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Abstract: This study’s objective is an irrationally nonlinear oscillating system, whose bifurcations
and consequent multi-stability under the circumstances of single potential well and double potential
wells are investigated in detail to further reveal the mechanism of the transition of resonance and
its utilization. First, static bifurcations of its nondimensional system are discussed. It is found that
variations of two structural parameters can induce different numbers and natures of potential wells.
Next, the cases of mono-potential wells and double wells are explored. The forms and stabilities of the
resonant responses within each potential well and the inter-well resonant responses are discussed via
different theoretical methods. The results show that the natural frequencies and trends of frequency
responses in the cases of mono- and double-potential wells are totally different; as a result of the
saddle-node bifurcations of resonant solutions, raising the excitation level or frequency can lead
to the coexistence of bistable responses within each well and cause an inter-well periodic response.
Moreover, in addition to verifying the accuracy of the theoretical prediction, numerical results
considering the disturbance of initial conditions are presented to detect complicated dynamical
behaviors such as jump between coexisting resonant responses, intra-well period-two responses and
chaos. The results herein provide a theoretical foundation for designing and utilizing the multi-stable
behaviors of irrationally nonlinear oscillators.

Keywords: irrational nonlinearity; multi-stable dynamics; hidden attractor; fractal; chaos

1. Introduction

Mechanical oscillators with irrational nonlinearities have attracted much attention as
they are especially suitable for kinematic energy harvesting [1,2] and the vibration isolation
of precision instruments and low-fragility equipment [3,4]. These structures are simply and
easily implemented as they are composed of concentrated masses and inclined springs with
linear stiffness [5]. Even though the restoring resistances provided by the springs are linear,
their resulting actions on the mass can be irrationally nonlinear due to the geometrical
configurations [6]. In the presence of damping and external excitation, these oscillatory
systems can exhibit rich dynamical behaviors [7].

Due to their potential values in various applications, the design of these structures
and the investigation of their dynamics has received growing interest in recent years.
By utilizing the allocation of two horizontal and four inclined linear springs, Han and
Cao [8] designed a nonlinear oscillator that exhibited intricate equilibrium bifurcations and
chaotic behaviors under the perturbations of viscous damping and the ambient excitation.
A mechanical network with irrational nonlinearities was proposed in which each unit
consisted of a lumped mass and two symmetric inclined springs [9,10]. Under the excitation
of the network being loaded at one of its ends via the modulated signal, the conditions for
modulational instability were found to be sensitive to the springs’ angle of inclination as
well as the dissipative coefficient. A class of rotating pendulum systems with irrational
nonlinearity were proposed, and its various kinds of bifurcations and limit cycles were then
analytically validated by the numerical results [11,12]. As a result, smooth or discontinuous
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dynamics, such as coexisting periodic motions and the transition of complex motion
depending upon the value of a structural parameter, was demonstrated [12]. On this basis,
Liu et al. [13] explored a new bursting oscillation of this oscillator, employed three cases of
excitation patterns for the investigation of the complex bursting behaviors and analyzed
the principle behind the slow-bursting responses and the equilibrium stability via the
method of multiple scales (MMS). Novel suspension vibration reduction systems with
geometric nonlinear damping were put forward by the configuration of four springs with
linear stiffness, and their performance for vibration isolation under impact and random
excitations was then analyzed via numerical calculations [14]. Li and Cao [15] proposed
a smooth and discontinuous oscillatory system with an irrational nonlinearity, obtained
the primary resonant solutions though applying the extended averaging method and then
illustrated the complicated dynamical behaviors both numerically and experimentally [16].
Based on these findings, Wang et al. [17] studied the global dynamical behaviors and
bifurcations for that oscillator with dry friction. The transition of its dynamics from
the continuous system with irrational nonlinearity to the piecewise linear system was
illustrated via numerical simulations and bifurcation diagrams. Han et al. [18] studied the
stochastic response of the smooth and discontinuous oscillator under harmonic excitation
and Gaussian white noise by using direct Monte Carlo simulations. Another irrationally
nonlinear oscillator configured by two inclined springs and a lumped mass was proposed
in Ref. [19], and its equilibrium bifurcations, periodic solutions and homoclinic bifurcation
were discussed analytically [20]. For the design of oscillating-body wave energy converters,
Zhang and Yang [21] proposed a nonlinear power take-off system that used a pair of oblique
springs and a linear damper. The influences of the structural parameters on its power
capture performance were evaluated by numerically calculating the motion response of the
wave energy converting system. Qin et al. [22] considered a typical linkage-slider oscillator
and intensively discussed the initial-sensitive phenomena emanating from the system such
as snap through, locking instability and chaotic response.

According to the above-mentioned literature, complex dynamical behaviors such
as multi-stability [23,24] and chaotic oscillation [25,26] commonly occur in oscillatory
systems with strong irrational nonlinearities. Among these dynamical behaviors, higher-
amplitude or large-extent inter-well responses are more desirable due to their engineering
applications in kinematic energy harvesting and vibrating isolation [27]. In this case, the
variation of initial conditions may induce the change in the final dynamical behavior.
Accordingly, it is necessary for researchers to extend the investigation of the effects of
initial conditions on achieving the largest-amplitude final response. Castro et al. [28]
carried out a specific analysis of a structural system composed by a pair of coupled bistable
von Mises trusses and found that the fractal basins of attraction of the attractors could
trigger the loss of dynamic integrity and thus the reliability of the structure. Regarding
the SD oscillator under harmonic excitation, Wang and Shang [29] investigated jump
among periodic attractors, period-three responses and chaos caused by variations in the
excitation level and initial states. Nevertheless, there are still very few reports concerning
the effects of structural parameters in combination with initial conditions on inducing
large-amplitude final dynamics of these oscillators. As a result, there is a large gap between
the utilization and comprehension of the multi-stability characteristics of the irrationally
nonlinear oscillators.

Based on the above statements, we regard a typical irrationally nonlinear oscillatory
system as the main objective and clarify the effects of its structural parameters, ambient
excitation and initial conditions on the overall multi-stable dynamics. The subsequent
sections are arranged as follows: Section 2 introduces the geometrically nonlinear structure,
its oscillatory system, the corresponding nondimensional system and the distances that
induce static multi-stability. Following this, Section 3 analytically discusses resonant
responses in the cases of mono-potential wells and double-potential wells. Section 4 then
exhibits the dynamic responses and multi-stable transitions from the viewpoint of the
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basins of attraction in order to validate the accuracy of the analysis. Some important
conclusions are presented in Section 5.

2. Static Analysis of the Irrationally Nonlinear Oscillator

In this section, we focus on a class of nonlinear oscillators consisting of a collar of
negligible size and two obliquely set up springs that connect to it by smooth pins [19], as
depicted in Figure 1. Here, m denotes the mass of the collar; X,

.
X and

..
X are the displace-

ment, velocity and acceleration of the collar at the time t, respectively. The parameters k and
L represent the stiffness coefficient and the free length of the elastic springs, respectively.
The parameter h represents the vertical distance between each support and the simply
supported beam which is supposed to be a rigid body; a is the initial horizontal distance
between the collar and each fixed pin, namely, the half distance between two fixed pins;
and P is the excitation loaded on the collar with the amplitude F and the frequency Ω.
When considering the collar under a damping force proportional to the velocity of the
collar in the horizontal direction with the damping coefficient δ, its governing equation can
be constructed by applying Newton’s second law as follows:

m
..
X + δ

.
X + k(X + a)(1 − L√

(X + a)2 + h2
) + k(X − a)(1 − L√

(X − a)2 + h2
) = F cos Ωt. (1)
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As can be seen in Equation (1), the resultant of the restoring forces of the two springs
in the horizontal direction has two irrationally and fractionally nonlinear terms, which
illustrates a strongly irrational nonlinearity of the oscillating system as a result of the
configuration of the elastic springs.

Introducing the following dimensionless variables

x =
X
L

, ω0
2 =

k
m

, α =
a
L

, β =
h
L

, ξ =
δ

2mω0
, f =

F
kL

, ω =
Ω
ω0

, T = ω0t (2)

into Equation (1), it becomes a non-dimensional dynamical system, i.e.,

..
x + 2ξ

.
x + (x + α)(1 − 1√

(x + α)2 + β2
) + (x − α)(1 − 1√

(x − α)2 + β2
) = f cos ωT. (3)

It is a smooth system for β > 0. Conversely, it is a discontinuous one at β = 0, namely,

.
x = y,

.
y = −2ξy − 2x − sign(x + α)− sign(x − α) + f cos ωT. (4)

In this case, there is no distance between the horizontal beam and each fixed pin
in Figure 1, which is impractical for making use of the geometric configuration and its
nonlinear characteristics in the applications of the structure. Hence, in this research, it is
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assumed that β > 0; hence, the oscillatory system we study is smooth. Its unperturbed
system can be written as

.
x = y,

.
y = −(x + α)(1 − 1√

(x + α)2 + β2
)− (x − α)(1 − 1√

(x − α)2 + β2
). (5)

The potential function and Hamiltonian function are

V(x) = x2 −
√
(x + α)2 + β2 −

√
(x − α)2 + β2 (6)

and
H(x, y) =

1
2

y2 + x2 −
√
(x + α)2 + β2 −

√
(x − α)2 + β2, (7)

respectively.
The equilibria of Equation (5) can be determined by letting its right side be 0. Evidently,

for the positions of the equilibria, y = 0. Given α = 0.3, the variation of the potential energy
function V(x) with the dimensionless displacement x is depicted in Figure 2 at different
values of β. As can be observed from Figure 2, the system shows multi-stable static
characteristics such as mono-potential wells, double-potential wells, and triple-potential
wells at β = 0.85, β = 0.5 and β = 0.1, respectively. It demonstrates that the numbers of
equilibria and the potential wells for the unperturbed system (5) depend on the values of
the geometric parameters α and β.
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Because there are two different irrationally nonlinear terms in the unperturbed system
(5), the horizontal coordinate positions of the equilibria cannot be written in the form
of explicit functions of the dimensionless parameters α and β, implying the difficulty
of achieving analytical conditions of static bifurcation. Consequently, the cell-mapping
method is used to numerically classify the regions under the same numbers of equilibria and
the same nature of the system’s potential wells (5) in the parameter plane α—, comprising
the 499 × 499 array of parameter-condition points in the range 0 < α < 1 and 0 < β < 1.
On this basis, the details for the static bifurcation diagram and the corresponding phase
portraits are described in Figure 3. In region I, there is a single equilibrium of the system
(5), which is the origin as well as the center of the mono-potential well. In region II, there
are three equilibria and double-potential wells among which the symmetric non-trivial
equilibria are the potential-well centers surrounded by homoclinic orbits, and the origin is
the saddle point. In region III, there are five equilibria and triple-potential wells in which
the origin is a center surrounded by heteroclinic orbits crossing two non-trivial saddle
points, and the other non-trivial equilibria are a pair of centers of the symmetric wells. In
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the nondimensional system (3) when f = 0, the centers will become stable equilibria as
ξ > 0. This implies different stable equilibrium positions. In this case, the multistability of
the system (3) will become apparent due to the limit points. However, it is unusable in the
engineering applications of the oscillator such as vibration isolation and energy harvesting
as the multistability will not lead to an increase in the displacement of the oscillator. For
the practical applications of the oscillator, the multistability phenomenon that we focus on
is the bistability within one potential well, as it can trigger a higher-amplitude response
in a broad frequency band. Under the condition of three potential wells and α = 0.3,
the structural parameter β ranges from 0 to 0.22, which is too small and impractical for
the engineering applications of the oscillator [3,4,10]. Therefore, in the following parts of
this study, by fixing the value of β at 0.85 and 0.5, respectively, the cases of mono- and
double-potential wells are the main focus.
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3. Analysis of Resonant Responses
3.1. Resonant Responses in the Case of the Mono-Potential Well

To analyze the resonant responses of the non-dimensional system (3) in the vicinity
of the center of the single-potential well, we first expand its fractional terms of x in the
Taylor’s series in the neighborhood of the origin, thus obtaining

..
x + 2ξ

.
x + ω̃2x + P3x3 = f cos ωT (8)

where

ω̃ =

√√√√2 − 2β2

(α2 + β2)
3
2

, P3 =
β2(β2 − 4α2)

(α2 + β2)
7
2

. (9)

In Equation (9), the parameter ω̃ denotes the natural frequency of the horizontal-
direction vibration, which is determined by the values of the two dimensionless structural
parameters α and β.

We employ the method of multiple scales (MMS) to achieve the approximation of
the analytical solutions of the system (8) under harmonic resonance. Bringing a small
parameter ε satisfying 0 < ε � 1 into the system (8) to rescale the parameters ξ, ω and f,
time variable T and the nondimensional displacement x in Equation (8) as follows,

ξ = εξ̃, ω2 = ω̃2 + εσ, f = ε2 f̃ ,
x = εx1 + ε2x2 + ε3x3 + · · · ,
Ti = εiT, Di =

∂
∂Ti

, d
dT = D0 + εD1 + ε2D2 + · · · , (i = 1, 2, 3 · · · )

(10)
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and then separating the coefficients of ε, ε2 and ε3 leads to the equations below:

ε : D2
0x1 + ω2x1 = 0, (11)

ε2 : D2
0x2 + ω2x2 = σx1 − 2D1D0x1 − 2ξ̃D0x1 + f̃ cos ωT, (12)

and

ε3 : D2
0x3 +ω2x3 = −D2

1x1 − P3x3
1 − 2ξ̃D1x1 + σx2 − 2D2D1x1 − 2D1D0x2 − 2ξ̃D0x2. (13)

Equation (11) is much like a free-vibration dynamical system [30–33]; thus, its solution
can be set as

x1 = A(T1, T2)eiωT0 + A(T1, T2)e−iωT0 (14)

where

A(T1, T2) =
a(T1, T2)

2
eiϕ(T1,T2). (15)

By substituting the above solution x1 into Equation (12) and eliminating its secular
terms, we get

D1 A = −ξ̃ A − iσA
2ω

− i f̃
4ω

, x2 = 0. (16)

Similarly, substituting Equations (14)–(16) into Equation (13) and eliminating its secular
terms results in

D2 A = − iξ̃2 A
2ω

+
f̃ ξ̃

8ω2 − iσ2 A
8ω3 − iσ f̃

16ω3 +
3iP3 A2 A

2ω
. (17)

For the resonant solutions of the system (3), there is

.
A ≈ D0 A + εD1 A + ε2D2 A. (18)

As can be derived from Equations (10), (14) and (15), the amplitude of the resonant
solution x can be given by â = εa. By substituting Equations (16) and (17) into Equation (18),
we can express the amplitude a and the phase angle ϕ by the original nondimensional
parameters of the system (3), as follows:

.
â = ξ f

4ω2 cos ϕ − (5ω2−ω̃2) f
8ω3 sin ϕ − ξ â,

â
.
ϕ = − (5ω2−ω̃2) f

8ω3 cos ϕ − ξ f
4ω2 sin ϕ − ((5ω2−ω̃2)(ω2−ω̃2)+4ω2ξ2)â

8ω3 + 3P3 â3

8ω .
(19)

Letting
.
â = 0 and

.
ϕ = 0 yield

(5ω2 − ω̃2)
2

f 2 + 4ω2 f 2ξ2 = 64ω6ξ2 â2 + [3P3ω2 â3 − ((5ω2 − ω̃2)(ω2 − ω̃2) + 4ω2ξ2)â]
2
. (20)

The amplitude of the resonant solution, i.e., â, can be solved using the above equation.
Based on the Jacobi matrix of Equation (19), the following characteristic equation can

be derived to decide the stability of the resonant solution x:

λ2 + 2ξλ + [ξ2 + (
4ξ2 + 4(ω2 − ω̃2)− 9P3 â2

8ω
+

(ω2 − ω̃2)
2

8ω3 )(
4ξ2 + 4(ω2 − ω̃2)− 3P3 â2

8ω
+

(ω2 − ω̃2)
2

8ω3 )] = 0. (21)

Due to the presence of the term 2ξλ in Equation (21), there will be no purely imaginary
solutions of the above equation as the other terms will be real numbers. Thus, the stability
of the periodic solution will change only if λ = 0, i.e.,
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ξ2 + (
4ξ2 + 4(ω2 − ω̃2)− 9P3 â2

8ω
+

(ω2 − ω̃2)
2

8ω3 )(
4ξ2 + 4(ω2 − ω̃2)− 3P3 â2

8ω
+

(ω2 − ω̃2)
2

8ω3 ) = 0. (22)

Combining Equations (20) and (21), the critical conditions for the saddle-node (SN)
bifurcation, namely, the SN bifurcation points in system–parameter planes, can be de-
termined. For each stable periodic solution, the solutions of its corresponding charac-
teristic Equation (21) will both have negative real parts, while for an unstable periodic
solution, there will be positive real parts in the solutions of its corresponding characteristic
Equation (21).

Figure 4 is presented to show the variation of the amplitude of the resonant response
with the dimensionless excitation level and frequency. The solution branches are divided
into stable and unstable ones at SN bifurcation points denoted by small purple circles in
Figure 4. The solid and dashed curves represent the stable and unstable solution branches,
respectively. As denoted by the crosses in Figure 4, the numerical simulations for the stable
responses of the ordinary differential Equation (4) are achieved via the fourth-order Runge-
Kutta method, i.e., the software package ODE45 of MATLAB (2018a). Evidently, these are
in agreement with the analytic results, herein validating the accuracy of the analysis.
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As illustrated in Figure 4a, as ω rises, the two solution branches both bend to the
right, showing stiffness-hardening characteristics and yielding bistable periodic responses
in the vicinity of the origin. Similar frequency spectrums have been found in much of
the literature on nonlinear vibrating systems [34–37], as they constitute an effective way
to show the usable frequency range for higher-amplitude periodic responses. It can be
observed in Figure 4a that there are two frequency bands d1 and d2 for f = 0.001 and f = 0.01,
respectively, in which the bistable responses occur in the system. It demonstrates that
increasing the dimensionless excitation level f can broaden the bandwidth for bistability, so
that the resonant peak grows higher for a larger f. At f = 0.01, there are two critical points
for SN bifurcation: with the rise of the excitation frequency ω from 0.57, the phenomenon
jump occurs from the upper response branch to the lower one (see the solid blue curves),
which is unfavorable for the utilization of the oscillator in energy collection and vibration
isolation. For instance, at the blue solution branches for f = 0.01, the cases of ω = 0.4 and
ω = 0.9 represent typical values within and out of the ranges of ω between its critical values
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for the two SN bifurcation points, respectively, the situations are totally different. For the
former, there are bistable periodic responses with much higher amplitudes, while for the
latter, there is a single response with a low amplitude.

Figure 4b presents the variation of the amplitude of the periodic response with f when
the value of the dimensionless excitation frequency is fixed at ω at ω = 0.9 and ω = 0.4,
successively. Obviously, the response at ω = 0.9 is monostable with a low amplitude.
Comparatively, at ω = 0.4, the amplitude of the periodic response is far higher, and the SN
bifurcations of the periodic solution can also be observed, indicating that jump between
bistable solution branches can stem from the growth of the excitation level f. If f does
not exceed its critical value at the left SN bifurcation point, the solution branch will be
monostable with a low amplitude. Otherwise, a higher-amplitude response branch will
arise and coexist with the previous branch. When f exceeds the critical value at the right SN
bifurcation point, the lower-amplitude response vanishes; the final response of the system
(3) will definitely snap through to the higher-amplitude response branch. From then on,
the higher-amplitude response will be monostable, which is desirable for the application of
the structure.

3.2. Periodic Responses in the Case of Double Potential Wells

In this section, the periodic responses of the system (3) are analyzed under the cir-
cumstance of double-potential wells and the primary resonance in which its unperturbed
system has two nontrivial centers and a trivial saddle point. Based upon the bifurcation
diagram in Figure 3 and the unperturbed orbits of the region II, there are not only close
loops within each potential well but also within the ones outside of the homoclinic orbits
surrounding the double-potential wells. Hence, in this system (3), there may be intra-well
periodic responses as well as inter-well responses, which are discussed separately.

3.2.1. Periodic Responses near Each Nontrivial Equilibrium Point

To begin with, we focus on the intra-well periodic responses. Because the intra-well
attractors are in the vicinity of the nontrivial centers C(±xc, 0), we set

x = ±xc + x̂ (23)

to rewrite the non-dimensional system (3) as

..
x̂ + 2ξ

.
x̂ + 2x̂ − ±xc + x̂ + α√

(±xc + x̂ + α)2 + β2
− ±xc + x̂ − α√

(±xc + x̂ − α)2 + β2
= f cos ωT. (24)

Similar to the last section, expanding its fractional terms of x into Taylor’s series,
Equation (24) becomes

..
x̂ + 2ξ

.
x̂ + ω̂2 x̂ ± Q2 x̂2 + Q3 x̂3 = f cos ωT (25)

where
ω̂2 = 2 − β2

((xc+α)2+β2)
3
2
− β2

((xc−α)2+β2)
3
2

,

Q2 = 3(xc+α)β2

2((xc+α)2+β2)
5
2
+ 3(xc−α)β2

2((xc−α)2+β2)
5
2

,

Q3 = β4−(3xc β+2αβ)2

2((xc+α)2+β2)
7
2
+ β4−(3xc β−2αβ)2

2((xc−α)2+β2)
7
2

.

(26)

In the above equation, the parameter ω̂ denotes the natural frequency of the system
(3) with double-potential wells.

Identically to the last section, MMS is utilized to obtain the approximation of the
resonant solutions for the system (25). By rewriting ω, the displacement x̂, T and differential
operators as
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ω2 = ω̂2 + εσ, x̂ = εx̂1 + ε2 x̂2 + ε3 x̂3 + · · · , Ti = εiT,
d

dT
= D0 + εD1 + ε2D2 + · · · , Di =

∂

∂Ti
. (i = 1, 2, 3 · · · ), (27)

and comparing the coefficients of ε, ε2 and ε3 of the system (25), we obtain

ε : D2
0 x̂1 + ω2 x̂1 = 0, (28)

ε2 : D2
0 x̂2 + ω2 x̂1 = −2ξ̃D0 x̂1 − 2D1D0 x̂1 ∓ Q2 x̂2

1 + σx̂1 + f̃ cos ωT, (29)

and

ε3 : D2
0 x̂3 + ω2 x̂3 = −D2

1 x̂1 − 2ξ̃D1 x̂2 − C3 x̂3
1 ∓ 2C2 x̂1 x̂2 + σx̂2 − 2D2D0 x̂1 − 2D1D0 x̂2 − 2ξ̃D0 x̂2. (30)

The complete solution for Equation (28) can be solved, given by

x̂1 = B(T1, T2)eiωT0 + B(T1, T2)e−iωT0 (31)

where

B(T1, T2) =
b(T1, T2)

2
eiψ(T1,T2). (32)

Thus, the resonant solution x can be rewritten approximately as

x = ±xc + b̂ cos(ωT0 + ψ). (33)

Its amplitude can be written as
b̂ = εb. (34)

Substituting the solution x̂1, namely, Equations (31) and (32), into Equation (29) and
eliminating the secular terms there results in

D1B = −ξ̃B − iσB
2ω

− i f̃
4ω

, (35)

and

x̂2 = ±Q2B2

3ω2 e2iωT0 ∓ 2Q2BB
ω2 + cc. (36)

Afterward, substituting Equations (31), (35) and (36) into Equation (30) yields

D2B =
(ξ̃ω − iσ) f̃

8ω3 − i(4ω2ξ̃2 + σ2)B
8ω3 +

i(9ω2Q3 − 10Q2
2)B2B

6ω3 . (37)

For Equation (32), we consider
.
B ≈ D0B + εD1B + ε2D3B and Equations (34), (35)

and (37), and we return the concerning parameters into the ones in the original system (3)
simultaneously in order to acquire the following equation for the level and phase angle of
the resonant solution x:

.
b̂ = − (3ω2−ω̂2) f

4ω3 sin ψ + ξ f
4ω2 cos ψ − ξ b̂,

b̂
.
ψ = − (3ω2−ω̂2) f

4ω3 cos ψ − ξ f
4ω2 sin ψ − (4ω3ξ2+(4ω3+1)(ω2−ω̂2))

8ω3 b̂ + (9ω2Q3−10Q2
2)

24ω3 b̂3.
(38)

Supposing the right side of the above equation be zero and eliminating its trigonomet-
ric terms, the equation for the resonant solution amplitude is obtained as follows:

(
f

2ω
+

ω2 − ω̂2

4ω3 )
2

+ (
ξ f

4ω2 )
2
= ξ2b̂2 + (

(ω2 − ω̂2)

2
b̂ +

ξ2

2ω
b̂ +

(ω2 − ω̂2)
2

8ω3 b̂ +
(10Q2

2 − 9ω2Q3)

24ω3 b̂3)

2

. (39)
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Based on Equations (38) and (39), the following characteristic equation is obtained for
determining the stability of the corresponding periodic solution:

λ2 + 2ξλ + Γ = 0 (40)

where

Γ =
1
4
(ω2 − ω̂2 +

4ξ2 − 9Q3b2

4ω
+

(ω2 − ω̂2) + 10Q2
2b2

4ω3 )(ω2 − ω̂2 +
4ξ2 − 3Q3b2

4ω
+

3(ω2 − ω̂2) + 10Q2
2b2

12ω3 ). (41)

Due to the term 2ξλ, Equation (40) has no purely imaginary solutions as Γ is always a
real number. Accordingly, the stability of the resonant solution will change only if there is
a simple zero solution for it. Combining Equation (39) and Γ = 0, we can determine the
critical conditions of the two dimensionless parameters ω and f for the SN bifurcation of
the resonant solution.

Because the intra-well responses surrounding the symmetric well centers are symmet-
ric as well, the response amplitudes within different wells are the same. The variation of
the responses in the vicinity of the center C+(xc, 0) can herein represent the intra-well re-
sponses within both potential wells. Figure 4 displays the roles of the excitation parameters
in affecting the steady-state behaviors for ξ = 0.01 and α = 0.5.

In contrast to Figure 4a, it can be observed in Figure 5a that with the rise of ω, the
periodic-solution branch for f = 0.01 bends to the left, thus showing soft-spring character-
istics and triggering bistable resonant responses in the neighborhood of each nontrivial
equilibrium (see the frequency band for the resonant responses denoted by d in Figure 4a).
Decreasing ω from 1.05 may cause the upper solution branch to jump down to the lower
branch, which is ascribed to the SN bifurcations of the intra-well periodic solution. For
instance, for f = 0.01 and ω = 0.9, two periodic responses coexist; the amplitude of the
periodic response in the upper solution branch is much higher than the one in the lower so-
lution branch. As can be calculated from Equation (26) and observed from the red solution
branch of Figure 4a, the natural frequency ω̂ ≈ 1.09. In Figure 4a, the numerical results
coincide well with the analytical results, except for the left side of the SN bifurcation points.
This discrepancy can be ascribed to the restrictions of MMS, namely, MMS does not work
well under the condition that the excitation amplitude ranges beyond the neighborhood of
the natural frequency ω̂, and when the response amplitude is large.
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In comparison to the resonant responses in the case of mono-potential wells, the
frequency band for achieving higher-amplitude intra-well responses in double-potential
wells is totally different. It is because there is a quite difference between the natural
frequencies for the cases of mono-potential wells and double-potential wells: 0.19 and 1.09,
respectively. For example, ω = 0.9 is in the frequency band of the latter, but out of the
frequency band of the former: ω = 0.4 is just the opposite.

Therefore, the dimensionless excitation frequency ω in Figure 5b is given the same
values in Figure 4b, namely, ω = 0.9 and ω = 0.4 (see the red and blue curves). Clearly, the
amplitudes of the responses for ω = 0.9 are higher than the ones for ω = 0.4. We can also
observe two SN bifurcation points at ω = 0.9. Between the critical values for f of the SN
bifurcation points, the two stable periodic response coexist. When ω = 0.9 and f exceeds
its critical values for the right SN bifurcation points, the periodic response in the upper
solution branch becomes the only stable attractor of the system (3) with an amplitude that
is far beyond the amplitude of the periodic response at ω = 0.4, which is favorable for the
engineering applications of the irrationally nonlinear structure.

When comparing Figures 4a and 5a, it can be seen that the adjustment of the parameter
β, namely, the vertical distance between the oscillator and the fixed pin, can change
the stiffness softening/hardening characteristics and the usable frequency band of the
oscillatory system.

3.2.2. Inter-Well Periodic Solutions

Resonant solutions around the origin are totally different from the ones around the
non-trivial centers because the former is beyond the potential wells as well as the homoclinic
orbits surrounding the well centers. It is evident that this type of resonant response is called
the inter-well response because it has an absolutely larger amplitude than the intra-well
ones. On account of the restriction of MMS, it can work well only if discussed responses
are in the neighborhood of the well centers; this method is useless for the analysis of the
inter-well responses. Accordingly, the average method [15] is employed in this section.

We can rewrite the inter-well resonant solution x by the slowing-varying level a0 and
frequency ω in the following form:

x = a0 cos(ωT + θ),
.
x = −a0ω sin(ωT + θ). (42)

Correspondingly, the non-dimensional system (3) can be rewritten as

.
a0 cos(ωT + θ)− a0 sin(ωT + θ)

.
θ = 0,

.
a0 sin(ωT + θ) + a0 cos(ωT + θ)

.
θ =

1
ω

E(a0, θ, T) (43)

where

E(a0, θ, T) = 2a0ωξ sin(ωT + θ) + a0(ω
2 − ω2

0) cos(ωT + θ) + f cos ωT
+ a0 cos(ωT+θ)+α√

(a0 cos(ωT+θ)+α)2+β2
+ a0 cos(ωT+θ)−α√

(a0 cos(ωT+θ)−α)2+β2
. (44)

According to Equations (42)–(44), the slowly varying parameters a0 and ω are

.
a0 = − E

ω
sin(ωT + θ),

.
θ = − E

a0ω
cos(ωT + θ). (45)

Integrating Equation (45) over a whole period [0, 2π
ω ], setting its right side as zero and

then eliminating its trigonometric terms yields

(2πξaω + E1)
2 + (aπ(ω2 − ω2

0) + E2)
2
= π2 f 2 (46)

where
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E1 =
2π∫
0
( a cos T+α√

(a cos T+α)2+β2
+ a cos T−α√

(a cos T−α)2+β2
) sin TdT, E2 =

2π∫
0
( a cos T+α√

(a cos T+α)2+β2
+ a cos T−α√

(a cos T−α)2+β2
) cos TdT. (47)

Whether the inter-well resonant solution is stable or not is decided by the real parts
of the eigenvalues of the corresponding linearized average equation [15]. It follows from
the corresponding derivation that the inter-well solution is asymptotically stable only if its
amplitude exceeds the maximum of the horizontal abscissas of the homoclinic orbits, i.e.,
xe and the following inequations are satisfied

ξ +
1

4πω
(

∂E1

∂a0
+

E1

a0
) > 0, (2πξω +

∂E1

∂a0
)(2πξω +

E1

a0
) + (π(ω2 − ω2

0) +
∂E2

∂a0
)(π(ω2 − ω2

0) +
E2

a0
) > 0. (48)

Thus, the SN bifurcation of this resonant solution will be triggered when

(2πξω +
∂E1

∂a0
)(2πξω +

E1

a0
) + (π(ω2 − ω2

0) +
∂E2

∂a0
)(π(ω2 − ω2

0) +
E2

a0
) = 0. (49)

Because the intra-well responses have higher amplitudes at ω = 0.9, we also consid-
ered the inter-well responses in this situation. The corresponding solution branches vary
with the dimensionless excitation level f, as can be seen in Figure 6. The theoretical results
and the numerical ones both show that is no inter-well periodic solution when f is very
small. As the excitation amplitude exceeds its value at the bifurcating point, the inter-well
periodic motion will occur. Evidently, it stems from the local bifurcation of this periodic
solution. When comparing Figures 5b and 6, it is apparent that, as the dimensionless
excitation amplitude f increases, multiple intra-well periodic attractors and one inter-well
attractor may coexist, and the inter-well resonant response amplitude is the largest.
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4. Numerical Results

In the circumstance of multi-stability, the final dynamical response may be sensitive to
the initial conditions. Thus, considering a single fixed initial condition is not enough to
reveal the mechanism of the structural parameters and the excitation in affecting global
dynamics. The disturbance of the initial conditions has to be taken into account, which
suggests the demand for classifying the basins of attraction (BAs). For an arbitrary attractor,
its basin of attraction (BA) indicates the union of all the initial states that cause it [29]. The
cell-mapping method is employed to describe the Bas of the irrationally nonlinear oscillator
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(3) on its initial-state plane x(0)− y(0), which consists of the 301× 151 array of initial-state
points. Different attractors are drawn in different colors, while every attractor and its BA
are marked in the same color. In this section, for α = 0.3, we also focus on the cases of
mono-potential wells and double-potential wells by fixing β = 0.85 and β = 0.5, respectively.

4.1. Attractors and Their BAs in the Case of Mono Potential Well

To remain consistent with the given excitation in Figure 4a, we first present the
evolution of the attractors and their BAs with the rise of ω at f = 0.01, as can be seen
in Figure 7. The two columns in Figure 7 show the phase maps of the attractors and
their corresponding BAs, respectively. Initial conditions were chosen within the range
−1.0 ≤ x(0) ≤ 1.0, −0.6 ≤ y(0) ≤ 0.6 which is sufficient to contain the stable periodic
responses predicted in the last section.

In Figure 7(a1,a2), there is only a blue attractor as well as the blue initial plane,
signaling the global stability of the periodic attractor from the upper solution branch of
Figure 4a. As ω rises a bit to 0.31 (see Figure 7(b1,b2)), coexisting with it, a new attractor
with a much lower amplitude appears which has a tiny BA. Hence, the lower-amplitude
attractor is a rare attractor now. As ω keeps increasing, its BA becomes bigger and bigger,
especially in the vicinity of the origin, showing its increasing accessibility. Specifically, at
ω = 0.57, the blue area in the initial plane is very small and is outside of the vicinity of
the origin (see Figure 7(d2)), showing that the higher-amplitude attractor now turns into a
rare and hidden attractor [30]. At ω = 0.6, the BA for the higher amplitude vanishes, and
the whole initial-condition plane becomes red (see Figure 7(e2)), implying that the final
dynamic behavior of the system (3) will inevitably be the lower-amplitude response. The
variation trends of the dynamical behaviors and their BAs with ω presented in Figure 7
match the analytical prediction of Figure 4a well, indicating that the analysis is valid.

According to Figure 7, for the achievement of higher-amplitude responses, the dimen-
sionless frequency ω should be within the range (0.31, 0.57). When studying the change
in the attractors and their BAs with f, we consider the value of ω in this range by fixing
ω = 0.4 (see Figure 8). As depicted in the left column of Figure 8, the periodic-response
amplitude increases with f. In Figure 8(a1,a2), there is only one attractor and its BA. Accord-
ing to the analysis of Figure 4b, this periodic response is from the lower solution branch.
Thus, we denote it in red. When f rises a bit to 0.0045, the red attractor loses its global
stability and coexists with the blue attractor, showing bi-stability (see Figure 8(b1,b2)).
The blue region representing the BA of the bigger attractor is very slim and not in the
neighborhood of O(0,0), so the higher-amplitude attractor here is a hidden attractor [30],
and it is hard to achieve it. As f keeps rising, the BA of the bigger attractor becomes
more and more visible. For f = 0.028, most of the area of the initial-state plane turns blue,
and the red region is severely eroded. It means that the lower-amplitude attractor now
becomes the hidden attractor. Meanwhile, the bigger attractor is more likely to occur as
the final dynamical behavior. When f = 0.029, the red BA vanishes, and the initial-state
plane is blue (see Figure 8(f2)), illustrating that the final response of the system (3) is the
higher-amplitude response despite the initial conditions. It follows from Figures 3 and 8
that, with the rise of f, the sequences of the attractors and their basins qualitatively agree
with the analytical prediction.
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4.2. Attractors and Their BAs in the Case of Double Potential Wells

For the case of double potential wells under α = 0.3 and β = 0.5, Figures 5 and 6 show
that at ω = 0.9, the symmetric higher-amplitude intra-well periodic responses and lower-
amplitude responses may coexist with an inter-well periodic response as f rises. Hence, in
this section, by setting ω = 0.9, we present the variation of coexisting responses and their
BAs with the rise in f in the initial-state region −2.0 ≤ x(0) ≤ 2.0, −2.5 ≤ y(0) ≤ 2.5. As can
be observed in Figure 9, the evolution of the attractors and the corresponding BAs is more
complicated than the evolutions in Figures 7 and 8.

First, for f = 0.002, the symmetric periodic responses are of a pretty low amplitude,
with BAs that are centrosymmetric as well (see Figure 9(a1,a2)). Also, the boundary sepa-
rating their BAs is smooth. An arbitrary initial-state point selected near the point C+(xc, 0)
or C−(−xc, 0) definitely induces the corresponding nontrivial equilibrium, meaning that
they are locally stable. In contrast, a tiny perturbation in the initial condition in the neigh-
borhood of the saddle point O(0,0) can incur the phenomenon jump between the two
symmetric attractors.

In addition to these two attractors, as f is increased to 0.01, two new symmetric intra-
well periodic attractors with a higher amplitude occur (see in Figure 9(b1)). As can be
observed from the nature of their BAs in Figure 9(b2), they are rare and hidden attractors.
When f increases from 0.02 to 0.035 (see Figure 9(c1–e2)), the BAs of the lower-amplitude
ones are steadily eroded. Meanwhile, the BAs of the higher-amplitude ones are broken
into seriously fractal and discrete pieces, indicating the high initial-condition sensitivity of
these dynamical behaviors even though they are not complex attractors.
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Then, as f rises to 0.036, an inter-well periodic response with a far higher amplitude
will appear along with these intra-well resonant responses (see the light blue closed loop
in Figure 9(f1)). Its occurrence verifies the prediction made in the last section. Because its
tiny BA is far beyond the range of the vicinity of O(0,0) (see Figure 9(f2)), it is a hidden and
rare attractor.

Following this, as f increases from 0.036 to 0.064, the five periodic attractors still coexist
(see Figure 9(g1–i2)). It can also be seen that the smallest attractors expand with the increase
of f. The variation of their BAs also indicates that the BA of the inter-well resonant response
steadily erodes the BAs of the intra-well responses. Note that its basin boundary is still
smooth and without fractality. Comparatively, the BAs of all the intra-well attractors are
intermingled with each other with seriously fractal natures.

Afterward, at f = 0.066, the smallest periodic attractors disappear (see Figure 9(j1)).
The BAs of the other two intra-well responses are still in severe fractality, as illustrated in
Figure 9(j2). As f reaches 0.073, these periodic responses become period-two responses,
and their BAs remain nearly the same (see Figure 9(k1,k2)).

Furthermore, at f = 0.074, apart from the two period-two attractors and the inter-well
periodic attractor, a new inter-well attractor appears. The corresponding phase portrait,
Poincaré section and frequency spectrum signify that a chaotic attractor occurs in the
system (3). As can be observed in Figure 9(l4), its BA is segmented into discontinuous and
fractal pieces by the BAs of the intra-well complex attractors. It means the initial condi-
tion discontinuity of these complex responses, which is another kind of initial condition
sensitivity, is different from the inherent initial condition sensitivity of chaos.

Finally, when f exceeds 0.075, there will be no intra-well responses, and the two inter-
well attractors will coexist as depicted in Figure 9(m1). Specifically, the BA boundary of
chaos is not fractal but glossy (see Figure 9(m2)), which is totally different from Figure 9(l4).
It demonstrates the local stability and attraction of the two large-extent attractors. Specif-
ically, the BA of chaos contains the vicinity of three equilibria, illustrating that chaos
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has a higher probability of occurrence as the final behavior than the large-displacement
resonant response.

5. Discussion

In this work, an irrationally nonlinear oscillator composed of two obliquely set-up
elastic springs and a collar with a concentrated mass is considered. In the case of continuous
nonlinearity and primary resonance, its global dynamics under different types of potential
wells is discussed.

Its dynamical system is first constructed in order to derive its non-dimensional system.
Based on its unperturbed system and the corresponding Hamiltonian, it is found that,
through the variation of two structural parameters, the oscillatory system can be mono-
stable, bi-stable and tri-stable, herein exhibiting three typical configurations of the structure.
When the values of the other structural parameters are fixed, the reduction of the vertical
distance between each rigid support and the horizontal beam may induce mono-, double-
and triple-potential wells, successively. Because the vertical distance leading to triple-
potential wells is too short to arrange, the cases of single-potential wells and double-
potential wells are concentrated on.

When the ambient excitation in the original system is zero, considering the effect of
the damping, the centers of the unperturbed system are all stable equilibria, which implies
the stable equilibrium positions of the oscillator. Also, the initial positions can be these
positions or be within a small vicinity of these positions. Therefore, in this study, the basins
of attraction of the coexisted attractors that we really care about are those in the vicinity
of these initial equilibrium positions. Even if an attractor’s basin of attraction occupies
the vicinity of an equilibrium and its fractal basin boundary is far beyond this vicinity, we
believe that the basin of attraction is usable for practical applications. It is different from the
works concerning the erosion of basins of attraction in the bistable beam systems [34–38].

In the case of mono-potential wells, the approximate forms and stabilities of the
periodic solutions around the trivial center are analyzed via the method of multiple scales.
Hard-spring characteristics are found in the oscillatory system; hence, the jump from a
smaller-amplitude resonant response up to a larger-amplitude response can stem from
the saddle-node bifurcation of resonant solutions. These can be triggered by the decrease
in the frequency of the external excitation or the rise of the excitation level in a certain
range, which is favorable for its applications such as kinetic energy collection and vibrating
isolation. In the neighborhood of the critical values of the excitation for SN bifurcations,
hidden attractors occur frequently.

In the cases of double-potential wells, the global dynamics of the oscillator is more
complex. Intra-well and inter-well resonant responses are both investigated. For the
analysis of the former, we also applied MMS. Similar to the case of the mono-potential
well, the bistability within each potential well is easily observed. Differently, the system
soft-spring characteristics; thus, the rise of the excitation frequency or level can lead to
snapping through from the smallest periodic response to the other intra-well response with
a higher amplitude. To analyze the inter-well resonant response, we utilized the average
method. The theoretical prediction shows that, under a suitable excitation frequency, the
rise of the excitation level may also lead to the presence of the inter-well resonant attractor,
as validated by the numerical results. Based upon the evolutions of the coexisting attractors’
basins of attraction with the rise of excitation level, snapping through among the four
attractors within the potential wells and the one large-displacement attractor beyond the
wells can be found and is due to a small perturbance of the initial state. Their seriously
fractal basins of attraction show their high initial-condition sensitivity, even though they are
not complex dynamical behaviors but are normal resonant responses. When the excitation
level continues to increase, complex dynamical behaviors such as period-two attractors and
chaos can be observed to coexist with the inter-well resonant behavior. The seriously fractal
BA of chaotic response shows that chaos, the inherent initial-condition sensitive dynamical
behavior, is also of initial-condition discontinuity, namely, another type of initial-condition
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sensitivity. In contrast, as the period-two responses vanish and only two responses are left,
i.e., an inter-well periodic response and chaos, the BA of chaos will become continuous
with a smooth boundary. It implies that now chaos becomes locally stable and reliable,
which is advantageous for the engineering applications of the structure because chaos
represents a large displacement of its lumped mass.

The results in this work show that the adjustment of the vertical distance between
the oscillator and the fixed pin can lead to different potential-well characteristics and the
change of the usable frequency band for engineering applications such as vibration isolation
and energy harvesting, which may provide theoretical references in utilizing multi-stability,
the jump in the optimum structural design and the exploitation of geometrically nonlinear
oscillating systems. Future research directions include the implementation of the structure
and the investigation of the effects of structural parameters on the resonant responses via
experimental efforts.
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