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Abstract: The aim of this paper is to analyse Bitcoin in order to shed some light on its nature and
behaviour. We select 9 cryptocurrencies that account for almost 75% of total market capitalisation and
compare their evolution with that of a wide variety of traditional assets: commodities with spot and
future contracts, treasury bonds, stock indices, and growth and value stocks. Fractal geometry will
be applied to carry out a careful statistical analysis of the performance of Bitcoin returns. As a main
conclusion, we have detected a high degree of persistence in its prices, which decreases the efficiency
but increases its predictability. Moreover, we observe that the underlying technology influences price
dynamics, with fully decentralised cryptocurrencies being the only ones to exhibit self-similarity
features at any time scale.

Keywords: Bitcoin; cryptocurrencies; fractal geometry; hurst exponent; long-term memory; efficient
market

1. Introduction

Within the context of great uncertainty regarding the regulation of Bitcoin (BTC), with
a wide variety of legislative solutions ranging from prohibition to full incorporation into
economies, the key question to characterize its nature and behaviour has spread beyond the
financial press. Indeed, there are multitudes of scientific papers with the aim of providing
grounded arguments for its classification as money [1], a technology-based product [2], or
a safe-haven investment [3].

Paradoxically, a deep understanding of the behaviour of BTC and similar assets is
still pending, as the academic literature has reached no common consensus, for instance,
about the market efficiency of cryptocurrencies (CC hereafter). In fact, on one side, the
pioneering works by Urquhart [4] and Bariviera [5] conclude that BTC is mostly inefficient,
but evolving towards random dynamics. On the contrary, there are sources claiming
that BTC moves similarly most of the time, but there is no agreement between those who
advocate that the mainstream characterists are efficiency [6–8], long-term memory [9–12],
or anti-persistency [13], no matter the frequency or time frame considered.

In this unsettled framework, the overall goal of this paper is to shed some light on
the nature of BTC in order to foresee whether its prices move randomly or in a chaotic
but predictable way, which would be a starting point to allow forecasting opportunities.
Additionally, as claimed by Grobys in the recent paper [10], the economy has lately been
suffering from widespread disruptions caused by COVID-19, as well as the current Russian–
Ukrainian conflict, leading to the crucial need to re-inspect the market efficiency of both
traditional and digital assets.

More precisely, the author in [10] focuses exclusively on BTC (with a sample of
512 weekly observations) and its direct comparison to S&P 500 as a paradigm of a long-
established market, after which he encourages future more detailed reseach including other
CC. We take up this suggestion by considering 9 different digital coins which accummulate
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almost 75% of the traded volume, and our sample takes observations in much higher
frequencies (daily, 1 h and each 15 min), as this will better reflect the fast trading in digital
exchanges. Moreover, we do not restrict to a single classical asset for comparison, but
consider a range of 13 traditional assets of a different nature: gold, crude oil, wheat, silver,
10-year US bonds, two indices and 6 stocks, including value and growth companies.

Here is a quick overview of our analysis:

◦ To identify factors detecting differences in the dynamics of CC in the markets, we have
chosen CC representing diverse consensus protocols.

◦ For each of the 21 different assets, as already mentioned, we have three time series
corresponding to daily and two different intraday frecuencies. Moreover, we will split
each sample in two different non-overlapping subperiods, which we will analyze
in parallel to the full sample. The goal is to judge whether varying the time frame
or frequency would lead to different indicators or whether the data present scale
invariance properties.

◦ After construction of the corresponding series of logarithmic returns and the manda-
tory descriptive statistics (including a normality test), we conduct a careful analysis
of the precise characteristics of our samples, in order to choose an ad hoc method to
address the question about their efficiency.

• First, we tested the potential presence of multifractality features in our series (see
Section 6.1). Our outcomes agree with those by Bariviera in [14], who analyzes
84 CC to conclude that the most capitalized ones (like our selection of nine CC)
display monofractal patterns.

• Then, as stationarity is a crucial feature to decide the technique, we perform the
classical Augmented Dickey–Fuller (ADF) unit root test. Moreover, to double
check its findings, we have implemented a second generation unit root test (KSS)
which tackles the possible failure of ADF in the presence of non linearities. The
outcomes (see Sections 6.2 and 6.3) confirm that our series are stationary at 99%
confidence.

◦ After these a priori tests to check that the assumptions of monofractality and stationar-
ity are fulfilled by our data, we are enabled to apply the R/S method, which goes back
to Mandelbrot’s original development of fractal geometry [15,16], to compute the frac-
tal dimension (by means of the Hurst exponent), boosted with suitable inference tests
to validate our outcomes (see Section 5.3 for a detailed account of the methodology).

◦ Apart from applying the technique to the different time frequencies and periods to
assess self-similarity properties, to avoid that our estimates include spurious effects
due to the presence of autocorrelations in the time series, we generate randomly
shuffled copies of them for which we re-calculate the Hurst exponent.

◦ Finally, we study how CC are correlated between them and with a selection of
13 already established asset classes.

As highlights of our findings, for all CC with purely decentralized technologies (that is,
without intermediaries or audit control), we detect clear signs of inefficiency. Furthermore,
the computation of the fractal dimension under different time frames and scales certainly
reveals that these CC present long-term memory and self-similarity properties. Hence, a
technical analysis of past data is well-founded but shifting the scale is helpless to obtain
finer predictions. This information will be helpful to develop forecasting algorithms in
future research.

We also confirm that these properties are shared neither by centralized CC nor by
assets like gold, silver, crude, wheat or treasury bonds, which are quite poorely correlated
to BTC that is in turn tightly interrelated to most actors of the cryptosphere. This disables
any narrative or marketing strategy to declare BTC or new gold and its often claimed
diversifying power.

Our results upgrade the previous literature in several directions: we pioneer in dis-
closing that it is the underlying technology, instead of the capitalization, that is the crucial
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element influencing CC prices. Accordingly, it is interesting to assess in subsequent research
whether the change of protocol in Ethereum (which is the second most capitalized CC) from
15 September 2022 modifies its efficiency, self-similarity patterns and trends in comparison
to BTC.

We also open a new research line that challenges the widely accepted impermeability
of the CC market to the macroeconomic environment. In fact, we detect a major paradigm
shift (driven possibly by rising inflation and interest rates) in CC interrelations, and provide
feedback on external products by zooming in on the last trimester of 2022 and 2023 data.

If we focus on BTC, the present paper is very much in the line of [10], since we share
the conclusions that BTC is persistent with behaviour that does not change over time.
Methodologically, the author in [10] also applies the R/S method enhanced by several
robustness tests to confirm its current validity, as opposed to the large amount of replication
failures in finance studies (which is well recorded in [17]). The latter even suggests to treat
with caution and re-examine conclusions derived from standard statistical models (see
further discussion in Section 5.2). In short, several authors share our concern about the
rigorous application of the techniques, by a careful check of the hypotheses before using
a procedure and a later confirmation of the statistical significance of the computations;
However, both steps are often naively ignored in the financial literature, as pointed out
in [18].

This paper is organized as follows: in Section 2, we introduce the basic notions
concerning CC consensus protocols, the memory/efficiency character of time series and the
fractality that will be used extensively throughout the paper; whereas, Section 3 includes
a detailed survey of the literature to stress that the debate about the nature of BTC is a
vivid area of current research that has not yet reached any consensus and deserves further
attention, and contradictory results in previous papers could be a statistical artefact of
inaccurate techniques. Later on, in Section 4, we provide descriptive statistics of our
datasets explaining the sources and criteria of selection of the different assets. Then, we
explain the details of how we perfom the R/S method (cf. Section 5) and thoroughly
discuss the outcomes and the corresponding implications in Section 6. Finally, we include
a summary of main conclusions (Section 7) and, for completion, three appendices with
additional tables on the overview of the techniques used in the previous literature and
calculations of the Hurst exponent, as well as full correlation matrices.

2. Background Material: Basic Facts and Definitions
2.1. Blockchain and Its Different Consensus Algorithms

The paradigm change brought by BTC represents an evolution towards decentralised
networks, allowing peer-to-peer interactions (with no need of intermediaries or central
authorities that audit the operations) and a secure exchange, not only of information, but
also of value. The technology that enables the latter is known as blockchain; roughly
speaking, it uses cryptographic techniques to run a shared and secure digital register to
record transactions, like a ledger.

Different consensus protocols/algorithms have been developed to validate and se-
cure operations: Proof-of-Work (PoW), where different users (miners) compete to solve
a mathematical problem that requires high computational cost; or Proof-of-Stake (PoS),
which selects validators randomly, giving a higher probability to those who deposit a larger
amount of CC as a guarantee.

We will not go into technical details of other variants, like Nominated PoS (NPoS),
PoS Authority (PoSA), Delegated PoS (DPoS) and Ripple Protocol Consensus Algorithm
(RPCA). Let us just point out that some of them are controlled by very few nodes as in the
traditional transaction systems.

In short, the consensus method provides each CC with distinct features in terms of
energy efficiency, security and scalability; thus, we wonder the following:

Does the technology of CC influence their behaviour in the markets?
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Accordingly, we will focus on the comparative study of CC with different consensus
mechanisms (see second table in Section 4.1). Up to our knowledge, it is the first time that
the underlying technology is used in the literature as a distinctive characteristic.

2.2. Efficiency versus Persistence and Fractality

An essential yet unresolved matter is the predictability of the CC behaviour, a notion
that challenges the Efficient Market Hypothesis (EMH), which is one of the key cornerstones
for modeling financial data [19]. A market is efficient if prices follow a random Brownian
motion, reflecting all available information; thus, a market is said to be efficient if past data
cannot be exploited to predict future returns.

More precisely, three characteristics determine this motion: independence (i.e., prices
have no memory and their dynamics are fully random), stationarity (the magnitude of
changes does not vary with time) and normality, which implies that extreme events occur
with very low probability. The latter cannot explain the sudden and sharp movements in
financial markets. Illustratively, from 1916 to 2003, the Dow Jones index had 48 days with
a swing bigger than 7%, but under a normal distribution this should occur 1 day every
300,000 years [20].

In short, the evidence from real data leads us to look for alternatives to EMH that
allow us to predict these abrupt changes, which also happen in waves and are not isolated
nor orderly, thus showing the chaotic fluctuation of prices. This is precisely what led B.
Mandelbrot to use chaos theory as an inspiration to create fractal geometry in the 1970s,
which seeks to quantify complex patterns in nature.

Indeed, fractal objects work like chaotic systems where instantaneous shifts can have
significant effects in the long term. Roughly speaking, two main features define a fractal:
it has a fractional (non-integer) dimension, and it is scale invariant or self-similar, i.e., it
presents copies of itself as it is zoomed in (like a snowflake). For a time series, this means
that its basic features are kept if we consider time subperiods or alter the data frequency of
the sample.

When prices evolve inefficiently (then predictably), there are two types of memory:
antipersistent or mean reverting if an increase is followed by a fall and, conversely, drawing
an oscillatory path around the mean; and persistent or long-term memory, that is, after a
rise/drop comes another move with the same trend. In practice, the higher the persistence
is, the more difficult it is for the values to return to their predetermined target in the event
of a fall or exogenous shock.

3. Literature Review

This section pretends to highlight that, despite the expansive literature about this topic,
there is still no agreement (in fact, one finds clear contradictions from one paper to another)
concerning the nature of BTC in terms of efficiency and self-similar dynamics. Clarifying
this by means of a meticulous application of the methods to avoid misleading conclusions
is a key issue and any new contribution is welcome, as argued in [10], because of the raising
popularity of CC as investment tools, the high amounts of money traded and the crucial
time for policy-makers due to the pressing need to decide how to regulate this reality.

Let us first stress that, despite this heterogeneous landscape and apart from the
coincidence with [10], our conclusions about persistent behaviour, no matter the time period,
are also in line with new approaches to the problem by means of wavelet analysis [21], or
deep learning techniques [22]. However, both of them restrict their interest to daily returns
of BTC as an isolated object. In contrast, we expand our view to other CC in relation to a wide
variety of traditional assets and consider not only daily returns, but also higher intraday
frequencies, in order to grasp the extremely quick movements of digitally traded markets.

3.1. Under Which Label Do We Classify Bitcoin?

The right description of BTC is a desirable goal to grasp its potential role in the market
for risk management and portfolio diversification. While its design has similarities with
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gold (mining, decentralization, not government-backed and globally traded 24/7) and
currencies (medium of exchange), if BTC were a real unit of account or a store of value, it
would not exhibit the high volatility characterized by bubbles and crashes (cf. [23]). Recall
that volatility/fluctuation are typically characterized in terms of the standard deviation for
the sampling time period.

In this spirit, it more closely resembles a highly speculative asset than a typical
commodity or currency (see [24]), or at least belongs to a category in between the latter
two (cf. [25]). Moreover, ref. [26] shows that BTC has its own risk-return features and is
uncorrelated with traditional assets. Because of this, refs. [27,28] conclude that it cannot
play the role of a safe-haven from an econometric perspective.

In fact, its evolution does not respond to monetary policy news, but it reacts to events
related to CC, having significant correlations with them [29,30]. Analogously, ref. [31]
claims that the isolation of BTC from the global financial system implies that it is not an
actual source of economic instability.

However, the dependence between CC and other assets may change over time. Indeed,
ref. [32] checks that the gold-BTC correlation reached a maximum during the peak of
COVID-19, dropping to almost zero in July 2021. Because of this, it is not completely
hopeless to include CC in a portfolio. Even more, ref. [25] argues that BTC is helpful for
risk-averse investors in anticipation of negative shocks, as its reactions to market sentiment
are quicker.

3.2. Efficient Market Hypothesis (EMH) in the “Cryptosphere”

Despite the extensive analysis about EMH’s applicability to the BTC market (see [33]
and Table A1 for a survey), there is no agreement on whether the periods of efficiency
alternate either with mean reverting dynamics (as claimed in [4,34]) or with long-term
memory trends (stated by [5,35,36]).

More precisely, ref. [37] unveils a decreasing trend in the predictability, confirmed
in [38] by checking a reduction in the price reaction time to unexpected events. This is
further supported in [39], as no pattern in returns can be discovered away from price
clustering. But, there is no common narrative to explain the varying efficiency over time:
according to [40], inefficiency is higher during price rises; ref. [7] found out that liquid-
ity (volatility) has a significant positive (negative) effect on the efficiency, which can be
enhanced by introducing BTC futures [41].

Despite the almost exclusive restriction to BTC, some authors compare it with other
CC. In this spirit, ref. [42] concludes that BTC is the least predictable, which is reinforced
by [14], with notable efficiency in lower volume quantiles and anti-persistance in higher
ones. However, refs. [43,44] also find evidence of the reverse arguments, showing that less
capitalized coins are more efficient than BTC, while the latter presents long-term memory
(see also [45]).

Finally, efficiency can be altered during exceptional circumstances, such as the COVID-
19 pandemic, which introduced significant regime changes in crypto and traditional markets
(see [46]). Surprisingly enough, BTC is more resilient to efficiency decreases than other
financial assets (cf. [47]).

3.3. Unraveling Complexity by Means of Fractal Geometry

Refs. [48,49] claim that the efficiency of CC varies across frequencies, as there is
heterogeneous memory behaviour against the self-similarity required for fractal objects.
This view is shared by [7], which checked that the higher the frequency, the lower the
pricing efficiency. In the same spirit, refs. [44,50] conclude that the regime of persistence
depends on the time scale and the period considered.

On the contrary, ref. [51] reports similar memory patterns, no matter the time fre-
quencies, implying a self-similar process. This is confirmed in [52] via a big data-driven
study joint with statistical testing, providing evidence of dominant fractal traits at all high
frequency rates for BTC prices.
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Later on, ref. [14] clearly reveals that one cannot apply a common model to address the
whole CC landscape. Indeed, highly capitalized coins display roughly unifractal processes,
and thus can be described via fractional Brownian motion; however, cryptoassets with
fewer liquidities exhibit strong multifractality, and more sophisticated models would be
required for capturing their complex dynamics.

As pointed out in [53], multifractal features are not exclusive of CC; in fact, they are
similar to that of stock markets, but differ from regular coins. Additionally, ref. [54] checked
that BTC shows higher fractality than gold, which reopens the debate about its nature also
from the outlook of fractal geometry.

4. Data and Descriptive Statistics
4.1. Types of Assets: Selection Criteria and Sources

We have worked with a dataset (obtained from Binance) containing the prices of BTC

and eight other CC (see Table 1) over the time period from 20 August 2020 to 24 February
2023, considering opening values every 15 min (N = 88,060 observations), 1 h (N = 22,019)
and 1 day (N = 919). The aim is to contrast daily dynamics with intraday or high frequency
movements in the view of seeking self-similarity features.

Table 1. Description of cryptoassets and traditional commodities.

Asset Ticker Market Initial Release/Public Offering/Description

Bitcoin BTC Binance 9 January 2009
Ethereum ETH Binance 30 July 2015
Binance Coin BNB Binance 3 July 2017
Ripple XRP Binance 2 June 2012
Cardano ADA Binance 27 September 2017
Polygon MATIC Binance 24 April 2019
Solana SOL Binance 24 March 2020
Tron TRX Binance 25 July 2018
Polkadot DOT Binance 26 May 2020
Amazon AMZN NASDAQ 15 May 1997
Tesla TSLA NASDAQ 29 June 2010
Netflix NFLX NASDAQ 23 May 2002
Procter & Gamble PG NYSE 13 January 1978
Johnson & Johnson JNJ NYSE 24 September 1944
The Coca-Cola Co. KO NYSE September 1919
Silver XAGUSD LBMA Spot price per ounce in US dollars
Gold GCG23 COMEX 100 troy ounce FC due in February 2023
Crude oil CLK23 NYMEX West Texas Intermediate FC due May 2023
Wheat ZWK23 NYMEX FC expiring in May 2023
US Treasury bonds ZNM23 CBOT 10-year FC due in June 2023
Nasdaq CCMP NASDAQ 1971
EuroStoxx SX5E EUROSTOXX 26 February 1998

In order to compare with other assets traded on traditional financial markets, time
series have been selected from Bloomberg with daily values of:

◦ Three commodities with future contracts (gold, crude oil and wheat);
◦ One spot commodity (silver);
◦ A 10-year US Treasury bond future contract (FC);
◦ Two stock market indices (Nasdaq and EuroStoxx);
◦ Three growth stocks (Tesla (Austin, TX, USA), Netflix (Los Gatos, CA, USA) and

Amazon (Seattle, WA, USA)) and three value stocks (The Coca-Cola Co. (Atlanta,
GA, USA), Procter & Gamble (Cincinnati, OH, USA), and Johnson & Johnson (New
Brunswick, NJ, USA)).

We conjecture that growth stocks (i.e., those with a 5-year average sales growth over
15%) will perform similar to cryptoassets having an actual positive correlation; while it is
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expected that when CC go up, value stocks (that is, the ones with price-to-sales ratio < 1)
will go down.

On the other hand, to assess whether CC perform as a safe haven asset, commodities
have been chosen, as well as low volatility assets as treasury bonds. Moreover, to compare
the cryptoeconomy to the traditional financial market, we include stock indices, which act
as a thermometer of market movements.

Regarding the selection of CC, we applied the Pareto principle to their capitalisation,
according to which 80% of the results are due to 20% of the variables involved. Although the
9 selected CC “only” accumulate approximately 74% of the total market capitalisation (see
Table 2), we have ruled out CC with volume percentages below 0.5%, which we consider to
be unrepresentative. Let us stress that we have chosen archetypes of five different consensus
protocols to enable our aim of comparing CC on the basis of their underlying technology.

Table 2. Description of the 9 selected CC (from www.binance.com, 24 May 2023).

Ticker Protocol Capitalization (Million $) Percentage Cumulative

BTC PoW 517,890 45.51% 45.51%
ETH PoW/PoS 218,230 19.18% 64.69%
BNB PoSA 48,060 4.22% 68.91%
XRP RPCA 23,590 2.07% 70.98%
ADA PoS 12,760 1.12% 72.10%

MATIC PoS 10,080 0.89% 72.99%
SOL PoS 7690 0.68% 73.66%
TRX DPoS 6960 0.61% 74.28%
DOT Nominated PoS 6300 0.55% 74.83%

As can be observed in Figure 1, BTC and ETH account for almost 65% of the total volume,
while the 9 chosen CC together have a total capitalisation of more than USD 851 billion,
which will provide us a global view of the market by accounting for almost 75% of the total
capitalisation estimated at USD 1138 trillion, according to Investing (www.investing.com),
as of 24 May 2023.

Figure 1. Pareto diagram of the cryptocurrency market according to capitalization.

4.2. Descriptive Statistical Analysis of Data

Let us first point out that daily opening values have been taken. In addition, to facilitate
the direct comparison, for the descriptive statistics (see Table 3) and the computation of
correlations (cf. Section 6.7) only weekday values are included, even though CC are still
trading on weekends.

www.binance.com
www.investing.com
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Table 3. Descriptive statistics and normality test (Jarque Bera) for daily returns from 20 August 2020
to 24 February 2023. *** means significant results at 0.1% level of significance.

Asset Mean Median Std. Max. Min. Skew. Kurt. J. Bera

BTC 0.0401 −0.0190 3.8451 17.8448 −16.7093 −0.2419 5.9025 376.16 ***
ETH 0.1428 0.2390 5.1954 23.3707 −32.4864 −0.4250 7.5343 288.07 ***
BNB 0.2217 0.1630 5.6390 29.5648 −41.6751 −0.2158 11.5924 7311.6 ***
XRP −0.1597 0.1424 6.6802 36.6201 −53.8523 −0.6736 15.8684 3289.8 ***
ADA −0.0909 −0.1909 5.9398 28.7239 −31.1317 0.1538 6.5777 435.14 ***

MATIC 0.4301 −0.0706 8.1566 48.7557 −41.0080 1.0209 9.6473 1639.1 ***
SOL 0.0081 −0.2235 7.9623 38.0494 −54.9008 −0.5784 9.8461 665.94 ***
TRX 0.0556 0.1906 5.5029 34.3355 −38.8245 −0.2373 11.5803 1096.2 ***
DOT −0.0957 −0.2126 6.5311 28.0615 −48.3208 −0.3569 10.0600 271.22 ***

AMZN −0.1167 0.0016 2.5189 10.4044 −15.1499 −0.3680 6.4681 296.59 ***
TSLA 0.0707 0.1384 4.3051 14.4446 −17.0308 −0.1375 4.3593 47.421 ***
NFLX −0.1004 −0.0627 3.0387 12.0963 −30.6729 −2.4777 28.1416 15228 ***

PG 0.0034 0.0768 1.1469 3.6368 −7.5586 −0.8748 7.1694 498.61 ***
JNJ −0.0043 0.0270 1.0430 5.5584 −3.7804 0.1567 4.6431 66.278 ***
KO 0.0419 0.0869 1.1405 5.5815 −7.0610 −0.2622 6.9038 333.44 ***

Silver −0.0544 −0.0637 1.8350 7.9983 −8.5103 −0.1167 5.6815 154.02 ***
Gold −0.0143 0.0429 0.9210 2.8140 −4.8252 −0.5177 4.9956 134.18 ***

Crude 0.0892 0.2208 2.5703 11.6753 −12.3624 −0.1827 5.1919 181.26 ***
Wheat 0.0630 −0.1375 2.2508 17.5554 −9.6304 0.8261 9.6193 1179.1 ***
Bonds −0.0303 −0.0036 0.4281 1.7628 −1.4895 0.0768 4.3337 46.587 ***

Nasdaq −0.0005 0.1616 1.6119 6.8863 −7.0825 −0.3765 4.4745 22.102 ***
EuroSt. 0.0310 0.1008 1.0992 5.6815 −5.3614 −0.2227 5.9040 276.7 ***

To analyse the normality of the time series, one typically converts them from price
series P = {Pt : t ∈ N} to return series R = {Rt : t ∈ N}. In our case, we have calculated
a total of 608 returns for each series on a logarithmic scale, i.e., we work with the sample
R = {Rt : t = 1, . . . , 608}, where

Rt := log
Pt

Pt−1
= log Pt − log Pt−1. (1)

Table 3 reports the descriptive statistics for the full sample period from 2 August 2020
to 24 February 2023, which leads us to the following preliminary conclusions:

◦ CC have a much higher volatility than other assets; in particular, BTC’s volatility (3.85)
is much higher than gold’s volatility (0.92). As a result, this is the first indication that
BTC does not behave as a safe haven asset.

◦ For a normal distribution, the kurtosis is around three and the skewness is near zero.
The values of the latter do not seem conclusive, as most of them are close to zero;
however, the kurtosis seems to point out that neither CC nor traditional stock market
players follow a normal pattern.

◦ The normality test (Jarque Bera) provides strongly significant evidence that none
of the series under study follows Gaussian moves, which confirms Mandelbrot’s
criticism [20] to classical economic theories arguing that the normality assumption
does not properly capture price evolution.

Additionally, we split our sample into two subperiods (see Table 4) in order to test
whether the efficiency varied over time. A first inspection shows that descriptive statistics
are quite stable for BTC, while other assets present sign shifts in the mean (TRX, NFLX) or
kurtosis (silver). This provides a first hint that self-similarity features may not be shared for
all items under review. Let us also point out that the significativity level for the normality
test rises to 5% during the second subperiod for wheat, oil, gold, silver, Nasdaq, US bonds,
TSLA and JNJ, which may foresee a change in performance.
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Table 4. Extract from the descriptive statistics of the two subsample periods.

Sample Period N Mean SD Skew. Kurt.

BTC
20 August 2020–1 July 2022 681 0.0395 4.1134 −0.1986 5.2739
1 July 2022–24 February 2023 239 0.0358 2.9172 −0.5396 8.9691
TRX
20 August 2020–1 July 2022 681 0.1229 6.2265 −0.2374 9.4431
1 July 2022–24 February 2023 239 −0.1431 −0.6032 −0.5396 5.9418
NFLX
20 August 2020–1 July 2022 470 −0.2597 3.0527 −3.4819 34.9563
1 July 2022–24 February 2023 164 0.36498 2.9482 0.7096 3.9657
Silver
20 August 2020–1 July 2022 485 −0.0710 1.7950 −0.4791 6.0914
1 July 2022–24 February 2023 169 −0.0199 0.7124 0.7096 4.5917

Finally, let us mention that we do not display descriptive statistics for intraday fre-
quencies of CC for brevity, since there are not remarkable differences with Table 3, apart
from the higher number of observations.

5. Methodology: R/S Analysis Enhanced by a Test of Significance
5.1. Hurst Exponent: Origin, Definition and Interpretation

A fractal is defined by the scale invariance and chaotic nature, whose complexity is
measured by the fractal dimension D. As the graphs of returns are bumpy/peaky curves in
the plane, D should be between 1 (dim. of a smooth curve) and 2 (dim. of the plane); then,
we can write D = 2 − H, with 0 < H < 1.

For time series, one typically computes the value of H, known as Hurst exponent,
which was introduced to study the Nile overflows [55,56]. Economists use H to assess the
efficiency of the market; thus, it is considered efficient if H = 0.5, and inefficient otherwise
(see more details in Table 5).

Table 5. Interpretation of the values of the Hurst exponent.

H = 0.5 0 < H < 0.5 0.5 < H < 1

Motion Random Brownian Fractional Brownian Fractional Brownian
Persistence None (independent) Anti-persistent (mean-reverting) Persistent
Memory/Correlation None Short term Long term
Efficiency Efficient Inefficient Inefficient

5.2. Justification of the Chosen Methodology: R/S versus DFA

Hereafter, we apply the rescaled range (R/S) method (cf. [16,57,58]) to obtain H
without imposing independence nor a normality of the returns (as other methods more
widely used in the literature do). The only restriction is to work with stationary series, but
we will check that this is the case (see Section 6.2, where we perform a traditional ADF test,
and Section 6.3, which confirms the results of such a test by applying a second generation
unit root test which accounts for the presence of non-linearities in the time series).

One of the additional advantages of the R/S analysis is that it is robust in the sense
that can detect non-periodic cycles even if they are longer than the sample period, as well
as long-term correlations. For instance, ref. [59] applied it to conclude that many natural
phenomena are not independent random processes. We choose this instead of the modified
R/S statistic, as [60] evidenced that the latter produces a strong bias towards accepting the
null hypothesis of data independence.

Apart from a solid pure mathematical theory (that is, the fractal geometry developed
by Mandelbrot) on the basis of the R/S method, the belief that it is an outdated technique,



Fractal Fract. 2023, 7, 870 10 of 26

displaced by new algorithms, is dismissed by its relevance in recent studies such as [10],
which also warns about standard statistical models based on the assumption of finite
variances, as they may produce misleading answers.

In contrast to the deep mathematical base of the R/S technique, the probabilistic
foundations of Detrended Fluctuation Analysis (DFA, and its subsequent modifications)
are still unclear [61] and a current topic of research, despite being one of the most popular
algorithms to handle non-stationarities. Further advances in this direction of providing a
theoretical justification for DFA is regarded in [61] as a key step towards the assessment of
statistical estimation errors.

In fact, the criticism towards the efficacy of DFA in addressing nonstationarities is not
new: Bryce and Sprague [62] already pointed out that its validity is overemphasized by
several reasons: it introduces uncontrollable biases, its computational demands surpass
those of the R/S analysis; and it fails to grant an effective and comprehensive protection
against non-stationarities. In this spirit, ref. [63] highlights that the nonlinear filtering
characteristics of DFA’s detrending process may induce instabilities in estimating the scaling
exponent, leading to estimation errors when computing H.

In short, while methodological enhancements and the theoretical backup for DFA are
developed, we will double check the stationarity of our series, and we opted for the R/S
method, which has very recently been applied in similar settings by [10]. Let us finally point
out that the search of new methods to beat DFA is an active topic of research, including
Bayesian methods [64], wavelet analysis [21] or deep learning models [22].

5.3. Details of the Rescaled Range Algorithm (R/S Method)

We have divided the calculation procedure into the steps described below:

(1) Take a series of returns R = {R1, · · · , RN}, computed as in (1).
(2) Split the full series R into d sub-series of length n = N

d :

◦ 1st sub-series: {R1
1, · · · , R1

n},
◦ 2nd sub-series: {R2

1, · · · , R2
n}, and so on, up to the

◦ dth sub-series: {Rd
1, · · · , Rd

n}.

In short, we consider a pack {Rm
i }i=1,...,n;m=1,...,d with all sub-series. This step is

conducted with d = 1, 2, 3, . . . , N
n for different values of 6 < n < N.

(3) For each sub-series Rm
i , compute the mean Em and the standard deviation Sm (which

will be functions of n).
(4) Determine the series of distances to the mean Zm

i by means of

Zm
i = Rm

i − Em,

and create the cumulative time series Ym
i for each sub-series m = 1, 2, . . . , d:

Ym
i = Zm

1 + Zm
2 + · · · Zm

i =
i

∑
j=1

Zm
j .

(5) Find the range Rm of each cumulative subset, for all m:

Rm(n) = max{Ym
1 , Ym

2 , . . . , Ym
n } − min{Ym

1 , Ym
2 , . . . , Ym

n }.

Then, divide this by the corresponding standard deviation Sm, that is, compute
Rm/Sm. Thus, one obtains a dimensionless measure that depends on n and allows for
comparing the relative variability of sets of different sizes.

(6) Obtain the rescaled range statistic (R/S)n by averaging for all sub-series:

(R/S)n =
1
d

d

∑
m=1

Rm

Sm
(n)
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Note that the different partition sizes (d) from (2) lead to the set of values:{
(R/S)N , (R/S) N

2
, (R/S) N

4
, · · · , (R/S)6

}
= {(R/S)n}n=N, N

2 , N
3 ,...

(7) Computation of H. With an analogy of Hurst’s ideas, assume that the variability of
the data follows a potential law of the form:

(R/S)n = c · nH ,

and now take logarithms on both sides to reach the linear relation

log(R/S)n = log c + H log n.

We can plot (log n, log(R/S)n) for n ∈
{

N, N
2 , N

3 , . . .
}

, and obtain the corresponding
regression line (see Figure 2), whose slope is the desired H.

Figure 2. Graphic representation of the Hurst exponent. The slope of the red line represents the Hurst
exponent, while the green line has a slope of 0.5. Blue dots represent the values of (log n, log(R/S)n).

Many papers in the literature stop here, which is a naive approach, as pointed out
in [18], since one needs an extra statistical test to judge whether H computed for the sample
is significatively different from the value 0.5 characterizing an independent process. This is
why we have developed our own R script to top up the R/S method by adding a t-test for
the slope of the line (see Figure 3). Let us stress that the code is just a trivial modification of
the standard routine included in the pracma R library to additionally perform an inference
test on the slope of the linear regression used to estimate H. Moreover, all our results for H
coincide up to the second decimal place with the R outputs for corrected H provided by
the instruction hurstexp.

Additionally, to avoid estimates of H being misleading or including spurious effects
due to the presence of autocorrelations in our time series, we generate randomly shuf-
fled copies of our series (applying a sample function in R multiple times to each series,
independently) and re-compute the Hurst exponent for them.

Figure 3. Graphical example of estimation of Hurst exponent (slope of the black line) and its 99%
confidence interval (shadow region) for a long-term memory time series (left) and a random process
(right). The green lines have slope of exactly 0.5.
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6. Results and Discussion

First, let us point out that, in general, we work with much tighter significance levels
(0.1% and 1%) than those normally found in finance literature, where typical results use
levels of 5% and even 10%.

6.1. Test for Monofractality via the Mass Exponent

Our study takes, as a starting point, the outcomes by Bariviera in [14], who analyzed
a sample of 84 CC and concluded that the largest coins (those in the first quartile of the
traded volume) seem to move according to monofractal processes. Although we only work
with the most capitalized CC, here we check by ourselves whether the claims in [14] are
valid for our concrete time series.

Let us briefly recall that if a stochastic process follows a monofractal pattern, the scaling
function or mass exponent τ(q) := q H(q)− 1 as a function of an integer q should be close
to a straight line, where H(q) denotes the generalized Hurst exponent introduced by [65].
In turn, the presence of concavities/curvature in this function is a sign of multifractality.

Accordingly, we need to estimate τ(q) and perform a linear regression to test the
plausibility of its linearity. With this goal, we use the MFDFA package developed by [66]
in the R language. Our outcomes are totally in line with the aforementioned results
from [14], as all the regressions we performed show that the function τ(q) admits a good
approximation by a linear function of q, no matter the time frequency of picking the samples.
As all our results are very similar, as an illustration, Figure 4 shows the linear plots for
the BTC, which monopolises 45% of the total capitalization as compared with ADA, which
accounts for less than 2% of the traded volume (see Table 2).

Figure 4. The function τ(q) versus q and the corresponding linear regression, showing the corre-
sponding adjusted R2 and p-value.

These upshots are also stable for the three different periods under consideration, as
exemplified by Figure 5.

Figure 5. Linear regression for τ(q) across the different time periods under consideration for ETH.

6.2. Test for Stationarity as Prerequisite for R/S Analysis

Despite this step often being skipped, in order to be rigorous, one needs to check that
the assumptions of a method are fulfilled before applying it. In this case, the assumption
is that all time series are stationary. For the CC, the corresponding test ensures, at more
than 99% confidence, that this is the case (see Table 6) at any scale in the full interval (these
results are not altered for the subperiods).
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Table 6. Results of the Augmented Dickey–Fuller (ADF) test for stationarity for cryptoassets with
different frequencies for the period of 20 August 2020–24 February 2023. ** concludes that all series
are stationary at less than 1% level of significance.

15 min (Lag Order = 44) 1 h (Lag = 28) Daily (Lag = 9)

ADA −44.340 ** −29.644 ** −8.2618 **
BNB −42.009 ** −29.384 ** −7.5603 **
BTC −43.426 ** −28.566 ** −8.7709 **
DOT −43.915 ** −29.196 ** −9.8369 **
ETH −43.757 ** −28.549 ** −9.1639 **
MATIC −43.159 ** −29.456 ** −9.3751 **
SOL −44.326 ** −29.367 ** −8.3510 **
TRX −43.360 ** −30.270 ** −9.0032 **
XRP −43.736 ** −27.587 ** −8.9680 **

Concerning the remaining assets, stationarity is guaranteed at the same level of signifi-
cance for daily data in all the three periods under study, as can be checked in Table 7.

Table 7. Results of the Augmented Dickey-Fuller (ADF) test for stationarity for traditional assets with
daily values for the three different periods. ** concludes that all series are stationary at less than 1%
level of significance.

Full Period (Lag Order = 8) 1st Subset (Lag = 7) 2nd Subset (Lag = 5)

Gold −8.7680 ** −8.7733 ** −5.2928 **
Silver −8.8266 ** −8.1462 ** −5.6915 **
Nasdaq −8.0335 ** −8.5723 ** −5.1938 **
Eurotoxx −7.8613 ** −8.1981 ** −5.1350 **
Oil −10.0500 ** −9.6601 ** −6.7996 **
US bonds −8.1775 ** −7.6914 ** −4.9403 **
Wheat −6.8168 ** −5.5172 ** −4.8443 **
AMZN −8.1451 ** −8.2698 ** −5.1547 **
NFLX −7.8880 ** −7.6475 ** −5.2018 **

Let us stress that, regardless of the stationary character of all of the return series, a
quick visual inspection (see Figure 6) already provides us with an early warning about the
different complexity levels in the graphs of CC versus traditional assets (even though the
curves for CC are drawn with average daily values to smooth out irregularities). The tool to
quantify this and grasp finer disparities within CC, which are not displayed at first sight by
the graphs, is the fractal dimension or, equivalently, the Hurst exponent that we compute
in the sequel.

6.3. Second Generation Stationarity Test to Account for Nonlinearities

Although the conclusions of the previous subsection pointed clearly towards the
stationary character of all time series under consideration, we can still perform an additional
double-check to assess whether the presence of non-linearities could alter the outcomes of
conventional unit root tests, like ADF, which may have a limited power in distinguishing
non-linear equilibrium adjustments.

To detect non-stationary features hidden behind non-linear effects, we apply the non-
linear KSS unit root test designed by Kapetanios, Shin and Snell [67]. The outcomes ensure
at more than 99.9% confidence that the series of CC under consideration are stationary (see
Table 8) at any scale in the full interval (these results are similar for the subsamples).
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Figure 6. Comparison of daily return graphs for several assets during the whole period.

Table 8. Results of the KSS unit root test for cryptoassets with different frequencies for the period
of 20 August 2020–24 February 2023. *** concludes that all series are stationary at <0.1% level
of significance.

15 min (Lag Order = 44) 1 h (Lag = 28) Daily (Lag = 9)

ADA −8.9580 *** −13.2326 *** −7.1024 ***
BNB −6.2327 *** −12.4460 *** −7.5603 ***
BTC −14.0094 *** −3.5715 *** −7.7599 ***
DOT −17.9212 *** −5.7037 *** −3.9958 ***
ETH −10.6192 *** −10.3832 *** −4.2671 ***
MATIC −16.3656 *** −9.7870 *** −6.0347 ***
SOL −4.8659 *** −11.9307 *** −3.8921 ***
TRX −10.1991 *** −11.8249 *** −5.0051 ***
XRP −20.3144 *** −5.0958 *** −5.0386 ***

The table above displays results for raw data, but similar outputs are obtained for
detrended series; the AIC method was chosen to find the optimal lag. The outputs for
traditional assets are also in the same line as those displayed for CC, and hence support the
use of the R/S method, as no signs of non-stationarity are detected.

6.4. Memory and Efficiency in Cryptocurrencies and Traditional Assets

We start by analysing the Hurst index (see Table 9) of the time series for the full
temporal frame with daily opening data for CC, commodities, stock indices and the US
bonds. At a first glance, we conclude that all CC (except XRP) have long-term memory, and
thus it would make sense to carry out a technical analysis to predict their future behaviour.
As a corollary, CC do not fulfil the EMH of the statistical independence of prices.

The same is true for most of the remaining assets; however, our data do not provide
enough evidence to discard the fact that silver or gold move randomly. Hence, they “forget”
the past. Nasdaq and two of the stocks that compose it (AMZN and NFLX) also have aleatory
patterns; in contrast, Eurostoxx has a long-term memory and, paradoxically, from an
efficiency viewpoint it more closely resembles the BTC than the other index, which includes
more disruptive companies.
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Table 9. Hurst exponent between 20 August 2020 and 24 February 2023 with daily data. The error
is estimated by displaying the p-value, as well as a 99% confidence interval. For the shuffled series,
*** and ** mean that the null hypothesis of efficiency is rejected at <0.1% and 1% level of significance,
respectively. No asterisk reveals that there is not enough evidence to support that the series does not
follow a Gaussian path.

Name N Hurst p-Value 99%-CI H-Shuffled

BTC 919 0.64169 8.56 × 10−5 (0.58542, 0.69796) 0.61997 ***
ETH 919 0.63337 2.28 × 10−5 (0.59135, 0.67540) 0.60187 ***
BNB 919 0.65587 6.20 × 10−5 (0.59739, 0.71435) 0.62742 ***
XRP 919 0.56646 0.01623 (0.49199, 0.64093) 0.55066
ADA 919 0.65739 7.57 × 10−4 (0.56451, 0.75027) 0.55847 **
MATIC 919 0.68630 1.48 × 10−5 (0.63179, 0.74082) 0.63666 ***
SOL 919 0.67028 5.53 × 10−4 (0.57552, 0.76505) 0.65067 ***
TRX 919 0.59418 2.41 × 10−3 (0.52457, 0.66378) 0.60926 **
DOT 919 0.63734 3.81 × 10−4 (0.56599, 0.70869) 0.56258 **
Silver 653 0.50182 0.97286 (0.29685, 0.70678) 0.53399
Gold 652 0.54179 0.23721 (0.41627, 0.66731) 0.56801
Crude 633 0.59764 3.29 × 10−4 (0.55248, 0.64279) 0.56763 **
Wheat 608 0.58424 5.67 × 10−3 (0.51091, 0.65757) 0.58761 **
Bonds 633 0.54451 2.41 × 10−3 (0.51276, 0.57625) 0.58484 **
Nasdaq 633 0.53580 0.32121 (0.40463, 0.66697) 0.55920
EuroSt. 650 0.58617 3.96 × 10−4 (0.54471, 0.62762) 0.59152 ***
AMZN 633 0.45961 0.28361 (0.32397, 0.59524) 0.51260
NFLX 633 0.62543 0.03299 (0.45225, 0.79861) 0.53410

Notice that the aleatory behaviour of XRP already provides a hint that the consensus
methods may influence the efficiency of CC. Indeed, XRP cannot be regarded as decen-
tralised, since most of its nodes are controlled by a single company. This is because its aim
is not to replace banks as intermediaries; it is to improve their effectiveness, as a substitute
for the banking SWIFT.

Next, to discern whether TRX and BNB, of which neither are fully decentralised, also
display random patterns, we will perform a more refined fractal analysis, considering
different time periods and/or modifying the time frequencies. Actually, when varying the
latter and taking opening values every 15 min, 1 h or day, the outcomes in Table 10 reveal
that BTC’s movements are non-efficient at any scale, which also exhibits long-term memory.
In contrast, XRP and TRX operate mostly in an efficient way.

But, to observe traits of aleatoriness in BNB, we still need to reduce the time arc (or
zoom in) to the second subperiod (see Table 11). As before, although using daily splits TRX

exhibits long-term memory, if we take high frequency data, it behaves following a random
motion, which is an early clue of the lack of self-similarity.

Regarding the other six CC, whose algorithms are completely decentralised, they show
persistent memory in the full period (Table A2), and in both sub-intervals (Tables A3 and A4).
Moreover, this remains invariant at any time scale; thus, we can claim that they have a
consistent inefficient behaviour.
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Table 10. Hurst exponent: BTC, XRP, TRX and BNB for the full period but different time frequencies:
15 min (N = 88,060 observations), 1 h (N = 22,019) and daily (N = 919). For the shuffled series,
*** and ** mean that the hypothesis of efficiency is rejected at <0.1% and 1% level of significance,
respectively. No asterisk says that there is not enough evidence to ensure that the data is non-random.

Hurst p-Value 99%-CI H-Shuffled

BTC
15 min 0.53736 1.12 × 10−4 (0.51707, 0.55766) 0.55294 ***
1 h 0.55226 9.92 × 10−5 (0.52562, 0.57889) 0.55334 ***
Daily 0.64169 8.56 × 10−5 (0.58542, 0.69796) 0.61997 ***
XRP
15 min 0.51401 0.06970 (0.49252, 0.53550) 0.52702
1 h 0.52551 0.01164 (0.49926, 0.55177) 0.51974
Daily 0.56646 0.01623 (0.49199, 0.64093) 0.55066
TRX
15 min 0.51740 0.04995 (0.49301, 0.54179) 0.52523
1 h 0.52192 0.04746 (0.49117, 0.55268) 0.52843
Daily 0.59418 2.41 × 10−3 (0.52457, 0.66378) 0.60926 **
BNB
15 min 0.55127 1.11 × 10−6 (0.53386, 0.56868) 0.54502 ***
1 h 0.56468 1.30 × 10−5 (0.53876, 0.59061) 0.54211 ***
Daily 0.65587 6.20 × 10−5 (0.59739, 0.71435) 0.62742 ***

Table 11. Hurst exponent: XRP, TRX and BNB for the second subperiod (1 July 2022–24 February
2023) and different time frequencies: 15 min (N = 22,869 observations), 1 h (N = 5718) and daily
(N = 239).

Hurst p-Value 99%-CI

XRP
15 min 0.51450 0.14754 (0.48522, 0.54377)
1 hora 0.51419 0.28596 (0.47254, 0.55585)
Daily 0.56816 0.13156 (0.40223, 0.73408)
TRX
15 min 0.51719 0.07521 (0.48975, 0.54463)
1 h 0.52535 0.04041 (0.49053, 0.56017)
Daily 0.62667 1.35 × 10−3 (0.55335, 0.69999)
BNB
15 min 0.53628 1.04 × 10−3 (0.51107, 0.56149)
1 h 0.53901 9.70 × 10−3 (0.50823, 0.57778)
Daily 0.62968 0.04020 (0.43023, 0.82913)

6.5. Fractal Features: Does the Graph Change When Zooming in?

Next, we inspect whether the return graphs of BTC and other assets exhibit self-
similarity features, that is, whether they look the same on different time scales. For this to
hold, the efficiency character must not vary at different subintervals or if we change the
frequency to take the data.

Unlike BTC, which moves persistently at any frequency (cf. Table 10), silver and
Eurostoxx (Table 12) change the pattern as we reduce the partition. Specifically, for daily
data, the silver moves randomly, but it is mean-reverting for high frequencies. Due to this
shift, we deduce that it does not behave as a fractal.

Moreover, one can also observe that traditional assets display a change in the memory
character for different periods (see Table 13). Therefore, none of them can be regarded
as a fractal object. Let us further mention that confidence intervals are not displayed
for the simplicity of the table, as p-values over 0.01 already denote that the result is not
significative enough to reject the null hypothesis of randomness. As an illustration of this,
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the 99%-CI of gold in the second subperiod turns out to be (0.42126, 0.91643), meaning
that any value in that wide range (including 0.5) has the same probabilities as the slope
of the linear regression used to compute H. Again, as 0.5 belongs to this interval, despite
the high H = 0.67, our data do not provide enough evidence to reject the hypothesis of
random dynamics.

Table 12. H index: silver and Eurostoxx between 20 August 2020 and 24 February 2023 and differ-
ent frequencies.

N Hurst p-Value 99%-CI

Silver
15 min. 60,320 0.42234 3.82 × 10−5 (0.38585, 0.45883)
1 h 15,463 0.42702 4.03 × 10−4 (0.38251, 0.47153)
Daily 653 0.50182 0.97286 (0.29685, 0.70678)
Eurostoxx
15 min. 23,376 0.45768 1.43 × 10−3 (0.42730, 0.48807)
1 h 5849 0.48318 0.06186 (0.45753, 0.50883)
Daily 650 0.58617 3.96 × 10−4 (0.54472, 0.62763)

Table 13. Hurst exponent: traditional assets for different time periods and daily frequency. With
colors, we mark random and long-term memory behaviour.

20 August 2020–24 February 2023 20 August 2020–1 July 2022 1 July 2022–24 February 2023

Hurst p-Value Hurst p-Value Hurst p-Value

Silver 0.5018 0.97286 0.5746 0.04957 0.6340 2.81 × 10−3

Gold 0.5418 0.23721 0.5880 3.82 × 10−3 0.6688 0.02832
Crude 0.5976 3.29 × 10−4 0.5561 0.03144 0.4498 0.38206
Wheat 0.5842 5.67 × 10−3 0.5861 5.36 × 10−3 0.5647 0.23887
US bonds 0.5445 2.41 × 10−3 0.5631 0.02122 0.6406 3.43 × 10−3

Nasdaq 0.5358 0.32121 0.5835 0.03252 0.6475 0.01860
Eurostoxx 0.5862 3.96 × 10−4 0.6135 1.19 × 10−3 0.6768 0.01810

In contrast, the scale-invariance of BTC is shared by the five CC whose consensus
protocols are fully decentralised (see Figure 7). This holds both in the complete study
period and in the two sub-intervals considered, thus confirming the fractal nature of CC

that operates peer-to-peer. Furthermore, this corroborates our guess that the underlying
consensus protocol is the key to determine the efficiency (instead of the capitalization,
as claimed in previous literature, since BNB and XRP are third and fourth in volume,
respectively; recall Table 2).

Figure 7. Illustration of the self-similarity of CC for different time frames and frequencies (made with
the outcomes from Tables A2–A4). Coloured to show 0.1% significance.

Additionally, we analysed how the BTC’s Hurst values vary as a function of time
from March 2018 to February 2023 with daily opening data. To address this question and
calculate H(t), a 150-value rolling window was used. The outcomes (see Figure 8) show
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that BTC presents long-term memory most of the time, with H values between 0.55 and
0.75, except at specific moments such as November 2019, when sharp oscillations within
the anti-persistence zone occur.

Figure 8. Evolution of the Hurst exponent of BTC over time. Blue line indicates the Hurst values
estimated, and the dashed line is the randomness barrier that separates the areas of long memory
(over) and anti-persistance (below).

Notice that in the last trimester of 2022, the dynamics seem quite random, which could
be influenced by the macroeconomomic situation tensioned by high inflation and rising
interest rates.

6.6. A Striking Turnabout: Efficiency May Happen (under a Change of Variable)

We were puzzled by the claim in [6] that if, instead of working directly with the
BTC returns defined via the (1), we take the values R17

t , then the resulting series becomes
more efficient, except for the fact that their tests do not provide enough evidence to reject
independence. As the authors restrict to BTC and do not compute the Hurst exponent, we
decided to update their study and broaden it to include the variety of CC and traditional
assets we are dealing with.

A quick glance at Figure 9 compared to Figure 7 already reveals that this simple
transformation distorts the conclusions about efficiency, and unlike [6], we also learn that,
for most time frames and scales, the new values behave independently. Furthermore, if we
relax the significance requirements to 1%, most of the table will be coloured randomly.

Figure 9. Illustration of the self-similarity of CC for different time frames and frequencies (with the
values of the return series raised to 17). Coloured to show 0.1% significance.

Nevertheless, our outcomes also reveal that the reply to the change of variable and
shift to higher efficiency is not consistent, as TRX moves oppositely towards the long-
term memory character. Additionally, we lose information, since the new outcomes do
not evidence any coherent common trend or difference according to neither technology
nor liquidity.
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Interestingly, traditional assets are more resilient to changes in the efficiency character
in a coherent way (compare Tables 13 and 14), which provides further support from an
alternative perspective to our conclusion about the different nature of CC versus tradi-
tional assets.

Table 14. Hurst exponent: traditional assets for various periods and daily frequency (with return
series raised to 17). Colors mark random and long-term memory behaviour.

20 August 2020–24 February 2023 20 August 2020–1 July 2022 1 July 2022–24 February 2023

Hurst p-Value Hurst p-Value Hurst p-Value

Silver 0.5213 0.0627 0.5255 0.0434 0.5654 0.0264
Gold 0.5291 0.0971 0.5273 0.0205 0.6534 2.68 × 10−3

Crude 0.4845 0.345 0.4847 0.4560 0.6208 8.55 × 10−5

Wheat 0.5241 3.76 × 10−3 0.5329 7.32 × 10−3 0.5542 0.0205
US bonds 0.5600 7.94 × 10−4 0.5913 0.0140 0.5586 0.0709
Nasdaq 0.5203 0.2530 0.5814 9.32 × 10−5 0.5603 0.0102
Eurostoxx 0.5928 3.86 × 10−4 0.5977 4.49 × 10−4 0.5571 0.0154

For the purposes of the present paper, we leave this subsection as a matter of curiosity
that deserves further and closer inspection, as we disagree with the premature statement
in [6] that any odd power will produce similar results. Indeed, very recent research [68]
proves that for a return series with Rt > 0 for all t, the fractional dimension keeps the
invariant under the change Rq

t for every q.
It is actually an interesting future research line to find an optimal change of variable

that turns any time series into a random Brownian motion, as this will enable us to use the
plethora of statistical techniques based on the normal distribution, and drive conclusions after
undoing the transformation. However, despite some numerical experiments being helpful, a
rigorous approach to this problem should wait for extra advances in fractal geometry, as it is
an open problem to find a concrete formula of how the dimension would vary.

6.7. Interdependence of Bitcoin and Other Assets

To determine whether a diversified portfolio can be built with CC alone or whether it
should be combined with other types of products, we obtain the Pearson correlations between
the different assets in the whole period and in both sub-intervals. Let us point out that all
time stamps have been converted to Central European Time (CET) to facilitate the direct
comparison of values from different assets. In view of the outcomes (see Table 15), the second
option can occur, as BTC has very strong positive correlations with all CC except MATIC.

We also confirm our previous guess that growth stocks (TSLA, NFLX and AMZN, and
hence the Nasdaq index) have similar dynamics as BTC. However, Bitcoin has a weak linear
relation with value stocks, hence the mix of these with BTC has no diversification power,
and it is a clever strategy to combine Bitcoin with, e.g., NFLX, with whom strong negative
correlations pop up (see Table A8). Moreover, we conclude that BTC is far from acting like
the more conservative safe haven products for investors, as no correlation with them arose.

If we now restrict to the interrelations within the cryptosphere, all CC are very tightly
correlated as expected (see Tables A5 and A6 for the full matrices of the full period and the
first subinterval, respectively). Nevertheless, it is quite surprising that, if we focus on the
last subperiod, the completely unprecedented event of negative correlations between them
emerges (cf. Table A7).

If we move from the whole time frame to the earlier subset, most of the values match
up to the first decimal, except some shifts in the interdependences of gold and silver with
growth stocks (see Tables A8 and A9). But, if we look at the last subinterval, unexpectedly
the landscape changes quite radically. Certainly, BTC loses correlation strength with growth
stocks (cf. Table A10); in parallel, slight negative correlations start to emerge with assets
such as JNJ or silver.
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Table 15. Correlation of daily returns (for weekdays) between BTC and other assets: period from 20
August 2020 to 24 February 2023, sub-intervals from 20 August 2020 to 1 July 2022 and from 1 July
2022 to 24 February 2023. *** (**, *) denotes significance at 0.1% (1%, 5%) significance level.

Full Period 1st Subperiod 2nd Subperiod

BNB 0.7318 *** 0.8217 *** 0.5129 ***
TRX 0.7089 *** 0.7785 *** 0.9059 ***
SOL 0.6606 *** 0.6259 *** 0.6932 ***
MATIC 0.5037 *** 0.5779 *** 0.4791 ***
ETH 0.8422 *** 0.8342 *** 0.8396 ***
DOT 0.9527 *** 0.9380 *** 0.8011 ***
ADA 0.8275 *** 0.7851 *** 0.7125 ***
XRP 0.8050 *** 0.7656 *** 0.0441
TSLA 0.6240 *** 0.6812 *** 0.4635 ***
NFLX 0.5564 *** 0.3544 *** −0.006
AMZN 0.5540 *** 0.2980 *** 0.5396 ***
KO −0.1100 ** 0.2099 *** 0.0053
PG 0.1017 * 0.0924 * −0.1615 *
JNJ 0.2074 *** 0.4573 *** −0.5148 ***
Crude 0.1331 *** 0.3493 *** 0.3249 ***
Wheat 0.1005 * 0.2084 *** −0.0784
US bonds 0.2886 *** −0.2597 *** 0.4490 ***
Silver 0.3457 *** 0.012 −0.1935 *
Gold −0.1281 ** −0.5741 *** 0.2076 **
Nasdaq 0.8458 *** 0.7984 *** 0.6902 ***
EuroStoxx 0.6749 *** 0.8005 *** 0.1553

7. Conclusions

Our main goal was to decide whether the evolution of BTC prices is random (as
assumed by the EMH) or follows chaotic (but more predictable) patterns, opening the
door to forecasting opportunities (see, e.g., new prediction models in [69]). Via the Hurst
values (H), we confirm that the BTC dynamics are not independent, but have a long-term
memory, even if we change the time interval or the frequency of data collection. The latter
indicates that the graphs of BTC returns are self similar, which is an essential feature to
confirm their nature as fractals.

On the contrary, when changing the scale, we obtain efficiency shifts for traditional
assets, as well as the CC whose consensus protocols have centralised features (BNB, TRX

and XRP). To our knowledge, we pioneer in stressing that it is the underlying technology
(intead of the liquidity) that the key to determine differences between the performance of
CC within the market.

As a corollary, the fractality of BTC, characterised by chaotic events occurring in waves
rather than isolatedly, contradicts every conservative investor’s desire for it to be a store of
value. This invalidates that BTC could be considered a safe haven, while not holding the
narrative that it is digital gold.

From our correlational study, BTC generally exhibits the same trends as other CC and
growth stocks. In practice, this implies that it is not possible to build a risk-controlled
portfolio with these types of assets alone. At the same time, there is no tight correlation of
BTC with conservative products; consequently, it is also very difficult to exploit BTC as a
diversification tool.

Complementarily, if we focus on the later subperiod, the correlations of all assets
become disrupted. It will be interesting for future work to analyse whether this paradigm
shift is an isolated event or is sustained over time. A plausible justification within the actual
context could come from the influence of a sharp rise in interest rates, combined with a
global economy strained by inflation.

To recap, we detect a high degree of persistence in BTC prices. This may be due to the
lack of investor confidence in this market, as it is unstructured and lacks oversight by the
authorities. With more legislative certainty, participation will increase, which may lead to a
rise in efficiency (or decrease in predictability) that would stabilise the cryptoeconomy.
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Appendix A. Table Providing a Literature Overview

Table A1. Overview of literature about efficiency/persistence.

Ref. Coin Period Method Conclusions

[4] BTC 1 August 2010–31 July
2016

standard tests, R/S
statistic

strong anti-persistance, but moving to efficiency
in 2nd half

[39] BTC 1 May 2012–30 April
2017

regression, clustering
kurtosis test

price clustering at round numbers, no significant
pattern otherwise

[37] BTC, LTC, XRP 2013–2017 R/S analysis and
fractional integration decreasing trend in inefficiency

[6] BTC 1August 2010–31 July
2016

8 different tests (no
Hurst) after raise to 17th-power, returns are efficient

[38] 75 CC 31 August 2015–31
August 2018 3 delay measures average price delay decreases during the last 3

years

[5] BTC 18 August 2011–15
February 2017

dynamic Hurst ,
detrended fluctuation
analysis (DFA)

long term memory, becoming more efficient over
time. Volatility is persistent for the whole period.

[44] BTC, ETH,
intraday

1 June 2013–23 June
2018 (from 1 June 2016,
ETH)

generalized Hurst,
asymmetric
multifractal DFA
(A-MF-DFA)

ETH more efficient, inefficiency more accentuated
when the market moves downwards

[34] BTC 30 June 2013–30 June
2017

DFA over sliding
windows

periods of efficiency alternating with
anti-persistence (at day, hour and second
frequencies)

[40] BTC-USD,
BTC-CYN

18 July 2010–31 July
2017, 1 February
2014–31 July 2017

Efficiency Index inefficient, apart from periods of “cooling off”
after price surges

[42] 73 CC 31 August 2015–30
November 2017

different variance ratio
tests, R/S statistic

CC become less predictable / inefficient as
liquidity increases.

[36] 224 CC varying start- until 31
July 2017

Ljung–Box (L–B)
Q-test for
autocorrelation,and
normality tests

all show long memory, leverage, stochastic
volatility and heavy tailedness

[8] BTC 18 July 2010 - 16 June
2017

“various long-range
dependence
estimators”

efficient with some exception to the period of
April–August 2013 and August–November 2016.

[13] BTC, high
frequency

1 April 2017–30
November 2017

Wavelet transform
modulus maxima,
MF-DFA

anti-persistent, being the main drivers high
kurtosis and fat tails

[9] BTC, USD,
gold, MSCI

18 July 2010–31
September 2017 MF-DFA long-memory in all four markets: BTC is the most

inefficient and MSCI intex the least one

[12] BTC 1 December 2110–30
November 2017 generalized Hurst long-memory, does not become efficient over time

[18]
BTC, ETH,
LTC, XRP,
XMR, ETC

July 2016–March 2019

Auto-Regressive
Integrated Moving
Average (ARIMA),
fractional (ARFIMA)

except for BTC, the other CC are mean reverting,
showing a lower predictability.

[11] 31 CC 17 August 2017–16
January 2019 panel unit root tests cross-sectional dependence among the CC.

Confirms inefficiency in highly-traded CC

[45] BTC, LTC,
ETH, XRP

29 April 2013–1
February 2018 8
August 2015–2
February 2018

ICSS algorithms tests inefficiency of all the considered markets, with the
exception of ETH

[29] 7 biggest size
CC

1 January 2019–20
January 2021

fractal connectivity
matrix, ARFIMA

using high-frequency returns, the null hypothesis
of long memory is rejected for all series

[7] BTC-USD,
BTC-EUR

1 January 2013–5
March 2018 permutation entropy BTC-USD market is slightly more efficient .

Higher the frequency, lower the efficiency.

[49] 8 major CC 25 August 2015–13
March 2018

Log-periodogram,
ARFIMA-FIGARCH
models

market (in)efficiency and the intensity of volatility
persistence is sensitive to time-scales

[10] BTC 28 July 2013–14 May
2023

R/S analysis (weekly
data) persistent, character does not change over time

[47] BTC, gold, S&P
500, USD

2 January 2018–29 May
2020

”entropy via RCMFE
method, efficiency
index”

COVID-19 leads to efficiency decreases in all four
markets. Resiliency of BTC market efficiency and
disjoint change with other markets



Fractal Fract. 2023, 7, 870 22 of 26

Appendix B. Complete Tables with Hurst Exponents

Table A2. Hurst exponent: cryptocurrencies between 20 August 2020 and 24 February 2023.

Hurst p-Value Hurst p-Value Hurst p-Value

BTC XRP SOL
15 min 0.5374 1.12 × 10−4 15 min 0.5140 0.06970 15 min 0.5480 1.45 × 10−4

1 h 0.5523 9.92 × 10−5 1 h 0.5219 0.04746 1 h 0.5632 2.39 × 10−4

Daily 0.6417 8.56 × 10−5 Daily 0.5942 2.41 × 10−3 Daily 0.6703 5.53 × 10−4

ETH ADA TRX
15 min 0.5375 2.87 × 10−6 15 min 0.5356 1.52 × 10−3 15 min 0.5174 0.04995
1 h 0.5525 5.99 × 10−7 1 h 0.5540 8.30 × 10−4 1 h 0.5219 0.04746
Daily 0.6334 2.28 × 10−5 Daily 0.6574 7.57 × 10−4 Daily 0.5942 2.41 × 10−3

BNB MATIC DOT
15 min 0.5513 1.11 × 10−6 15 min 0.5539 3.77 × 10−5 15 min 0.5276 8.51 × 10−4

1 h 0.5647 1.30 × 10−5 1 h 0.5767 3.56 × 10−5 1 h 0.5413 5.00 × 10−4

Daily 0.6559 6.20 × 10−5 Daily 0.6863 1.48 × 10−5 Daily 0.6373 3.81 × 10−4

Table A3. Hurst exponent: cryptocurrencies between 20 August 2020 and 1 July 2022.

Hurst p-Value Hurst p-Value Hurst p-Value

BTC XRP SOL
15 min 0.5462 1.62 × 10−6 15 min 0.5271 5.88 × 10−4 15 min 0.5627 5.13 × 10−6

1 h 0.5651 6.70 × 10−7 1 h 0.5446 3.75 × 10−5 1 h 0.5819 9.38 × 10−6

Daily 0.6670 1.20 × 10−5 Daily 0.5820 3.52 × 10−3 Daily 0.7275 5.69 × 10−5

ETH ADA TRX
15 min 0.5450 1.72 × 10−5 15 min 0.5411 2.04 × 10−4 15 min 0.5310 6.40 × 10−4

1 h 0.5637 9.66 × 10−6 1 h 0.5630 8.95 × 10−5 1 h 0.5384 8.33 × 10−4

Daily 0.6685 1.43 × 10−4 Daily 0.6733 8.42 × 10−4 Daily 0.5949 1.42 × 10−3

BNB MATIC DOT
15 min 0.5569 1.20 × 10−6 15 min 0.5505 6.43 × 10−4 15 min 0.5352 6.60 × 10−6

1 h 0.5736 5.70 × 10−6 1 h 0.5752 4.11 × 10−4 1 h 0.5528 2.58 × 10−6

Daily 0.6622 4.05 × 10−4 Daily 0.6918 2.85 × 10−3 Daily 0.6398 3.11 × 10−4

Table A4. Hurst exponent: cryptocurrencies between 1 July 2022 and 24 February 2023.

Hurst p-Value Hurst p-Value Hurst p-Value

BTC XRP SOL
15 min 0.5406 1.36 × 10−4 15 min 0.5145 0.14754 15 min 0.5604 1.03 × 10−7

1 h 0.5508 2.39 × 10−4 1 h 0.5141 0.2859610−5 1 h 0.5854 2.83 × 10−7

Daily 0.6227 4.60 × 10−3 Daily 0.5682 0.13156 Daily 0.6767 1.85 × 10−4

ETH ADA TRX
15 min 0.5491 1.41 × 10−7 15 min 0.5376 1.46 × 10−5 15 min 0.5172 0.07521
1 h 0.5641 6.68 × 10−7 1 h 0.5531 1.56 × 10−5 1 h 0.5254 0.04041
Daily 0.6645 9.69 × 10−4 Daily 0.6832 3.98 × 10−5 Daily 0.6267 1.35 × 10−3

BNB MATIC DOT
15 min 0.5363 1.04 × 10−3 15 min 0.5377 4.22 × 10−4 15 min 0.5322 1.54 × 10−3

1 h 0.5390 9.70 × 10−3 1 h 0.5506 5.50 × 10−4 1 h 0.5463 2.41 × 10−3

Daily 0.6297 0.04020 Daily 0.6468 2.50 × 10−3 Daily 0.6829 2.74 × 10−3

Appendix C. Correlation Matrices for Cryptoassets and BTC versus Traditional Assets

Hereafter *** (**, *) denotes significance at 0.1% (1%, 5%) significance level.
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Table A5. Correlation between cryptoassets between 20 August 2020 & 24 February 2023.

BTC BNB TRX SOL MATIC ETH DOT ADA XRP

BTC 1
BNB 0.7318 *** 1
TRX 0.7089 *** 0.8866 *** 1
SOL 0.6606 *** 0.7489 *** 0.5968 *** 1
MATIC 0.5037 *** 0.8222 *** 0.5711 *** 0.7780 *** 1
ETH 0.8422 *** 0.9057 *** 0.7742 *** 0.8825 *** 0.8378 *** 1
DOT 0.9527 *** 0.7042 *** 0.7252 *** 0.6598 *** 0.4609 *** 0.8008 *** 1
ADA 0.8275 *** 0.7456 *** 0.7379 *** 0.7017 *** 0.6312 *** 0.8524 *** 0.8423 *** 1
XRP 0.8050 *** 0.7997 *** 0.8387 *** 0.6221 *** 0.5788 *** 0.8152 *** 0.8233 *** 0.8548 *** 1

Table A6. Correlation between CC for the first subperiod between 20 August 2020 and 1 July 2022.

BTC BNB TRX SOL MATIC ETH DOT ADA XRP

BTC 1
BNB 0.8217 *** 1
TRX 0.7785 *** 0.8917 *** 1
SOL 0.6259 *** 0.7686 *** 0.5974 *** 1
MATIC 0.5779 *** 0.8250 *** 0.5768 *** 0.8175 *** 1
ETH 0.8342 *** 0.9392 *** 0.7925 *** 0.8741 *** 0.8827 *** 1
DOT 0.9380 *** 0.7820 *** 0.7933 *** 0.6235 *** 0.5258 *** 0.7821 *** 1
ADA 0.7851 *** 0.7998 *** 0.7793 *** 0.6684 *** 0.6965 *** 0.8371 *** 0.8029 *** 1
XRP 0.7656 *** 0.8538 *** 0.8927 *** 0.5820 *** 0.6313 *** 0.7979 *** 0.7868 *** 0.8290 *** 1

Table A7. Correlation between CC for the second subperiod between 1 July 2022 and 24 February 2023.

BTC BNB TRX SOL MATIC ETH DOT ADA XRP

BTC 1
BNB 0.5929 *** 1
TRX 0.9059 *** 0.2921 *** 1
SOL 0.6932 *** 0.1368 0.8407 *** 1
MATIC 0.4791 *** 0.7286 *** 0.2211 ** −0.1586 * 1
ETH 0.8396 *** 0.7048 *** 0.6931 *** 0.5532 *** 0.5588 *** 1
DOT 0.8011 *** 0.3992 *** 0.8477 *** 0.8809 *** 0.1309 0.7540 *** 1
ADA 0.7125 *** 0.2197 *** 0.8101 *** 0.9460 *** −0.0652 0.6323 *** 0.9413 *** 1
XRP 0.044 *** 0.3717 *** −0.002 *** 0.090 *** 0.1914 * 0.0062 −0.0515 −0.0496 1

Table A8. Correlation between CC and traditional assets (20 August 2020–24 February 2023).

BTC TSLA NFLX AMZN KO PG JNJ OIL WHEAT ZNM23 SILVER GOLD CCMP SX5E

BTC 1
TSLA 0.6240 *** 1
NFLX 0.5564 *** 0.1255 ** 1
AMZN 0.5540 *** 0.3264 *** 0.8124 *** 1
KO −0.1100 ** 0.2883 *** −0.7136 *** −0.5929 *** 1
PG 0.1017 * 0.4000 *** −0.1337 *** −0.0511 0.6250 *** 1
JNJ 0.2074 *** 0.3453 *** −0.4702 *** −0.3805 *** 0.7655 *** 0.4230 *** 1
OIL 0.1331 *** 0.4739 *** −0.6360 *** −0.4502 *** 0.8346 *** 0.4178 *** 0.7680 *** 1
WHEAT 0.1005 * 0.4453 *** −0.5995 *** −0.3983 *** 0.7225 *** 0.4370 *** 0.6566 *** 0.8853 *** 1
ZNM23 0.2886 *** −0.0723 0.8077 *** 0.8527 *** −0.7906 *** −0.1962 *** −0.6048 *** −0.7307 *** −0.6281 *** 1
SILVER 0.3457 *** −0.1752 *** 0.6281 *** 0.5899 *** −0.5643 *** −0.1753 *** −0.2711 *** −0.5135 *** −0.4070 *** 0.7052 *** 1
GOLD −0.1281 ** −0.1695 *** 0.1380 *** 0.1976 *** −0.0755 0.3312 *** −0.1653 *** −0.1631 *** 0.018 0.3385 *** 0.5770 *** 1
CCMP 0.8458 *** 0.6579 *** 0.7100 *** 0.7734 *** −0.1598 *** 0.2298 *** 0.1021 * −0.0114 −0.068 0.4794 *** 0.3704 *** 0.0016 1
SX5E 0.6749 *** 0.4388 *** 0.3532 *** 0.1908 *** 0.2798 *** 0.3701 *** 0.4401 *** 0.2734 *** 0.1016 * −0.0676 0.1415 *** −0.075 0.7065 *** 1
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Table A9. Correlation between CC and traditional assets (20 August 2020–1 July 2022).

BTC TSLA NFLX AMZN KO PG JNJ OIL WHEAT ZNM23 SILVER GOLD CCMP SX5E

BTC 1
TSLA 0.6812 *** 1
NFLX 0.3544 *** 0.0853 1
AMZN 0.2980 *** 0.0984 * 0.8644 *** 1
KO 0.2099 ** 0.5322 *** −0.6331 *** −0.4738 *** 1
PG 0.0924 * 0.5644 *** −0.2808 *** −0.1528 ** 0.7504 *** 1
JNJ 0.4573 *** 0.5669 *** −0.4379 *** −0.2835 *** 0.7824 *** 0.4341 *** 1
OIL 0.3493 *** 0.5853 *** −0.6032 *** −0.5135 *** 0.8831 *** 0.5302 *** 0.8046 *** 1
WHEAT 0.2084 *** 0.5141 *** −0.6787 *** −0.5854 *** 0.8468 *** 0.5623 *** 0.7137 *** 0.9100 *** 1
ZNM23 −0.2597 *** −0.5172 *** 0.7155 *** 0.6348 *** −0.8814 *** −0.5346 *** −0.7664 *** −0.9465 *** −0.8981 *** 1
SILVER 0.012 −0.2938 *** 0.3056 *** 0.4494 *** −0.4883 *** −0.5377 *** −0.2296 *** −0.4530 *** −0.4421 *** 0.5016 *** 1
GOLD −0.5741 *** −0.1756 *** −0.3667 *** −0.1677 *** −0.1346 ** 0.2643 *** −0.1043 * 0.008 0.2110 *** −0.033 0.2536 *** 1
CCMP 0.7984 *** 0.7068 *** 0.5825 *** 0.6223 *** 0.1693 *** 0.2419 *** 0.3897 *** 0.2023 *** 0.0303 −0.041 −0.007 −0.4723 1
SX5E 0.8005 *** 0.6782 *** 0.3206 *** 0.3571 *** 0.4124 *** 0.3419 *** 0.5725 *** 0.4249 *** 0.1995 *** −0.2916 *** −0.1215 ** −0.5028 *** 0.9041 *** 1

Table A10. Correlation between CC and traditional assets (1 July 2022–24 February 2023).

BTC TSLA NFLX AMZN KO PG JNJ OIL WHEAT ZNM23 SILVER GOLD CCMP SX5E

BTC 1
TSLA 0.4625 *** 1
NFLX −0.0057 −0.6776 *** 1
AMZN 0.5396 *** 0.9061 *** −0.6243 *** 1
KO 0.0053 0.0187 −0.0855 0.0868 1
PG −0.1615 * −0.3325 *** 0.1678 * −0.2334 ** 0.8862 *** 1
JNJ −0.5115 *** −0.3869 *** −0.0964 −0.3739 *** 0.5586 *** 0.6238 *** 1
OIL 0.3249 *** 0.5943 *** −0.7818 *** 0.5898 *** 0.1343 −0.1611 * 0.0887 1
WHEAT −0.0784 0.4506 *** −0.5450 *** 0.3125 *** −0.6074 *** −0.7372 *** −0.2562 ** 0.4156 *** 1
ZNM23 0.4490 *** 0.4700 *** −0.4555 *** 0.5972 *** 0.6617 *** 0.4577 *** 0.1813 * 0.5487 *** −0.2809 *** 1
SILVER −0.1935 * −0.8158 *** 0.7776 *** −0.6900 *** 0.2269 ** 0.5357 *** −0.2835 *** −0.6520 *** −0.6288 *** −0.1823 * 1
GOLD 0.20761 ** −0.5669 *** 0.6723 *** −0.3722 *** 0.3678 *** 0.5710 *** 0.0768 −0.4172 *** −0.7638 *** 0.2084 ** 0.8354 *** 1
CCMP 0.6902 *** 0.6555 *** −0.1618 * 0.7480 *** 0.4621 *** 0.2024 * −0.2785 *** 0.3319 *** −0.2431 ** 0.7113 *** −0.2581 ** 0.1508 1
SX5E 0.1553 −0.5850 *** 0.8704 *** −0.5044 *** 0.2686 *** 0.4704 *** 0.0049 −0.6055 *** −0.7780 *** −0.0851 0.7946 ** 0.8497 *** 0.1278 1

References
1. Hazlett, P.K.; Luther, W.J. Is bitcoin money? And what that means. Q. Rev. Econ. Financ. 2020, 77, 144–149. [CrossRef]
2. White, R.; Marinakis, Y.; Islam, N.; Walsh, S. Is Bitcoin a currency, a technology-based product, or something else? Technol.

Forecast. Soc. Chang. 2020, 151, 119877. [CrossRef]
3. Shahzad, S.J.H.; Bouri, E.; Roubaud, D.; Kristoufek, L.; Lucey, B. Is Bitcoin a better safe-haven investment than gold and

commodities? Int. Rev. Financ. Anal. 2019, 63, 322–330. [CrossRef]
4. Urquhart, A. The inefficiency of Bitcoin. Econ. Lett. 2016, 148, 80–82. [CrossRef]
5. Bariviera, A.F. The inefficiency of Bitcoin revisited: A dynamic approach. Econom. Lett. 2017, 161, 1–4. [CrossRef]
6. Nadarajah, S.; Chu, J. On the inefficiency of Bitcoin. Econ. Lett. 2017, 150, 6–9. [CrossRef]
7. Sensoy, A. The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Financ. Res. Lett. 2019, 28,

68–73. [CrossRef]
8. Tiwari, A.K.; Jana, R.K.; Das, D.; Roubaud, D. Informational efficiency of Bitcoin—An extension. Econ. Lett. 2018, 163, 106–109.

[CrossRef]
9. Al-Yahyaee, K.H.; Mensi, W.; Yoon, S.M. Efficiency, multifractality, and the long-memory property of the Bitcoin market: A

comparative analysis with stock, currency, and gold markets. Financ. Res. Lett. 2018, 27, 228–234. [CrossRef]
10. Grobys, K. A fractal and comparative view on the memory of Bitcoin and S&P 500 returns. Res. Int. Bus. Financ. 2023, 66 , 102021.
11. Hu, Y.; Valera, H.G.A.; Oxley, L. Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel

framework. Financ. Res. Lett. 2019, 31, 138–145. [CrossRef]
12. Jiang, Y.; Nie, H.; Ruan, W. Time-varying long-term memory in Bitcoin market. Financ. Res. Lett. 2018, 25, 280–284. [CrossRef]
13. Stavroyiannis, S.; Babalos, V.; Bekiros, S.; Lahmiri, S.; Uddin, G.S. The high frequency multifractal properties of Bitcoin. Phys. A

2019, 520, 62–71. [CrossRef]
14. Bariviera, A.F. One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles. Financ. Res. Lett. 2021,

39, 101649. [CrossRef]
15. Avram, F.; Taqqu, M.S. Robustness of the R/S statistic for fractional stable noises. Stat. Inference Stoch. Process. 2000, 3, 69–83.

[CrossRef]
16. Mandelbrot, B.; Taqqu, M. Robust R/S analysis of long-run serial correlation. Bull. Int. Stat. Inst. 1979, 48, 59–104.
17. Hou, K.; Xue, C.; Zhang, L. Replicating anomalies. Rev. Financ. Stud. 2020, 33, 2019–2133. [CrossRef]
18. Couillard, M.; Davison, M. A comment on measuring the Hurst exponent of financial time series. Phys. A 2005, 348, 404–418.

[CrossRef]

http://doi.org/10.1016/j.qref.2019.10.003
http://dx.doi.org/10.1016/j.techfore.2019.119877
http://dx.doi.org/10.1016/j.irfa.2019.01.002
http://dx.doi.org/10.1016/j.econlet.2016.09.019
http://dx.doi.org/10.1016/j.econlet.2017.09.013
http://dx.doi.org/10.1016/j.econlet.2016.10.033
http://dx.doi.org/10.1016/j.frl.2018.04.002
http://dx.doi.org/10.1016/j.econlet.2017.12.006
http://dx.doi.org/10.1016/j.frl.2018.03.017
http://dx.doi.org/10.1016/j.frl.2019.04.012
http://dx.doi.org/10.1016/j.frl.2017.12.009
http://dx.doi.org/10.1016/j.physa.2018.12.037
http://dx.doi.org/10.1016/j.frl.2020.101649
http://dx.doi.org/10.1023/A:1009919307631
http://dx.doi.org/10.1093/rfs/hhy131
http://dx.doi.org/10.1016/j.physa.2004.09.035


Fractal Fract. 2023, 7, 870 25 of 26

19. Fama, E.F. Efficient capital markets: A review of theory and empirical work. J. Financ. 1970, 25, 383–417. [CrossRef]
20. Mandelbrot, B.B.; Hudson, R.L. The (Mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward; Profile Books Ltd.: London,

UK, 2010.
21. Delfin-Vidal, R.; Romero-Meléndez, G. The Fractal Nature of Bitcoin: Evidence from Wavelet Power Spectra; Springer International

Publishing: Cham, Switzerland , 2016; pp. 73–98.
22. Escobar, J.J.M.; Matamoros, O.M.; Páez, A.L.C.; Padilla, R.T. Dynamic analysis of Bitcoin fluctuations by means of a fractal

predictor. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys); Springer
International Publishing: Cham, Switzerland, 2022; Volume 1, pp. 791–804.

23. Cheah, E.T.; Fry, J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin.
Econom. Lett. 2015, 130, 32–36. [CrossRef]

24. Gajardo, G.; Kristjanpoller, W.D.; Minutolo, M. Does Bitcoin exhibit the same asymmetric multifractal crosscorrelations with
crude oil, gold and DJIA as the Euro, Great British Pound and Yen. Chaos Solitons Fractals 2018, 109, 195–205. [CrossRef]

25. Dyhrberg, A.H. Bitcoin, gold and the dollar—A GARCH volatility analysis. Financ. Res. Lett. 2016, 16, 85–92. [CrossRef]
26. Baur, D.G.; Dimpfl, T.; Kuck, K. Bitcoin, gold and the US dollar—A replication and extension. Financ. Res. Lett. 2018, 25, 103–110.

[CrossRef]
27. Klein, T.; Pham Thu, H.; Walther, T. Bitcoin is not the New Gold—A comparison of volatility, correlation, and portfolio

performance. Int. Rev. Financ. Anal. 2018, 59, 105–116. [CrossRef]
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