlling flexibility parameter. It was shown that including
cluster deformations significantly alters the aggregation properties: a sol-gel transition
was obtained at a given threshold value of the volume fraction. Below the threshold value,
the intra-aggregate bonding prevails over the formation of a gelling network. On the
other hand, above the threshold, the sol-gel transition occurs at a certain finite time. The
fractal dimension of the aggregates forming the gel is very close to 2, as seen both from
box-counting calculations and the mass–radius ratio.

DLCA morphology was studied as a function of structural unit overlap [96]. The mor-
phology is parametrized by both the fractal dimension, D f , and the fractal prefactor, k f . For
clusters built on a three-dimensional cubic lattice D f = 1.8 and k f = 1.3 were found for the
spherical monomers in point contact. Both these values increased as overlap increased. The
fractal dimension value reached 2. Structural features of the two-dimensional projections
of these clusters were also precisely considered to analyze the relationship between the
longest length and projected area as functions of monomer overlap [96].

The effects of rotational diffusion on off-lattice cluster-cluster aggregation have been
investigated [97]. The effects of rotational diffusion continuously decrease D f from a
characteristic DLCA value. In the limit of a very high rotational diffusion rate compared
to translational diffusion, the fractal dimension equals 1. It was mentioned that in most
real physical systems, the diffusion constant ratio (the mean square displacement of the
most distant point in the cluster due to rotational motion divided by the mean square
displacement due to translational motion), will probably lie in the range 0–1, and the effect
of rotational diffusion will be relatively small.

Statistical properties of growing DLA clusters were compared in the case of the fixed
cluster, and in the case when the growing structure has a nonzero rotation around its initial
seed [98]. It was shown that for a small enough rotative speed, the fractal dimension is
growing as a function of cluster size, but for higher speed, it tends to the unity.

Various alternatives for calculating the probabilities of particle displacements in MC
simulations were compared when agglomeration occurs in the DLCA regime [99]. An
interpolating formula to simulate the transition between the BLCA and DLCA regimes
was developed [100]. Most studies assume that particles are displaced by a constant dis-
tance equivalent to the diameter of a monomer, regardless of their sizes. Several studies
have taken into account displacements that vary with cluster size [101–103]. The Monte
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Carlo Agglomeration Code (MCAC) method with justified probabilities of particles’ move-
ment, considering size-dependent displacements and the ability to bring a validated and
consistent physical residence time both for individual particles and for the ensemble of
polydisperse particles, was introduced [22]. Based on a binomial approach and the dis-
cretization of Langevin Dynamics trajectories of individual particles, the definitions of
specific particle persistent distance (λp =

√
18Dτ, where D is the particle’s diffusion coeffi-

cient, and τ is the momentum relaxation time defined as the ratio between particle’s mass
and friction coefficient), its corresponding time step (∆t = 3τ) and subsequent probabilities
for particle displacements were found. The model combines the advantages of MC, i.e., the
ability to efficiently simulate the complex agglomerates with fractal dimensions in the
range 1.62 < D f < 1.88 [104], and the advantages of Langevin Dynamics to account for
physical dynamics.

The widespread use of the reaction limited models confirm the importance of studying
short-range interactions. For example, active, moving, and rotating particles and clusters
were studied in two-dimensional simulations [105]. Motile particles changed irreversibly
into nonmotile ones upon collision with a nonmotile particle until the system turns into
absorbing state where all particles are nonmotile. A crossover from fractal aggregates at
low density (D f = 1.74) to homogeneous ones at high density (D f = 2) was found. The
persistence of single-particle dynamics pushes this crossover to a higher density and can be
used to change the porosity of the aggregate. At the lowest density the fractal dimension
approaches that obtained in DLA.

Another approach involves introducing an effective aggregation radius of aggre-
gated particles, Λ, for modeling short-range interactions in a frame of a particle–cluster
regime [106]. A particle far from this region does not interact with the cluster until its
trajectory intersects the interaction boundary of any aggregated particle (distance to the
particles in the cluster is less than Λ) for the first time. Then, the position of the new particle
in the cluster is determined near the closest previously aggregated particle. For Λ = 1, or
direct-contact interaction, one obviously recovers the usual DLA or BLA models. However,
for sufficiently large clusters D f → 1 as Λ→ ∞ , and the entire range of 1 < D f < 2 and
1 < D f < 1.71 may be covered for ballistically limited and diffusion-limited aggregation
regimes, respectively (Figure 6).
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The consideration of long-range interactions between clusters also affects their fractal
dimension [107], which is attributed to transparency effects [108]. Namely, the electrostatic
interactions can reduce the cluster penetration and decrease the fractal dimension [93]. A
physically justified extension of the DLCA model for a case of polarizable clusters em-
phasizes sticking by tips and gives D f = 1.42 [93]. At the next stage, the hierarchical
cluster–cluster aggregation model was extended by introducing dipolar interactions be-
tween the magnetic dipoles attached to each particle [94]. It was found that the fractal
dimension of the resulting clusters decreases when the intensity of the momenta increases.
It is worth noting that although slightly smaller, the fractal dimension recovered, D f = 1.34,
in the limit of very large momenta (“zero temperature” limit) is very close to the tip-to-tip
model in three dimensions. The upper, “zero momentum” limit was found to be 1.72.
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The irreversible aggregation of non-interacting particles and those interacting through
repulsive and attractive potentials was investigated, explicitly incorporating the rotational
diffusion of aggregating clusters (Figure 7) [90]. The findings demonstrate that particle
attraction does not influence the aggregation mechanism or the structure of the aggregates,
which remain comparable to those of non-interacting particles. Conversely, repulsive parti-
cles form denser aggregates, with an increase in both fractal dimension and aggregation
times as temperature decreases. The structure of the aggregates from non-interacting parti-
cles depends on the ratio of rotational and translational diffusion coefficients showcasing
an instance of DLCA for rotating clusters. In the case of repulsive particles, rotational diffu-
sion plays a role in the formation of RLCA clusters. Comparing the fractal dimensions of
non-rotating clusters of non-interacting particles and rotating clusters of repulsive particles
elucidates the consistent values observed in the established DLCA model and experiments
on colloidal particles.
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2.3.2. Eden Model and Its Derivatives

The Eden model describes the growth of specific types of clusters such as bacterial
colonies and the deposition of materials through the random accumulation of particles on
their boundary [109,110]. The algorithm is essentially as follows. On a two-dimensional
square lattice, a site is labeled as occupied by particle. Then, any one of the four possible
adjacent cells is randomly chosen to be filled by the next particle. The pair now has six
possible growth sites. The process continues until a cluster of certain size is formed. It
is found that the cluster has a solid core, i.e., is compact. This is an example of a surface
fractal. Several versions of the Eden model have been introduced that give similar but
somewhat different boundary statistics depending on the probability distribution of the
possible paths from occupied to adjacent unoccupied positions [111].

A three-dimensional off-lattice model, namely the Porous Eden Model, was proposed
to generate fractal aggregate structures (Figure 8) as a variation of the Eden Model with
the additional capability of randomly inactivating particles with a given inactivation
probability, p [112]. As this probability increases from 0 to 1, the proposed generation
model follows a continuous transition between different types of fractal structure, including
an off-lattice Eden Model, a self-avoiding random walk model, and a linear chain with
partially constrained growth directions.

Microstructural properties (the radius of gyration, shape factor, mass and surface frac-
tal dimensions, specific surface area, porosity and pore size distribution) can be controlled
by adjusting the inactivation probability and the number of particles. For example, mass
fractal dimension can take values of 1.6 ≤ D f ≤ 3. In addition, the proposed approach is
convenient to implement and has high computational efficiency.
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2.4. Hierarchical Assembly According to Mass–Radius Ratio

Recently, there has been a surge in the popularity of non-kinetic algorithms for the for-
mation of fractal clusters through a hierarchical arrangement of particles. These algorithms
aim to ensure strict adherence to fractal scaling at each iterative step. One notable instance
of this adherence is observed in the mass–radius relationship (1). Although primarily
rooted in geometric principles, these methodologies enable the continuous manipulation of
the fractal dimension of the clusters. Consequently, these models find versatile application
in the structural simulation of aggregates spanning a wide spectrum of sizes, ranging from
the nano to the macro scale, owing to their independence from specific forces.

2.4.1. Monodisperse Particle–Cluster Models

A sequential particle–cluster algorithm for generation of aggregate geometry has been
developed by Filippov et al. [113]. It allows for the adjustment of the structural parameters
like D f or k f to prescribed values and consequently is widely used. In a frame of the
given tunable particle–cluster generation algorithm, identical spherical particles are added
iteratively under the condition that the scaling law (1) is fulfilled exactly at each step for
predefined values of parameters involved. The iterative procedure could be represented
by calculating the distance between the center of the N-th particle,

→
r N , with the center of

mass of the cluster already containing N − 1 particles,
→
r

0
N−1:

∣∣∣∣→r N −
→
r

0
N−1

∣∣∣∣2 =
N2R2

N − 1

(
N
k f

)2/D f

− NR2

N − 1
− NR2

(
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)2/D f

. (5)

It is the case that the center of the next particle must be situated on the spherical
surface determined by Equation (5), and it must be in point contact with any other particle
of the cluster. Equation (5) is derived from the mass–radius relation (1), and the definition of

the gyration radius, Rg, is corrected for the N = 1 limit, Rg =

√
a2 + 1

N

N
∑

i=1

∣∣∣∣→r i −
→
r

0
∣∣∣∣2 [113].

A similar algorithm was earlier described by Mackowski [114,115], but the restriction (5)
has not been given explicitly. In such a way, it can be possible to cover the entire range of
fractal dimensions of branched clusters in three-dimensional space, 1 ≤ D f ≤ 3. Examples
of clusters of both types are shown in Figure 9a,b.
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Figure 9. Typical particle–cluster fractal-like aggregates of monodisperse (a–c) and polydisperse
(d–f) particles. (a) Sequential algorithm by Filippov et al., D f = 1.8. Adapted with permission
from Ref. [113]. 2000, Elsevier. (b) Sequential algorithm by Mackowski, D f = 1.9. Adapted with
permission from Ref. [115] © The Optical Society. (c) Tunable Sequential Aggregation-based model,
D f = 2.81. Adapted with permission from ref. [116]. 2020, Elsevier. (d) Polydisperse sequential
algorithm by Dolotov et al., D f = 1.9. Adapted with permission from Ref. [117]. 2007, Springer
Nature. (e) Polydisperse sequential algorithm by Tomchuk et al., D f = 2.4. Adapted with permission
from ref. [118]. 2015, American Chemical Society. (f) The modified polydisperse Tunable Sequential
Aggregation model, D f = 2.5 [119].

The prefactor k f usually displays uniform downtrends with the fractal dimension [120–122].
Nevertheless, for some aggregation processes, these are uptrends [123]. Attempts to explain
these trends were made based on either the packing of spheres in space or a small N limit
for clusters’ structure. When N is small, the ways in which the monomers can assemble are
of limited number and hence are not influenced by the aggregation scheme. Therefore, this
correlation somewhat limits the simultaneous use of values of the parameters k f and D f .

Another tunable particle–cluster aggregation model was developed to construct the
fractal-like agglomerates consisting of monodisperse spherical primary particles [116]. An
approach of tuning the fractal dimension at a given fractal prefactor and porosity, ε, was
used in a frame of previous algorithm [113]. The D f –parameter can be adjusted with
respect to the porosity correlation obtained by Singh and Tsotsas [124]:

ε = 1− 0.465N
(

k f /N
)3/D f

, (6)

keeping the porosity and the number of primary particles the same. By tuning the fractal
dimension with different prefactor in this way, the formed agglomerates look almost the
same. Therefore, one can overcome limitations regarding the k f values. The described
algorithm is referred to as Tunable Sequential Aggregation (Figure 9с).

2.4.2. Polydisperse Particle–Cluster Models

The particle polydispersity is a common case in practical applications, so the introduc-
tion of particle polydispersity into the modeling of stochastic fractal aggregates extends
the possibilities for studying correlations in natural and industrial fractal systems as well
as modeling physical properties of different nanomaterials. The impact of particle poly-
dispersity on the structure and dynamics during coagulation remains poorly understood.
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Within the free molecular regime, the polydispersity of constituent particles does not
significantly influence the asymptotic fractal dimension [31,68] as confirmed by subse-
quent research focusing on agglomerates containing tri-disperse particles in the continuum
regime [125,126]. Conversely, it was demonstrated that an increase in particle polydis-
persity leads to more open structures [21]. Polydispersity characteristics have substantial
implications for various static and kinematic features of the fractal agglomerates, including
electron spin resonance [117], radiative properties [66,127], diffusion [128,129], dynamic
light scattering [130,131], rheology [132], thermal conductivity [133], etc.

Special sequential algorithm for the generation of aggregates of polydisperse par-
ticles characterized by the preset values of the fractal dimensions and prefactor was
developed [117]. The above-mentioned approach [113] was generalized to the case of
polydisperse particles distributed over a certain range of radii and, consequently, masses:
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where mN is the mass of N-th particle and RN is its radius, 〈m〉N is the average mass of the
particle, and 〈R〉N is the mean radius of particles for aggregate composed of N particles. In
the approach considered, the aggregate is constructed by the addition of single particles,
the positions of which are set by the value of fractal dimension (Figure 9d).

A similar idea was implemented in terms of the mass of clusters, MN [118]. In addition,
the radius of gyration of the added spherical particle,

√
3/5RN , was taken into account

more correctly:
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The result of this algorithm is presented in Figure 9e for 33% lognormal polydispersity.
The sequential tunable algorithm for generation monodisperse agglomerates [116] was

improved and extended to polydisperse units [119]. The improved algorithm, Modified
Polydisperse Tunable Sequential Aggregation (MPTSA), can completely retain the given
input structural properties for polydisperse clusters. The standard deviation of the normal
distribution of primary particle radius is limited to 10% of the mean value. A modified
polydisperse tunable aggregation model has been developed using the expression to
calculate the distance of the new approaching particle.∣∣∣∣→r N −

→
r

0
N−1

∣∣∣∣2 =
M2

N〈R〉
2
N

mN MN−1
N2/D f ,t − 3MN R2

N
5MN−1

− MN〈R〉2N
mN

(N − 1)2/D f ,t , (9)

taking into account the correction D f ,t = D f

(
ln
(

Np

(
1− 1/k f

)))
, was introduced to

overcome the fractal prefactor limitation in the construction of the aggregate of Np parti-
cles [116]. Irrespective of each agglomerate having a tuned fractal dimension in the MPTSA
model, fractal properties extracted for reconstructed agglomerates (Figure 9f) were closer
to their predefined values than those provided by previous aggregation models [116,134].

Nevertheless, it was established that DLA agglomerates are definitely not self-similar [135–137].
Compared to small aggregates, the morphology of relatively large aggregates can be
characterized as being far more compact. The correlation functions of DLA aggregates in
both real and reciprocal space do not show simple scaling described by D f -parameterized
power laws in the corresponding ranges. These results do not exclude the fact that the DLA
cluster remains fractal, but rather that it is not a self-similar fractal. Therefore, one must
carefully use the approaches outlined in this section in modeling real systems, which are
often self-similar. Even if it is possible to repeat the mass-size dependence of type (1), for
the particle–cluster algorithms, it is possible to deviate from dependence (2).
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2.4.3. Cluster–Cluster Models of Monodisperse Particles

Hierarchical assembly along the cluster–cluster path is much less subject to viola-
tion of self-similarity symmetry, since even qualitatively, it is clear that the structure is
repeated locally in accordance with the model. Therefore, it is natural that these algorithms
are increasingly used in multiple applied problems despite the relative complexity of
implementation compared to particle–cluster approaches (e.g., refs. [130,131]).

The first hierarchical cluster–cluster aggregation model, tunable dimension cluster-
cluster aggregation (tdCCA), was introduced, allowing for the building irregular fractal
clusters on a three-dimensional lattice with any predefined fractal dimension ranging from
1 up to 2.55 [138]. The tdCCA algorithm works iteratively by sticking aggregates of the
same number of particles at the correct distance between centers of mass in order to recover
the desired scaling (1): ∣∣∣∣→r 0

1 −
→
r

0
2

∣∣∣∣2 = 4
(

41/D f − 1
)R2

g1 + R2
g2

2
+ 1. (10)

Later, tdCCA was adapted for the off-lattice generation of fractal clusters [139]. The
procedure starts with a collection of 2n particles grouped into pairs to obtain 2n−1 dimers.
The dimers are grouped into pairs that generate tetramers and so on. An aggregate of the
next generation is obtained by sticking together two aggregates of the previous generation
containing equal number of particles. The procedure stops iterating when a final aggregate
of 2n particles is obtained (Figure 10).
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variable fractal dimension in the range from 2.2 to 3 was also reported [122]. Artificial 
clusters with variable fractal dimension were generated using a modified version of the 
tdCCA model for 2.2 ≤ 𝐷௙ ≤ 2.5 and a densification procedure including a Voronoi tes-
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Figure 10. On-lattice aggregates containing 214 particles each, with fractal dimension D f = 1.5 (a),
D f = 2.0 (b), and D f = 2.5 (c) generated with tunable dimension cluster–cluster aggregation model.
Adapted with permission from ref. [139]. 1998, Elsevier.

A straightforward implementation of the tdCCA model requires computational effort
scaling with O

(
N4) of the aggregation number. By applying two minor changes to the

algorithm, the computational effort can be reduced to O
(

N2) [140]. The changes concern
the introduction of MC-based methods into blocks for assessing the intersection and contact
of clusters. Additionally, it allows for the efficient parallel implementation of the tdCCA
algorithm but still in the range 1 ≤ D f ≤ 2.55.

The generation of clusters composed of rigid monodisperse primary particles with
variable fractal dimension in the range from 2.2 to 3 was also reported [122]. Artificial
clusters with variable fractal dimension were generated using a modified version of the
tdCCA model for 2.2 ≤ D f ≤ 2.5 and a densification procedure including a Voronoi
tessellation for 2.5 ≤ D f ≤ 3 (Figure 11a–d). This process of densification is executed
in the following steps. Initially, a Voronoi tessellation is conducted on a given cluster.
Subsequently, any Voronoi vertices that would result in the overlap of primary particles
upon placement are disregarded. Following this, particles located farther from the cluster’s
center of mass are randomly relocated to fill the remaining holes, which are unoccupied
Voronoi vertices, within the cluster’s interior. The guideline for this repositioning is that
the gyration radius decreases as a consequence of the particle’s relocation within the cluster.
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Upon the placement of a particle onto an empty Voronoi vertex, it is randomly adjusted to
establish a connection with neighboring particles. As soon as particles have been allocated
to all Voronoi vertices identified in the initial step, a subsequent Voronoi tessellation
is conducted, and the particle exchange process continues. This sequence is reiterated
until the condition of decreasing Rg can no longer be satisfied, ultimately resulting in a
minimal possible radius of gyration and a fractal dimension of 3. Stopping the procedure
earlier leads to intermediate values of the fractal dimension. For all generated aggregate
populations, it was found that the aggregate mass and the aggregate size, characterized by
the radius of gyration, follow a fractal scaling (1). Furthermore, the obtained prefactor of
the fractal scaling, k f , is related to D f according to k f = 4.46D−2.08

f .
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Figure 11. (a–d) Examples of aggregates of 104 particles with fractal dimension D f = 2.2 (a),
D f = 2.5 (b), D f = 2.8 (c), and D f = 3.0 (d) obtained with the modified tdCCA model and the
following densification via Voronoi tessellation [122]. (e) An aggregate of 724 particles with fractal
dimension D f = 1.8 generated using the tunable CCA algorithm. Adapted with permission from
ref. [113]. 2000, Elsevier.

A more general algorithm was introduced [113], which allows the agglomeration of
clusters with different numbers of primary particles. Hence, the final aggregation number
is not necessarily a power of 2 like in tdCCA model. Equation:
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yields a necessary and sufficient condition for fulfillment of the scaling law (1) by the
resulting cluster of N = N1 + N2 particles. Based on this equation, the CCA algorithm
combines small clusters pairwise, following an arbitrary hierarchical scheme. Each of the
agglomeration events includes placing the centers of mass of two clusters to random points
at a distance given by Equation (11) followed by their rotation until the combining clusters
have at least one contact point (and no overlapping). The final result is one large aggregate,
satisfying the fractal mass-radius ratio (1) exactly (Figure 11e).

The implementations of various computer models are mostly based on a trial-and-error
procedure. Such approach is very time consuming. For example, in the literature some
authors claim that to generate an aggregate composed of more than 1000 primary particles
from hours to days are needed [130]. A very fast and accurate implementation of the
tunable CCA algorithm was presented by Skorupski et al. [137]. Randomization is reduced
to its necessary minimum and the position of a new cluster is calculated with algebraic
methods. The algorithm is capable of generating a wide set of aggregates characterized
by different morphological parameters. For example, to generate an aggregate composed
of 214 particles with D f = 1.8 and k f = 1.3 on a standard personal computer using the
CCA routine, less than a minute is needed. It is worth noting that a method based on the
particle–cluster aggregation processes was also considered.
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2.4.4. Cluster-Cluster Models of Polydisperse Particles

Although the tunable CCA model by Filippov et al. was designed to generate only
fractal-like aggregates of monodisperse primary particles, it is relatively easy to introduce
polydispersity into algorithm of Skorupski et al. [137] replacing the fixed particle radius,
R, with the averaged particle radius, 〈R〉. The calculation of the rotation angles should be
altered accordingly, i.e., in all equations the distance between particle centers, 2R, should
be replaced with R1 + R2. Such an approach does not ensure the preservation of fractal
dimension and fractal prefactor for every individual aggregate but only for an ensemble of
a large number of aggregates.

A new algorithm, FracVAL (fractal aggregate generation algorithm developed in Val-
paraíso), again based on the tunable CCA algorithm was developed by using specific aggre-
gation strategy for generating fractal clusters of polydisperse primary particles [141]. The
algorithm is also able to preserve the prescribed D f and k f for each aggregate (Figure 12),
regardless of its size and polydispersity (0–11% for lognormally distributed particles).
The FracVAL algorithm is programmed in a hierarchical manner for aggregation between
sub-clusters with approximately the same aggregation number.
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The distance between the centers of mass of the two sub-clusters to be aggregated is
calculated as:
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where 〈R〉N,g corresponds to the geometric mean via relation log〈R〉N,g = N−1∑N
i=1 logRi.

Since the positions of the two contacting primary particles and the mass centers of the
two aggregating clusters are found using analytical expressions, FracVAL is considerably
computationally efficient for generating fractal aggregates for different combinations of D f ,
k f and polydispersity. The algorithm is validated by analyzing the density–density corre-
lation functions. The predefined fractal parameters are found to be accurately preserved
for each individual aggregate. The performance of the proposed algorithm is evaluated
for fractal aggregates consisting of up to 1000 primary particles and for fractal dimension
variation over the entire D f range between 1 and 3, and k f range between 0.1 and 2.7.
Aggregates consisting of 500 monomers are generated on average in a few minutes on a
common personal computer, illustrating the efficiency of the FracVAL algorithm.

In a frame of considered cluster–cluster models [113,137,141], a particle–cluster aggre-
gation algorithm is first used to obtain a set of small aggregates consisting of approximately
5–10 primary particles because the local structure at the length scales less than < 10R a
DLA-like aggregate is quantitatively similar to a DLCA-like aggregate [136], but particle–
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cluster sequential algorithms are much more efficient because they are less subject to spatial
constraints at small size scales.

A generalized non-kinetic off-lattice tunable cluster–cluster algorithm, proposed by
Tomchuk et al. [121] for the construction of irregular fractal clusters of polydisperse par-
ticles, does not include a particle–cluster model in the early stages. At all iterations for
all generations of sub-clusters, the generalized algorithm is cluster–cluster. The use of
analytical approaches to calculate the coordinates of two sub-clusters when combined into
one aggregate also increases the computational efficiency, as in the two methods described
above. Another aspect concerns the fact that the generalized model is not limited to spheri-
cal particles but can also be used to construct fractal clusters of particles of any shape since
it operates in terms of the gyration radii according to Huygens–Steiner theorem.

The procedure of the stochastic cluster generation starts with primary polydisperse
particles distributed according to an arbitrary function. Expressions for Rg of most common
primary particle shapes are well known [142]. As a first step, a part of them can be combined
into dimers, using

Rg =

√
M1

M
R2

g1 +
M2

M
R2

g2 +
M1M2

M2

∣∣∣∣→r 0
1 −

→
r

0
2

∣∣∣∣2 (13)

to determine the gyration radius of every dimer. Thereafter the produced associations can
be assembled pairwise following a hierarchical scheme with predefined parameters D f
and k f . In each step, the centers of mass of two current clusters (the minimum possible
combination is a dimer plus a monomer or a dimer plus a dimer) are placed at random
points at a distance, as follows:

∣∣∣∣→r 0
1 −

→
r

0
2

∣∣∣∣ =
√√√√ M2

M1M2
〈R〉2N

(
N
k f

)2/D f

− M
M2

R2
g1 −

M
M1

R2
g2. (14)

Then, the clusters rotate until at least one contact between the primary particles of the
clusters is achieved, thus excluding an overlap. There are several steps to do this. First,
the condition of non-overlapping two sub-clusters is checked. If there is overlapping, the
sub-clusters rotate along two mutually perpendicular axes, passing through the center of
mass, at random angles until the intersection is eliminated. Then, a pair of particles from
two sub-clusters is selected that has a minimal distance between theme (conventionally,
particles I and II). Then, one of the two sub-clusters is rotated on the (center of mass–particle
I–particle II) plane by an analytically calculated angle to ensure the contact condition. If
this does not result in any overlap between the sub-clusters, one obtains a new cluster.
Otherwise, the procedure is repeated from the beginning.

As compared to the previous algorithms, there is important distinction. The size
characteristic, gyration radius, is recalculated at each generation again using the Huygens–
Steiner theorem (13), thus providing higher accuracy with respect to the basic Equation (1).
It was clearly shown that an increase in polydispersity within a few tens of percent expands
the available D f range for a given fractal prefactor, and, moreover, there is a k f interval
which allows one to cover the entire fractal dimension range of 1–3 (Figure 13).

Therefore, the generalized model [121] makes it possible to generate clusters with a
continuous change in the structure covering an arbitrary wide size scale as well as the
full range of fractal dimensions, 1 ≤ D f ≤ 3. The efficient work of the algorithm was
demonstrated by the structural analysis of the numerically generated ensembles of clusters
in terms of correlation functions (pair distance distribution functions).

The discussed models based on a hierarchical procedure extend the previous studies
in this area to the case of the cluster–cluster agglomeration and make it possible to generate
clusters with a continuous structural change, covering the full range of natural mass fractal
dimensions in three-dimensional space. At a certain iteration two sub-clusters can be aggre-
gated in many ways, each of these ways is associated with the distance between the centers
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of mass, which ensures the preservation of both D f and k f . Therefore, one needs to apply
one scalar constraint on the coordinates of the sub-clusters to satisfy the basic Equation (1).
The remaining unbound degrees of freedom ensure a high degree of stochasticity of the
aggregates, thus bringing them closer to the objects observed in experiments.
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2.5. Fractal Chains

The dynamics of macromolecules in solution, governed by their self-similar chain
structure, serves as the foundation for molecular characterization. The accurate interpreta-
tion of experimental measurements enables the determination of the polymer structure in
solution [7]. A robust algorithm for constructing fractal chains was proposed and analyzed
in a full range of fractal dimensions, 1 ≤ D f ≤ 3 (Figure 14) [143,144].
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One of the methods to generate fractals is self-similarity transformation like in a case
of the Koch curve [1,145]. It is the fractal of topological dimension 1. At the beginning,
the fractal initiator is a line segment of length L. Then, the initiator is replaced by a
generator that is a broken line of i intervals of length L/ f , thus producing a fractal of the
first generation. Each interval of the generator is replaced by the whole generator at the
next steps. A fractal of the j-th order consists of ij intervals of length L/ f j. For an ideal
fractal obtained using this procedure in the limit j→ ∞ , the fractal dimension is defined
as the similarity dimension [1]:

D f = ln(i)/ln( f ). (15)
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Regular fractals in the style of the Koch curve have additional types of symmetry that
affect the correlation properties and make it difficult to determine the D f parameter via
Equation (2) [143]. However, if the generator is randomly changed at each step of generation
under constant i and f , then an irregular fractal will be built for large but finite j [143].
Several spectacular examples are given in Figure 14. The model can approximate a polymer
chain or a fractal cluster if nanoparticles are placed at the vertices of this polygonal line.

2.6. Some Exotic Examples in One Line
2.6.1. Möbius Fractal

As noted, the deterministic fractal aggregation algorithm is based on an exact repetition
of the shape at different scales, while when using the stochastic fractal, the scaling ratios are
observed only “on average”. The proposed algorithm for constructing a fractal object, called
the Möbius fractal, is essentially on the verge between regular and non-regular fractals [146].
This model is an example of a stochastic fractal built according to a deterministic protocol
without randomization steps. The main idea is to use the Möbius function, µ(x), the values
of which change in a quasi-random way, but the function itself is unambiguous [147]. It is
defined on the set of natural numbers, x ∈ N, and takes values −1, 0 and 1 depending on
factorization of x into prime factors. The values of the µ(x) function are associated with the
left/straight/right directions of movement on a square lattice. Thus, an arbitrarily large
topologically linear fractal can be constructed but with a fractal dimension greater than 1
(Figure 15a). According to the correlation analysis, the fractal dimension of such a system
is close to 1.75. Cluster size variation as well as structural diversity can be easily achieved
using different input x ranges.
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2.6.2. Modeling Method Based on the Menger Sponge

Yang and Wang describes a generating algorithm [148], based on the random geo-
metrical fractal approach, for simulating mesostructured aggregates. The modified model
was introduced for approximating the actual state, with the assumption that the particular
models are randomly convex hexahedral in three-dimensional space (Figure 15b). The
fractal dimension was estimated at a level of 2.6153, close enough to the value of 2.7268 for
the deterministic Menger sponge model underlying the considered algorithm [1,149].

2.6.3. Dynamic Lattice Liquid Model

The Dynamic Lattice Liquid model was proposed as a tool for studying various
aggregation processes [150]. This model allows for the performance of simulations of
systems with a constant number of particles and explicit solvent presence. It is based on a
lattice structure with particles located at all lattice sites. They cannot move individually.
However, a long-range cooperative mobility in such system can take place in the form of
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multiparticle movement in closed loops. To simulate fractal aggregation, it is assumed
that two types of particles are randomly distributed in the system. One particle type is
capable of aggregation when meeting similar (dispersed) particles, while the other is not
(solvent). The Dynamic Lattice Liquid algorithm properly reflects structural and dynamic
properties of the stochastic fractal growth process (Figure 16). With this approach, the
resulting fractal dimension lies in the range of 1.7 ≤ D f ≤ 2 and is clearly correlated
with the initial concentration of dispersed particles, which is in good agreement with the
predictions based on Smoluchowski equation for DLCA.
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The Monte Carlo methods are unable to capture structural changes influenced by the
interplay of kinetic processes, such as simultaneous aggregation, coalescence or restructur-
ing. Additionally, they do not yield a time-dependent evolution of the fractal dimension.
Monte Carlo simulations also encounter constraints when attempting to model aggrega-
tion processes involving interactions beyond the scope of potential functions, including
hydrodynamic effects like shear-induced aggregation and hydrodynamic interactions.
Notwithstanding these limitations, the aggregates generated by these methods remain
useful for computing various physical and mechanical properties. For instance, thermal
and electrical conductivities, as well as elastic and optical properties, present suitable
options for further calculation using these aggregates.

3. Concluding Remarks

Summarizing, the fractal cluster concept has proven to be a suitable approach for
describing the aggregation of colloids, aerosols, etc. A comparison between computer
simulations and experiments has helped to elucidate the underlying mechanisms of real ag-
gregation processes. Stochastic models of fractal growth have inspired plenty of studies and
applications in physics, biology, chemistry, material science, nanotechnology, biomedicine,
and other domains containing disordered, at first glance, systems. Overall, the studies
provide important insights into the properties of disordered fractal aggregates and their
behavior under different conditions.

This review has highlighted recent advances in developing a comprehensive under-
standing of the formation, structure and properties of fractal aggregates, with a major
emphasis on the contributions of computer simulations. The generation algorithms able to
realize fractal dimensions in a final structure according to preset values have been described,
along with realistic extensions that can reproduce specific experimental results.

The article has focused solely on the geometrical structure of fractal-like objects and
the role of different parameters in defining models of aggregation. The current state of
modeling includes push-button methods with a variety of input parameters. These trends
are expected to continue in the future, leading to increasingly realistic models for colloidal
aggregation processes and a better understanding of the basic models presented in this
review. The methods reviewed may find wide applications far beyond colloid science,
given the current popularity of fractals in miscellaneous disciplines. Each of the presented
classes of models has its own pros and cons regarding the reproduction of aggregation
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kinetics, the coverage of the range of fractal dimension values, or the rate of structure
generation. Hence, this review can serve as a guide for finding an appropriate generating
algorithm that can describe specific experimental observations.
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Reconstructing the fractal clusters of detonation nanodiamonds from small-angle X-ray scattering. Carbon 2020, 169, 349–356.
[CrossRef]

128. Tan, Z.-J.; Zou, X.-W.; Zhang, W.-B.; Jin, Z.-Z. Influence of particle size on diffusion-limited aggregation. Phys. Rev. E 1999, 60,
6202–6205. [CrossRef] [PubMed]

129. Braga, F.L.; Mattos, O.A.; Amorina, V.S.; Souza, A.B. Diffusion limited aggregation of particles with different sizes: Fractal
dimension change by anisotropic growth. Phys. A 2015, 429, 28–34. [CrossRef]

130. Kätzel, U.; Bedrich, R.; Stintz, M.; Ketzmerick, R.; Gottschalk-Gaudig, T.; Barthel, H. Dynamic light scattering for the charac-
terization of polydisperse fractal systems: I. Simulation of the diffusional behavior. Part. Part. Syst. Charact. 2008, 25, 9–18.
[CrossRef]

131. Kätzel, U.; Vorbau, M.; Stintz, M.; Gottschalk-Gaudig, T.; Barthel, H. Dynamic light scattering for the characterization of
polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact. 2008, 25, 19–30. [CrossRef]

132. Wang, Y.; Maurel, G.; Couty, M.; Detcheverry, F.; Merabia, S. Implicit medium model for fractal aggregate polymer nanocomposites:
Linear viscoelastic properties. Macromolecules 2019, 52, 2021–2032. [CrossRef]

133. Karagiannakis, N.P.; Skouras, E.D.; Burganos, V.N. Modelling thermal conduction in polydispersed and sintered nanoparticle
aggregates. Nanomaterials 2022, 12, 25. [CrossRef]

134. Singh, A.K.; Tsotsas, E. Influence of polydispersity and breakage on stochastic simulations of spray fluidized bed agglomeration.
Chem. Eng. Sci. 2022, 247, 117022. [CrossRef]

135. Mandelbrot, B.B. Plane DLA is not self-similar; is it a fractal that becomes increasingly compact as it grows? Phys. A 1992, 191,
95–107. [CrossRef]

136. Oh, C.; Sorensen, C.M. Structure factor of diffusion-limited aggregation clusters: Local structure and non-self-similarity. Phys.
Rev. E 1998, 57, 784–790. [CrossRef]

137. Skorupski, K.; Mroczka, J.; Wriedt, T.; Riefler, N. A fast and accurate implementation of tunable algorithms used for generation of
fractal-like aggregate models. Phys. A 2014, 404, 106–117. [CrossRef]

138. Thouy, R.; Jullien, R. A cluster-cluster aggregation model with tunable fractal dimension. J. Phys. A Math. Gen. 1994, 27, 2953–2963.
[CrossRef]

139. Thouy, R.; Jullien, R.; Benoit, C. Density of vibrational states of fractal aggregates: Scalar interactions. J. Non-Cryst. Solids 1998,
232–234, 674–681. [CrossRef]

140. Vormoor, O. Large scale fractal aggregates using the tunable dimension cluster–cluster aggregation. Comput. Phys. Commun. 2002,
144, 121–129. [CrossRef]

141. Morán, J.; Fuentes, A.; Liu, F.; Yon, J. FracVAL: An improved tunable algorithm of cluster–cluster aggregation for generation of
fractal structures formed by polydisperse primary particles. Comput. Phys. Commun. 2019, 239, 225–237. [CrossRef]

142. Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA,
1987; 335p.

143. Ilatovskiy, A.V.; Lebedev, D.V.; Filatov, M.V.; Petukhov, M.G.; Isaev-Ivanov, V.V. SANS spectra of the fractal supernucleosomal
chromatin structure models. J. Phys. Conf. Ser. 2012, 351, 012007. [CrossRef]

144. Tomchuk, O.V. Some aspects of small-angle scattering by fractal chains. AIP Conf. Proceed. 2019, 2163, 020006. [CrossRef]
145. von Koch, H. On a continuous curve without a tangent, obtained by an elementary geometrical construction (Sur une courbe

continue sans tangente, obtenue par une construction géométrique élémentaire). Ark. Mat. Astron. Fys. 1904, 1, 681–702.
146. Tomchuk, O.V. Stochastic fractal by deterministic algorithm: Introducing the Möbius fractal. AIP Conf. Proceed. 2021, 2377, 020002.

[CrossRef]
147. Möbius, A.F. About a special kind of reversal of the series (Über eine besondere art von umkehrung der reihen). J. Reine Angew.

Math. 1832, 9, 105–123.
148. Yang, X.; Wang, F. Random-fractal-method-based generation of meso-model for concrete aggregates. Powder Technol. 2015, 284,

63–77. [CrossRef]
149. Menger, K. Dimensionstheorie; B. G. Teubner: Leipzig, Germany; Berlin, Germany, 1928; 319p.
150. Polanowski, P. Parallel simulation of random fractal growth using dynamic lattice liquid (DLL) model. J. Non-Cryst. Solids 2007,

353, 4575–4580. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.carbon.2020.08.003
https://doi.org/10.1103/PhysRevE.60.6202
https://www.ncbi.nlm.nih.gov/pubmed/11970534
https://doi.org/10.1016/j.physa.2015.02.050
https://doi.org/10.1002/ppsc.200700004
https://doi.org/10.1002/ppsc.200700005
https://doi.org/10.1021/acs.macromol.8b02455
https://doi.org/10.3390/nano12010025
https://doi.org/10.1016/j.ces.2021.117022
https://doi.org/10.1016/0378-4371(92)90511-N
https://doi.org/10.1103/PhysRevE.57.784
https://doi.org/10.1016/j.physa.2014.02.072
https://doi.org/10.1088/0305-4470/27/9/012
https://doi.org/10.1016/S0022-3093(98)00436-0
https://doi.org/10.1016/S0010-4655(02)00142-X
https://doi.org/10.1016/j.cpc.2019.01.015
https://doi.org/10.1088/1742-6596/351/1/012007
https://doi.org/10.1063/1.5130085
https://doi.org/10.1063/5.0063292
https://doi.org/10.1016/j.powtec.2015.06.045
https://doi.org/10.1016/j.jnoncrysol.2007.03.040

	Introduction 
	Fractal Cluster Models 
	Population Balance Equations 
	Langevin Dynamics and Its Derivatives 
	Monte Carlo Techniques 
	Modifications of DL(C)A 
	Eden Model and Its Derivatives 

	Hierarchical Assembly According to Mass–Radius Ratio 
	Monodisperse Particle–Cluster Models 
	Polydisperse Particle–Cluster Models 
	Cluster–Cluster Models of Monodisperse Particles 
	Cluster-Cluster Models of Polydisperse Particles 

	Fractal Chains 
	Some Exotic Examples in One Line 
	Möbius Fractal 
	Modeling Method Based on the Menger Sponge 
	Dynamic Lattice Liquid Model 


	Concluding Remarks 
	References

