
Citation: Tawfiq, F.M.O.; Tchier, F.;
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Abstract: In this study, we begin by examining the τ-fractional differintegral operator and proceed to
establish a novel subclass in the open unit disk E. The determination of the nth coefficient bound for
functions within this recently established class is accomplished by the use of the Faber polynomial
expansion approach. Additionally, we examine the behavior of the initial coefficients of bi-close-to-
convex functions defined by the τ-fractional differintegral operator, which may exhibit unexpected
reactions. We established connections between our current research and prior studies in order to
validate our significant findings.
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1. Introduction and Definitions

Let H denote the set of all analytic functions in the open unit disc E = {z : |z| < 1}.
Let A be the subset ofH having the functions that are normalized by

f (0) = 0 = −1 + f ′(0)

and each f ∈ A has the series of the form:

f (z) = z +
∞

∑
n=2

anzn. (1)

The members of A that are univalent in E form the subclass S . Let the class P ⊆ H be
defined as:

P = {p ∈ H : p(0) = 1 and Rep(z) > 0}. (2)

A function f having the form (1) is said to be starlike of order β (0 ≤ β < 1) if it satisfies
the inequality

Re

(
z f
′
(z)

f (z)

)
> β, z ∈ E.

The set of all functions that satisfies the above inequality is denoted by S∗(β). It is easy to
prove that S∗(β) ⊂ S∗(0) = S∗ ⊂ S .
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In 1952, Kaplan introduced the class of close-to-convex functions, for every function
having the form (1) and another function g ∈ S∗ such that

Re

(
z f
′
(z)

g(z)

)
> α, 0 ≤ α < 1, z ∈ E.

The class of all such functions of order α is denoted by C(α). Also, one can prove that
S∗(α) ⊂ C(α) ⊂ S (see [1]).

For f1, f2 ∈ A, and f1 is subordinate to f2 in E, denoted by

f1(z) ≺ f2(z), z ∈ E,

if we have a function u0, such that u0 ∈ A, |u0(z)| < 1 and u0(0) = 0,

f1(z) = f2(u0(z)), z ∈ E.

Each univalent function f has an inverse f−1 = F, defined as:

F( f (z)) = z, z ∈ E

and
f (F(w)) = w, |w| < r0( f ), r0( f ) ≥ 1

4
.

So each inverse function has the series form

F(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + ...

= z +
∞

∑
n=2

Anzn. (3)

Also, every g ∈ A can be written as

g(z) = z +
∞

∑
n=2

bnzn (4)

the series of the inverse function of (4) is given by

G(z) = z +
∞

∑
n=2

Bnzn.

An analytic function f is said to be bi-univalent in E if both f and f−1 are univalent
in E, and the set of all such type of bi-univalent functions is denoted by the symbol Σ.
For f ∈ Σ, Levin [2] proved that |a2| < 1.51, and after that Branan and Clunie [3] gave
the improvement of |a2| and proved that |a2| ≤

√
2. For f ∈ Σ, Netanyahu [4] proved

that max|a2| = 4
3 (see [5–7] for details), and all these bounds are non-sharp. A number

of operators [8], subordination properties [9], generalization techniques [10], and the in-
verse of the square-root transform of the Koebe function [11] were used to derive recent
coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent func-
tions. Subclasses of m-fold symmetric bi-bazilevic functions related to modified Sigmoid
functions were considered in [12], and those related to conic domains were considered
in [13]. Aspects such as coefficient estimates were taken into consideration when extending,
generalizing, and improving the starlikeness criteria for specific subclasses of analytic and
bi-univalent functions [14]; additionally, specific coefficient estimates were provided for
specific families of bi-Bazilevic functions of the Ma-Minda type that involve the Hohlov
operator [15]. The study of complex functions began with the introduction of operators.
Making use of them has made the verification of several prior results easier and allowed for
the discovery of new results, particularly those relevant to the starlikeness and convexity of



Fractal Fract. 2023, 7, 883 3 of 16

certain functions. The majority of studies using operators lead to introducing new classes of
analytic functions. Using the fractional derivative of order τ [16], Owa and Srivastava [17]
introduced the τ-fractional-differintegral operator Dτ : A → A, which is known as an
extension of the fractional derivative and the fractional integral as follows:

Definition 1 ([17]). The τ-fractional-differintegral operator Dτ : A → A of the fractional
derivative and the fractional integral is defined as follows:

Dτ f (z) = Γ(2− τ)zτ Dτ f (z)

= z +
∞

∑
n=2

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

anzn, z ∈ E,

= z +
∞

∑
n=2

ϕnanzn, z ∈ E (5)

where,

ϕn =
Γ(2− τ)Γ(n + 1)

Γ(n + 1− τ)

and
τ < 2.

From the definition of Dτ f , some properties can be given in the following form:
i.

lim
τ→1

Dτ f (z) = D f (z) = z f
′
(z).

ii.

Dτ
(

Dδ f (z)
)
= Dδ(Dτ f (z)) = z +

∞

∑
n=2

Γ(2− τ)Γ(2− δ)(Γ(n + 1))2

Γ(n + 1− τ)Γ(n + 1− δ)
anzn

and

D(Dτ f (z))
Dτ f (z)

=
z f
′
(z)

f (z)
, for τ = 0

=

(
1 +

z f
′′
(z)

f ′(z)

)
for τ = 1.

Recent advances in fractional calculus have shown its usefulness in a wide variety of
fields, including engineering, turbulence, electric networks, computer graphics, biological
systems with memory, and physics. One example is the Korteweg–de Vries equation, which
is examined using a novel integral transform in which the fractional derivative is presented
in the Caputo sense. The equation was designed to capture a wide range of physical
characteristics of the development and connection of nonlinear waves [18]. The work on
the Mittag–Leffler-confluent hypergeometric function [19] makes use of a novel fractional
integral operator, while [20] presents applications of differential subordination theory to
analytic and p-valent functions described by a generalized fractional differintegral operator.
Hamidi and Jahangiri [21] have explored the bounds an for the coefficients of functions f
that are in the class of bi-close-to-convex functions of order α (0 ≤ α < 1). They proved
their main result by making use of the assertion that if ai = 0, 2 ≤ i ≤ n− 1, then bi = 0,
2 ≤ i ≤ n− 1. However, Wang and Bulut [22] gave the counter example to contradict the
above assertion. For example, by taking the functions f and g as:

f (z) = z and g(z) = z− z2

2
,



Fractal Fract. 2023, 7, 883 4 of 16

clearly, we see that g ∈ S∗ and f ∈ C. It is worthy to note that for these functions
a2 = 0 but b2 = − 1

2 6= 0. Therefore, using the method of Wang and Bulut [22], we define
the new subclass CΣ(α, τ) of the close-to-convex function of the order α associated with
the τ-fractional-differintegral operator Dτ and investigate more general results by the
implementation of the Faber polynomial technique.

First, we define a class of starlike functions of order β associated with τ-fractional-
differintegral operator Dτ :

Definition 2. Let g be the function of the form (4). Then, g ∈ S∗(β, τ), if

Re
(

D(Dτ g(z))
g(z)

)
> β,

where 0 ≤ β < 1 and τ < 2.

Now, we define a class CΣ(α, τ) of the close-to-convex function of order α associated
with the τ-fractional-differintegral operator Dτ :

Definition 3. Let f be the function of the form (1). Then, f ∈ CΣ(α, τ) if there is a function
g ∈ S∗(β, τ) satisfying

Re
(

D(Dτ f (z))
g(z)

)
> α

and

Re
(

D(Dτ F(w))

G(w)

)
> α,

where 0 ≤ α < 1, τ < 2, z, w ∈ E.

Remark 1. For τ = 0, the above class will be reduced to the well-known class given in [21].

2. Faber Polynomial Expansion Approach

Faber [23] introduced a new technique to investigate coefficient bounds |an| for n ≥ 3,
known as the Faber polynomial expansion method. Gong [24] discussed the importance of
Faber polynomials in mathematical sciences, particularly in Geometric Function Theory.
New classes of bi-univalent functions were established by Hamidi and Jahangiri [21,25],
who also employed the Faber polynomial expansion approach to establish coefficient
bounds. Furthermore, many authors like [26–29] applied this technique and determined
some useful results for bi-univalent functions (see for detail [21,30,31]). We also refer the
reader to ([32–34]) for recent papers dealing with bi-close-to-convex functions.

It is possible to express the coefficients of the inverse map F of the analytic functions f
using the Faber polynomial method, as shown below (see, [27,35]).

F(w) = f−1(w) = w +
∞

∑
n=2

1
n

Kn
n−1(a2, a3, . . . , an)wn,
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where

K−n
n−1 =

(−n)!
(−2n + 1)!(n− 1)!

an−1
2 +

(−n)!
[2(−n + 1)]!(n− 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n− 4)!
an−4

2 a4

+
(−n)!

[2(−n + 2)]!(n− 5)!
an−5

2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n− 6)!

an−6
2 [a6 + (−2n + 5)a3a4]

+ ∑
i≥7

an−i
2 Qi,

and Qi is a homogeneous polynomial in the variables a2, a3, . . . , an, for 7 ≤ i ≤ n. Particu-
larly, the first three terms of K−n

n−1 are

1
2

K−2
1 = −a2,

1
3

K−3
2 = 2a2

2 − a3,

1
4

K−4
3 = −(5a3

2 − 5a2a3 + a4).

In general, for any r ∈ Z := {0,±1,±2, . . . } and n ≥ 2, an expansion of Kr
n−1 (see [27]) of

the form:

Kr
n−1 = ran +

r(r− 1)
2

V2
n−1 +

r!
(r− 3)!3!

V3
n−1 + · · ·+

r!
(r− n + 1)!(n− 1)!

Vn−1
n−1 ,

where,
V r

n−1 = V r
n−1(a2, a3 . . . ),

and by [35], we have

Vv
n−1(a2, . . . , an) =

∞

∑
n=1

v!
µ1!, . . . , µn!

aµ1
2 . . . aµn−1

n , for a1 = 1 and v ≤ n.

The sum is taken over all non-negative integers µ1, . . . , µn satisfying

µ1 + µ2 + · · ·+ µn−1 = v,

µ1 + 2µ2 + · · ·+ (n− 1)µn−1 = n− 1.

Clearly,
Vn−1

n−1 (a1, . . . , an) = an−1
2

and
V1

n−1(a1, . . . , an) = an−1.

In this study, in Section 1, we briefly introduced the literature, which is very helpful
to understanding the idea of this article. Also, in this section we defined a subclass of
close-to-convex functions associated with τ-fractional-differintegral operators. In Section 2,
we discussed the Faber polynomial method and its uses. In Section 3, we give some known
and some new lemmas, which will be used to prove our main results. Using the Faber
polynomial method, the nth coefficient bounds and unpredictable behavior of the initial
coefficient estimates of bi-close-to-convex functions defined by the τ-fractional differintegral
operator are investigated in Section 4. The consequences of the primary findings that are
already known to us are also highlighted. In Section 5, we made concluding remarks.
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3. Set of Lemmas

Lemma 1. The Caratheodory Lemma (see [36]) if p ∈ P and

p(z) = 1 +
∞

∑
n=1

cnzn,

then
|cn| ≤ 2.

Lemma 2 ([1]). If p ∈ P and µ ∈ C, then∣∣∣c2 − µc2
2

∣∣∣ ≤ 2 max{1, |2µ− 1|}.

Lemma 3. Let a function g ∈ A, be given by (4). If g ∈ S∗(β, τ), then

|bn| ≤
2(1− β)

n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
− 1

n−2

∏
j=1

1 +
2(1− β)(

Γ(2−τ)Γ(j+2)
Γ(j+2−τ) (j + 1)− 1

)
, n ≥ 3 (6)

and

|b2| ≤
2(1− β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
− 1

, (7)

where 0 ≤ β < 1, τ < 2

Proof. Suppose g ∈ S∗(β, τ); then,

Re
(

D(Dτ g(z))
g(z)

)
> β.

Setting

D(Dτ g(z))
g(z)

= β + (1− β)p(z)

D(Dτ g(z))
g(z) − β

1− β
= p(z),

or, equivalently,

D(Dτ g(z))

= [(1− β)p(z) + β]g(z)(
z +

∞

∑
n=2

Γ(2− τ)Γ(n + 1)
Γ(2)Γ(n + 1− τ)

nbnzn

)

=

(
1 + (1− β)

∞

∑
n=1

cnzn

)(
z +

∞

∑
n=2

bnzn

)
∞

∑
n=2

(
Γ(2− τ)Γ(n + 1)
Γ(2)Γ(n + 1− τ)

n− 1
)

bnzn

= (1− β)
∞

∑
n=1

cnzn+1 + (1− β)
∞

∑
n=2

(
n−1

∑
j=1

cjbn−j

)
zn
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Comparing the coefficient of zn on both sides, we have(
n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
− 1
)

bn = (1− β)
n−1

∑
j=1

cjbn−j

and ∣∣∣∣(n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
− 1
)

bn

∣∣∣∣ ≤ (1− β)
n−1

∑
j=1

∣∣cj
∣∣∣∣bn−j

∣∣.
Using Lemma 1, we have∣∣∣∣(n

(
Γ(2− τ)Γ(n + 1)

Γ(n + 1− τ)

)
− 1
)

bn

∣∣∣∣ ≤ 2(1− β)
n−1

∑
j=1

∣∣bj
∣∣ (8)

So for n = 2, we have from (8)

|b2| ≤
2(1− β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
− 1

(9)

from the above we conclude that (6) holds for n = 2. Let us assume that (6) is true for n ≤ t,
i.e.,

|bt| ≤
2(1− β)(

Γ(2−τ)Γ(t+1)
Γ(2)Γ(t+1−τ) [t]q − 1

) t−2

∏
j=1

1 +
2(1− β)(

Γ(2−τ)Γ(j+2)
Γ(2)Γ(j+2−τ) (j + 1)− 1

)
.

Consider

|bt+1| ≤
2(1− β)(

(t + 1)
(

Γ(2−τ)Γ(t+2)
Γ(t+2−τ)

)
− 1
)

×(1 + |b2|+ |b3|+ · · ·+ |bt|)

≤ 2(1− β)(
(t + 1)

(
Γ(2−τ)Γ(t+2)

Γ(t+2−τ)

)
− 1
)



1 + 2(1−β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
−1

+ 2(1−β)

3
(

Γ(2−τ)Γ(4)
Γ(4−τ)

)
−1

(
1 + 2(1−β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
−1

)

+ 2(1−β)

4
(

Γ(2−τ)Γ(5)
Γ(5−τ)

−1
)
(

1 + 2(1−β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
−1

)(
1 + 2(1−β)

3
(

Γ(2−τ)Γ(4)
Γ(4−τ)

)
−1

)

+ 2(1−β)

2
(

Γ(2−τ)Γ(3)
Γ(3−τ)

)
−1

t−2
∏
j=1

(
1 + 2(1−β)

(j+1)
(

Γ(2−τ)Γ(j+2)
Γ(2)Γ(j+2−τ)

)
−1

)


=

2(1− β)
Γ(2−τ)Γ(t+2)
Γ(2)Γ(t+2−τ) (t + 1)− 1

t−1

∏
j=1

1 +
2(1− β)

Γ(2−τ)Γ(j+2)
Γ(2)Γ(j+2−τ) (j + 1)− 1

.

This means that the result holds for n = t + 1. Therefore, we have shown by mathematical
induction that (6) is true for every n, n ≥ 2. This completes the proof.

Lemma 4. Let a function g ∈ A be given by (4). If g ∈ S∗(β, τ), then∣∣∣b3 − µb2
2

∣∣∣ ≤ 2(1− β)

3ϕ3 − 1
max

[
1,
∣∣∣∣1 + 2(1− β)

2ϕ2 − 1

(
1− µ

(3ϕ3 − 1)
2ϕ2 − 1

)∣∣∣∣]
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where

ϕ3 =

(
Γ(2− τ)Γ(4)

Γ(4− τ)

)
− 1,

(10)

ϕ2 =

(
Γ(2− τ)Γ(3)

Γ(3− τ)

)
− 1

and 0 ≤ β < 1, τ < 2, µ ∈ C.

Proof. If g ∈ S∗(β, τ), then we have

Re
(

D(Dτ g(z))
g(z)

)
> β

Then, p(z) = 1 +
∞
∑

n=1
cnzn ∈ P exist such that

D(Dτ g(z))
g(z)

= β + (1− β)p(z)

= 1 + (1− β)
∞

∑
n=1

cnzn (11)

From (11), we have

b2 =
(1− β)c1

2ϕ2 − 1
(12)

and

b3 =
(1− β)

3ϕ3 − 1

[
c2 +

(1− β)c2
1

2ϕ2 − 1

]
(13)

from (12) and (13) ∣∣∣b3 − µb2
2

∣∣∣ = (1− β)

3ϕ3 − 1

∣∣∣c2 − vc2
1

∣∣∣,
where

v = − (1− β)

2ϕ2 − 1

(
1− µ

3ϕ3 − 1
2ϕ2 − 1

)
.

By using Lemma 2, the result is now completed.

4. Main Results

Theorem 1. Let f ∈ CΣ(α, τ) be given by (1) with ai = 0, 2 ≤ i ≤ n− 1. Then, for n ≥ 3

|an| ≤
(

Γ(n + 1− τ)

Γ(2− τ)Γ(n + 1)

)
1
n



2(1−β)(
Γ(2−τ)Γ(n+1)

Γ(n+1−τ)
n−1

)×
n−2
∏
j=1

(
1 + 2(1−β)(

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

(j+1)−1
)
)

+2(1− α) +
n−2

∑
l=1


2(1−β)(

Γ(2−τ)Γ(n−l+1)
Γ(n−l+1−τ)

(n−l)−1
)×

n−l−2
∏
j=1

(
1 + 2(1−β)(

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

(j+1)−1
)
)
Υ(l)


,
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where
Υ(l) = min

(∣∣∣K−1
l (b2, b3, . . . , bl+1)

∣∣∣, ∣∣∣K−1
l (B2, B3, . . . , Bl+1)

∣∣∣).

Proof. For f ∈ CΣ(α, τ). Therefore, a function g ∈ S∗(β, τ) exists satisfying

Re
(

D(Dτ f (z))
g(z)

)
> α.

The Faber polynomial expansion of D(Dτ f (z))
g(z) is

D(Dτ f (z))
g(z)

= 1 +
∞

∑
n=2


(

n Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

an − bn

)
+

n−2
∑

l=1
K−1

l (b2, b3, . . . , bl+1)(
(n− l) Γ(2−τ)Γ(n+1)

Γ(n+1−τ)
an−l − bn−l

)
zn−1. (14)

For the inverse maps F = f−1 and G = g−1, we obtain

D(Dτ F(w))

G(w)
= 1 +

∞

∑
n=2


(

n Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

An − Bn

)
+

n−2
∑

l=1
K−1

l (B2, B3, . . . , Bl+1)(
(n− l) Γ(2−τ)Γ(n+1)

Γ(n+1−τ)
An−l − Bn−l

)
wn−1. (15)

Since Re D(Dτ f (z))
g(z) > α in E, there is a real part function

p(z) = 1 +
∞

∑
n=1

cnzn

so that

D(Dτ f (z))
g(z)

= 1 + (1− α)p(z)

= 1 + (1− α)
∞

∑
n=1

cnzn. (16)

Similarly, Re D(Dτ F(w))
G(w)

> α in E, and there exists a positive real part function

q(w) = 1 +
∞

∑
n=1

dnwn

so that

D(Dτ F(w))

G(w)
= 1 + (1− α)q(w)

= 1 + (1− α)
∞

∑
n=1

dnwn. (17)

Comparing the coefficients of (14) and (16), for any n ≥ 2, yields
(

n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
an − bn

)
+

n−2
∑

l=1
K−1

l (b2, b3, . . . , bl+1)

×
(
(n− l)

(
Γ(2−τ)Γ(n−l+1)

Γ(n−l+1−τ)

)
an−l − bn−l

)
 = (1− α)cn−1. (18)
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Evaluating the coefficients of the equations (15) and (17), for any n ≥ 2, yields
(

n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
An − Bn

)
+

n−2
∑

l=1
K−1

l (B2, B3, . . . , Bl+1)

×
(
(n− l)

(
Γ(2−τ)Γ(n−l+1)

Γ(n−l+1−τ)

)
An−l − Bn−l

)
 = (1− α)dn−1. (19)

But under the assumption that 2 ≤ i ≤ n− 1, and ai = 0, respectively, we find from
(18) and (19) that(

n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
an − bn

)
−

n−2

∑
l=1

bn−lK−1
l (b2, b3, . . . , bl+1)

= (1− α)cn−1,

(20)

−
(

n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
An − Bn

)
−

n−2

∑
l=1

Bn−lK−1
l (B2, B3, . . . , Bl+1)

= (1− α)dn−1. (21)

Also, ai = 0, (2 ≤ i ≤ n− 1), and we know that

An = −an.

Thus, (20) and (21) give

n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
an = bn + (1− α)cn−1 +

n−2

∑
l=1

bn−lK−1
l (b2, b3, . . . , bl+1)

and

−n
(

Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)
an = Bn + (1− α)dn−1 +

n−2

∑
l=1

Bn−lK−1
l (B2, B3, . . . , Bl+1),

respectively. Now, taking the modulus on both sides we have∣∣∣∣n(Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)∣∣∣∣|an| ≤ |bn|+ (1− α)|cn−1|+
n−2

∑
l=1

∣∣∣bn−lK−1
l (b2, b3, . . . , bl+1)

∣∣∣
and∣∣∣∣n(Γ(2− τ)Γ(n + 1)

Γ(n + 1− τ)

)∣∣∣∣|an| ≤ |Bn|+ (1− α)|dn−1|+
n−2

∑
l=1

∣∣∣Bn−lK−1
l (B2, B3, . . . , Bl+1)

∣∣∣.
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On the other hand, since g, G ∈ S∗(β, τ), we use the Lemma 3 to obtain∣∣∣∣n(Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)∣∣∣∣|an|

≤ 2(1− β)(
n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
− 1
) n−2

∏
j=1

1 +
2(1− β)((

Γ(2−τ)Γ(j+2)
Γ(2)Γ(j+2−τ)

)
(j + 1)− 1

)


+(1− α)|cn−1|+
n−2

∑
l=1


2(1−β)((

Γ(2−τ)Γ(n−l+1)
Γ(2)Γ(n−l+1−τ)

)
(n−l)−1

)×
n−l−2

∏
j=1

(
1 + 2(1−β)((

Γ(2−τ)Γ(j+2)
Γ(2)Γ(j+2−τ)

)
(j+1)−1

)
)


×
∣∣∣K−1

l (b2, b3, . . . , bl+1)
∣∣∣

and ∣∣∣∣n(Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)∣∣∣∣|an|

≤ 2(1− β)(
Γ(2−τ)Γ(n+1)

Γ(n+1−τ)
n− 1

) n−2

∏
j=1

1 +
2(1− β)((

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

)
(j + 1)− 1

)


+(1− α)|dn−1|+
n−2

∑
l=1


2(1−β)(

Γ(2−τ)Γ(n−l+1)
Γ(n−l+1−τ)

n−1
)×

n−l−2
∏
j=1

(
1 + 2(1−β)(

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

(j+1)−1
)
)


×
∣∣∣K−1

l (B2, B3, . . . , Bl+1)
∣∣∣.

Using the Lemma 1, we obtain∣∣∣∣n(Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)∣∣∣∣|an|

≤ 2(1− β)(
n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
− 1
) n−2

∏
j=1

1 +
2(1− β)((

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

)
(j + 1)− 1

)


+2(1− α) +
n−2

∑
l=1


2(1−β)((

Γ(2−τ)Γ(n−l+1)
Γ(n−l+1−τ)

)
(n−l)−1

)×
n−l−2

∏
j=1

(
1 + 2(1−β)((

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

)
(j+1)−1

)
)


×
∣∣∣K−1

l (b2, b3, . . . , bl+1)
∣∣∣. (22)
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and ∣∣∣∣n(Γ(2− τ)Γ(n + 1)
Γ(n + 1− τ)

)∣∣∣∣|an|

≤ 2(1− β)(
n
(

Γ(2−τ)Γ(n+1)
Γ(n+1−τ)

)
− 1
) n−2

∏
j=1

1 +
2(1− β)((

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

)
(j + 1)− 1

)


+2(1− α) +
n−2

∑
l=1


2(1−β)(

Γ(2−τ)Γ(n−l+1)
Γ(n−l+1−τ)

(n−l)−1
)×

n−l−2
∏
j=1

(
1 + 2(1−β)(

Γ(2−τ)Γ(j+2)
Γ(j+2−τ)

(j+1)−1
)
)


×
∣∣∣K−1

l (B2, B3, . . . , Bl+1)
∣∣∣. (23)

Consequently, comparing (22) and (23), we obtain the coefficient bounds |an| as asserted in
Theorem 1.

For τ = 0, we obtain a deduced result from Theorem 1 that was proven in [37].

Corollary 1. [37]. For 0 ≤ α, β < 1. Let f ∈ CΣ(α, β), if ai = 0, 2 ≤ i ≤ n− 1. Then, for n ≥ 3

|an| ≤
{

1
n!

n−2

∏
j=0

(j + 2(1− β))

+
2(1− α)

n
+

1
n

n−2

∑
l=1

(
1

(n− l − 1)!

n−l−2

∏
j=0

(j + 2(1− β))

)
Υ1(l)

}
,

where
Υ1(l) = min

(∣∣∣K−1
l (b2, b3, . . . , bl+1)

∣∣∣, ∣∣∣K−1
l (B2, B3, . . . , Bl+1)

∣∣∣).

For τ = 0, and β = 0, we obtain a result that was proved in [22].

Corollary 2 ([22]). For 0 ≤ α < 1. Let f ∈ CΣ(α) be given in (1), if ai = 0, 2 ≤ i ≤ n− 1.
Then,

|an|

≤ 1 +
2(1− α)

n
+

1
n

n−2

∑
l=1

(n− l)min
(∣∣∣K−1

l (b2, b3, . . . , bl+1)
∣∣∣, ∣∣∣K−1

l (B2, B3, . . . , Bl+1)
∣∣∣).

Theorem 2. Let f ∈ CΣ(α, τ) and f be given in (1). Then,

|a2| ≤ min


(1−α)

ϕ2
+ (1−β)

ϕ2(2ϕ2−1) ,

√
2(1−α)

3ϕ3
+ 4q(1−β)

3ϕ3(2ϕ2−1)

(
(1−α)

1 + (1−β)
(2ϕ2−1)

)
 (24)

and

|a3| ≤ min


(1−α)

3ϕ3
[1 + max(1, |V1|)] + (1−β)

3ϕ3(3ϕ3−1) max(1, |V2|) + 2(1−α)(1−β)

ϕ2
2(2ϕ2−1)

,

2(1−α)
3ϕ3

+ 4q(1−α)(1−β)
3ϕ3(2ϕ2−1) + 4(q−1)(1−β)2

3ϕ3(2ϕ2−1)2 + 2(1−β)
3ϕ3(3ϕ3−1)

(
1 + (1−β)

ϕ2−1

)
.

 (25)

where ϕ2 and ϕ3 are given by (10).
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Proof. If we set n = 2 and n = 3 in (18) and (19), respectively, we obtain

a2 =
(1− α)

2q ϕ2
c1 +

b2

2ϕ2
(26)

a3 =
(1− α)

3ϕ3
c2 +

q(1− α)

3ϕ3
b2c1 +

q− 1
3ϕ3

b2
2 +

b3

3ϕ3
(27)

−a2 =
(1− α)

2ϕ2
d1 −

b2

2ϕ2
(28)

2a2
2 − a3 =

(1− α)

3ϕ3
d2 −

(1− α)

3ϕ3
b2d1 +

2
3ϕ3

b2
2 −

b3

3ϕ3
(29)

From (26) and (28), we find
c1 = −d1 (30)

On the other hand, from (27) and (29), we obtain

a2
2 =

(1− α)

6ϕ3
(c2 + d2) +

q(1− α)

6ϕ3
b2(c1 − d1) +

q
3ϕ3

b2
2. (31)

Taking the modulus of (26) and (31) together with Lemma 1, we obtain

|a2| ≤
(1− α)

ϕ2
+
|b2|
2ϕ2

(32)

and

|a2|2 ≤
2(1− α)

3ϕ3
+

2(1− α)

3ϕ3
|b2|+

1
3ϕ3
|b2|2. (33)

Using inequality (7), we have

|a2| ≤
(1− α)

ϕ2
+

(1− β)

ϕ2(2ϕ2 − 1)
(34)

and

|a2| ≤

√
2(1− α)

3ϕ3
+

4q(1− β)

3ϕ3(2ϕ2 − 1)

(
(1− α)

1
+

(1− β)

(2ϕ2 − 1)

)
. (35)

Thus, we obtain the desired estimate as asserted in (24).
Next, in order to find the bound for |a3|, we subtract (29) from (27)

2a3 − 2a2
2 =

(1− α)

3ϕ3
(c2 − d2)−

2
3ϕ3

b2
2 +

2
3ϕ3

b3 +
(1− α)

3ϕ3
(c1 + d1)b2.

By (30), we obtain

a3 = a2
2 +

(1− α)

6ϕ3
(c2 − d2) +

1
3ϕ3

(
b3 − b2

2

)
. (36)

If we set the value of a2
2 from (26) in (36), then we have

a3 =
(1− α)

6ϕ3

(
c2 −

(
−3ϕ3(1− α)

2ϕ2
2

)
c2

1

)
+

1
3ϕ3

(
b3 −

(
1− 3ϕ3

4ϕ2
2

)
b2

2

)

+
(1− α)

2ϕ2
2

c1b2 −
1− α

6ϕ3
d2.
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So, using Lemma 1, inequality (7) of Lemma 3, Lemma 2, and Lemma 4, we obtain

|a3| ≤
(1− α)

3ϕ3
[1 + max(1, |V1|)] +

(1− β)

3ϕ3(3ϕ3 − 1)
max(1, |V2|) +

2(1− α)(1− β)

ϕ2
2(2ϕ2 − 1)

, (37)

where

V1 = 1 +
3ϕ3(1− α)

ϕ2
2

,

V2 = 1 +
2(1− β)

(2ϕ2 − 1)

[
1−

(
1− 3ϕ3

4ϕ2
2

)(
3ϕ3 − 1
2ϕ2 − 1

)]
.

If we set the value of a2
2 from (26) in (36), then we have

a3 =
(1− α)

3ϕ3
c2 +

(1− α)

3ϕ3
b2c1 +

1
3ϕ3

b3.

Using Lemma 1 and Lemma 3, we obtain

|a3| ≤
2(1− α)

3ϕ3
+

4(1− α)(1− β)

3ϕ3(2ϕ2 − 1)
+

4(q− 1)(1− β)2

3ϕ3(2ϕ2 − 1)2

+
2(1− β)

3ϕ3(3ϕ3 − 1)

(
1 +

2(1− β)

(2ϕ2 − 1)

)
. (38)

Hence, (37) and (38) give the desired estimate on the coefficient |a3| as asserted in (25).

In Theorem 2, we obtain the known corollary proved in [37] for τ = 0.

Corollary 3 ([37]). Let f ∈ CΣ(α) be given by (1). Then,

|a2| ≤ min


2− α− β,√

1
3{4(1− β)(2− α− β) + 2(1− α)}


and

|a3| ≤
1
3


(3− 2β)(3− 2α− β), 0 ≤ α ≤ 2+β

3

(1− α)(5− 3α) + (1− β)(2− β) + 6(1− α)(1− β), 2+β
3 ≤ α < 1.


5. Conclusions

In this study, we show how the Faber polynomial method may be used to generalize
previous work on classes of close-to-convex functions. The newly published note [22]
provided the impetus for our research into a special category of bi-close-to-convex functions
related to τ-fractional differintegral operators. Using the Faber polynomial expansion
method, we found an upper bound for these functions at the nth coefficient. We also
showed links between new and previous work and explored the unexpected behavior of
the initial coefficients of bi-close-to-convex functions.

Since the beginning of the study of complex functions, operators have been in use. By
applying them, many established findings have been shown to be easier, and new results
may be produced. The most typical result of operator-based research is the introduction
of new classes of analytic functions. We can make new subclasses of bi-close-to-convex
functions using the same method as in this article. To do this, we need to consider the
ordinary differential and integral operators, q-analogous differential and integral operators,
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and symmetrical q-calculus operators on known subclasses of bi-close-to-convex functions.
The Faber polynomial expansion method can be used to talk about the general coefficient
bound and how initial bounds can behave in unpredictable ways for functions in these
classes. Use of the m-fold symmetric function-linked fractional differential operators allows
for the generalization of the classes recently developed in this article, and extended results
for functions belonging to m-fold symmetric functions may be studied.
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