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Abstract: The Delta and Omicron variants’ system was used in this research study to replicate the
complex process of the SARS-CoV-2 outbreak. The generalised fractional system was designed and
rigorously analysed in order to gain a comprehensive understanding of the transmission dynamics
of both variants. The proposed dynamical system has heredity and memory effects, which greatly
improved our ability to perceive the disease propagation dynamics. The non-singular Atangana–
Baleanu fractional operator was used to forecast the current pandemic in order to meet this challenge.
The Picard recursions approach can be used to ensure that the designed fractional system has at
least one solution occupying the growth condition and memory function regardless of the initial
conditions. The Hyers–Ulam–Rassias stability criteria were used to carry out the stability analysis
of the fractional governing system of equations, and the fixed-point theory ensured the uniqueness
of the solution. Additionally, the model exhibited global asymptotically stable behaviour in some
conditions. The approximate behaviour of the fatal virus was investigated using an efficient and
reliable fractional numerical Adams–Bashforth approach. The outcome demonstrated that there will
be a significant decline in the population of those infected with the Omicron and Delta SARS-CoV-2
variants if the vaccination rate is increased (in both the symptomatic and symptomatic stages).

Keywords: Delta variant; Omicron variant; stability; fractional derivative; fixed-point theory

1. Introduction

In the early Twentieth Century, the continuous advancements in mathematical mod-
elling were used in computational biology [1,2] to investigate the spread of diseases. Ana-
lysts and investigators acquired valuable knowledge about numerous transmissible dis-
eases by utilising deterministic and stochastic models. In 1927, Kermack developed a
useful system for evolving and executing epidemic models, which has been treated as a
fundamental model in epidemiology to this day [3]. Many infectious diseases, such as
Hepatitis B, HIV/AIDS, Herpes Simplex Virus, Rubella, etc., can transmit horizontally
and vertically. Such types of diseases are horizontally spread in animals and humans
through proximity among the hosts or through disease carriers, e.g., mosquitoes, flies, etc.
In 2003, Severe Acute Respiratory Syndrome (SARS) was discovered in China [4,5], and the
outbreak of MERS appeared in South Korea in 2015 [6,7].
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The recent outbreak of the coronavirus pandemic (COVID-19) firstly appeared in
Wuhan, China, in 2019 and has precipitously spread throughout the entire world due
to its high rate of transmission. COVID-19 was announced as a global pandemic by the
World Health Organization (WHO) on 8 March 2020, and the ICTV named itSevere Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [8]. There have been 0.1 billion cases
reported, and deaths surpassed 2 million on 1 January 2021. Numerous studies have
declared that it could have originated from pangolins or bats [9], and the origination of
the virus in the human populationcould have been associated with a seafood market,
but the intermediary host has not been proven [10,11]. The infected individuals initially
had symptoms similar to SARS-COVID and MERS-COVID infections, such as fatigue,
cough, fever, conjunctivitis, sore throat, and, in many cases, bilateral lung penetration [12].
Moreover, many patients may lose their sense of taste and/or smell, may have diarrhoea,
and/or may have signs of a breathing disorder [13,14].

Fractional calculus is one of the most-promising avenues in modern science. There
has been a huge amount of research performed in this area, which has contributed to
remarkable applications. The reason for this is that the fractional operator is a global
operator that predicts the behaviour of physical phenomena at infinity tails, whereas the
local operator ignores the influence of larger neighbours. The fractional derivative can
also be used to solve real-world problems where the integer-order derivative is singular.
Numerous significant fractional operators have been developed such as the Caputo frac-
tional derivative [15], the conformal fractional differential operator [16], the β−fractional
operator [17], the truncated M-fractional operator [18], the Riemann–Liouville fractional
derivative [19], the Caputo–Fabrizio differential operator [20], and the fractional Atangana–
Baleanu derivative [21]. In the last few decades, remarkable developments have emerged
within the field of fractional partial differential equations because of their applicability to
various areas of technology and science [22–24]. Imran et al. [25,26] discussed an MHD
viscous fluid and bi-convection using fractional differential operators and provided applica-
tions to fluid dynamics. Maryam et al. [27] established the application of fractional calculus
to the field of nano-fluids. Naik et al. [28–30] studied the fractional-order model of the
HIV transmission epidemic with optimal control. Mishra et al. [31] proposed a COVID-19
model with asymptotic and quarantine classes. Owolabi et al. [32,33] analysed breast
cancer and brain tumour disease using a type of fractional calculus. A dynamical analysis
of river blindness disease was presented by Atangana [34]. Salman examined the HBV
infection disease model under the influence of the fractional-order derivative [35]. Area
investigated the fractional Ebola epidemic model [36]. Faridi developed a mathematical
fractional cardiovascular disease model applying the Atangana–Baleanu fractional operator
with the memory function and growth condition [37]. The Rubella disease model was
examined by the Caputo–Fabrizio fractional operator [38]. Addai et al. [39] proposed a
new Caputoâ€“Fabrizio fractional SARS-CoV-2 epidemiological model with Alzheimer’s
disease, applied Lagrange interpolation for the approximation, as well as discussed the
stability analysis. Omame et al. [40–42] developed many co-infectious disease models,
analysed them through different techniques, and presented a numerical simulation.

There are many epidemiological models such as the SIR [43–45], SIS [46], SEIQR [47,48],
and SIRC models [49,50]. The SIR model can be used to develop the elementary governing
model for COVID-19 disease, which presents the population as three different classes,
which are susceptible, infected, and recovered individuals [51]. The divisionof these cate-
gories has been examined in a type of classical-order derivative by many analysts to obtain
better simulation results, such as the mathematical model of COVID-19’s spread in India,
as presented by Biswas [52]. A dynamical investigation of the COVID-19 model in Hubei
Province, China, was presented using an SEIQR model [53]. The COVID-19 model was stud-
ied for forecasting in Spain along with the study of the impacts of various parameters [54].
A new governing system was proposed by researchers to check the new cases and deaths
from the virus’s outbreak in India [55]. The investigation of the virus’s impact in Brazil
using a type of multiple delay model and control schemes was provided in [56].
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Different variants of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2)
have emerged in recent times, including the highly transmissible and deadlier SARS-CoV-2
Delta variant [57]. This variant has been declared as a Variant Of Concern (VOC) by the
World Health Organization (WHO). In almost every country on the planet, this variant
has been detected [57]. The Delta variant has also been linked with increased SARS-CoV-2
cases in places where it is the dominant variant in the population [57]. Very recently
(precisely, 24 November 2021), South Africa reported the discovery of another SARS-CoV-2
variant, Omicron B.1.1.529, to the WHO. It has already been declared as a VOC as well,
even though studies are still ongoing to determine its transmissibility rate and severity [58].
The WHO has authorised a number of vaccines for emergency use, notwithstanding the
fact that there are multiple control measures against SARS-CoV-2. Some of these are:
the BNT162b2 Pfizer-BioNtech vaccine, the mRNA-1273 Moderna vaccine, the Johnson
and Johnson vaccine, and several others [59,60]. These vaccines are incredibly effective
against several SARS-CoV-2 variants, including the Delta variant, according to studies [60].
Recently, much epidemiological research has been performed on the efficacy of current
SARS-CoV-2 vaccines against Variants Of Concern (VOCs) [61–65]. Similar results were
obtained in studies conducted in Israel [61], the United Kingdom [62], Canada [63], and the
USA [64,65], where the Pfizer and Moderna vaccines showed 39–75% efficacy against the
Delta variant. In a recent study conducted by Tang et al. [66], to measure the effectiveness
of the Pfizer and Moderna vaccines against the SARS-CoV-2 Delta variant in Qatar, they
reported that those fully vaccinated with any of these two vaccines have 51.9% protection
against the Delta variant.

Some of the novelties of this work are as follows: we considered and analysed a
model of SARS-CoV-2 with two variants and vaccination-induced cross-immunity, proved
the stability of the equilibrium point, as well as analysed how the fractional-order model
impacts the dynamics of SARS-CoV-2 variants.

1.1. Preliminaries

Definition 1 ([21]). Let k ∈ H1(a, b), b > a, then the Atangana–Baleanu fractional integral
with 0 < ς ≤ 1 for the function k(t) is

ABC
b Iς(kt(t)) =

(1− ς)k(t)
AB(ς)

+
ς

Γ(ς)AB(ς)

∫ t

b
k′(ζ)(t− ζ)ς−1dζ (1)

Definition 2 ([21]). Let k ∈ H1(a, b), b > a, then the Atangana–Baleanu time fractional
derivative with fractional order 0 < ς ≤ 1 for the function k(t) is

ABC
b Dςkt((t)) =

AB(ς)
1− ς

∫ t

b
k′(ζ)Eς

[
ς

1− ς
(t− ζ)ς

]
dζ, (2)

where the normalisation function AB(0) = AB(1) = 1.

1.2. Linear Growth Condition

Suppose ∃ ε > o, as in [67]:

|(t, y)|2≤ ε(|y||2+1), ∀(t, y) ∈ R× [t0,i]. (3)

1.3. Data Operator

The integral operator conserves the initial condition, while the derivative loses the
initial condition. This implies that the derivative has no memory, while the integral does, i.e.,
it can remember the initial state. The integral operator is well-posed, while the derivative
is ill-posed, as is common knowledge. This has implications for inverse problems. Assume
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an unknown function g, with h representing the data of the inverse problem. Obviously, an
operator equation gives the inverse problem [67]:

∆g = h, (4)

where ∆ ∈ U for the data.

1.4. Memory Function

We discuss a memory function, which is associated with the Caputo–Fabrizio (CF)
operator. Angel et al. [68] observed that the (CF) operator shows a cross-over effect in
terms of the probability distribution and the mean-squared displacement. Moreover, the
(CF) operator performs the usual diffusion and confined diffusion before and after the time
t1 = a, respectively. Therefore, the memory function can be defined as [67]

γ′(t) =

{
0, for a ≥ t,

(1−ς) f (0)
aM(ς)Γ(2−ς)Γ(ς) exp(− ς

1−ς t)(a− t)ς−1t1−ς, for a < t.

}

This is a piecewise function, which is zero at the beginning of the process and zero
after the cross-over since the history has been captured.

2. Model Formulation

At any given time, t is the total population, and N consists of nine mutually exclusive
compartments: S(t): susceptible individuals; V(t): vaccinated individuals; A1(t),A2(t),
A12(t): infectious individuals with the Delta or Omicron variant or co-infection with both
variants (asymptomatic stage), respectively; I1(t), I2(t), I12(t): infectious individuals with
the Delta or Omicron variant or co-infection with both variants (in the symptomatic stage),
respectively;R(t): individuals who have recovered from either the Delta or Omicron variant
or from co-infection. Unvaccinated susceptible individuals are recruited into the population
at the rate (1 − χ)Π, with χ as the vaccination rate. Individuals in the unvaccinated
susceptible class acquire the Omicron SARS-CoV-2 variant at the rate β1(A1 + θ1I1). They
also acquire the Delta SARS-CoV-2 variant at the rate β2(A2 + θ2I2). Infection with incident
co-infection is at the rate β12(A12 + θ12I12). Individuals in this state are vaccinated at the
rate v. Natural death occurs in this state, as well as in all other epidemiological states at the
rate µ. Vaccinated susceptible individuals are recruited into the population at the rate χΠ.
Individuals in the vaccinated class are infected by the Delta SARS-CoV-2 variant at the rate
(1−ψ1)β1(A1 + θ1I1), where ψ1 is the efficacy of the vaccine against the Delta SARS-CoV-2
variant. This epidemiological state also is infected with the Omicron SARS-CoV-2 variant at
the rate (1− ψ2)β2(A2 + θ2I2), where ψ2 is the efficacy of the vaccine against the Omicron
SARS-CoV-2 variant. Vaccinated individuals can also be co-infected at the reduced rate
(1− ψ12)β22(A12 + θ12I12), where, again, ψ12 is the vaccine’s efficacy against co-infection
with both strains. Individuals infected with either strain can be additionally infected
with the other strain at the rates ξ1β2(A2 + θ2I2) and ξ2β1(A1 + θ1I1), respectively. The
parameters that describe the flows from one epidemiological state to the other are defined
in Table 1. Other assumptions in the model are as follows:

• Incident co-infection with both strains is assumed, and also, that the vaccine has some
efficacy against incident co-infection.

• The model considers the SARS-CoV-2 Omicron variant (denoted by “1”) and the
SARS-CoV-2 Delta variant (denoted by “2”).

• The transmissibility of the Omicron variant is assumed higher than that of the Delta
variant [57].

• Vaccinated susceptible individuals (assumed also to have completed two doses of any of the
available vaccines) have a reduced rate of infection by both variants.

• It is further assumed that immigrants in the population have completed their vaccina-
tion dosage.
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Table 1. Parameters describing the flows in the model (7) (note that the values for some parameters fit by
the model using the data from India and Pakistan are given in Table 2).

Parameter Description Value Source

Π Recruitment rate for individuals See Table 2
β1, β2 Contact rates for Omicron and Delta variants’ transmission See Table 2 Fit
β12 Contact rate for co-infection transmission See Table 2 Fit
χ Fraction of vaccinated individuals See Table 2
v Vaccination rate See Table 2
ψ1 Vaccine efficacy against the Omicron SARS-CoV-2 variant 0.80 [66]
ψ2 Vaccine efficacy against the Delta SARS-CoV-2 variant 0.57 [66]
$ Cross-immunity parameter 1.0 Assumed
µ Natural death rate See Table 2
∆1, ∆2 Omicron and Delta variants induced death rates See Table 2 Fit
∆12 Co-infection induced death rates See Table 2 Fit
ξ12 Modification parameter accounting for the infectivity

of individuals in the I12 class 1.0 Assumed
ξ1, ξ2 Modification parameters for the infectiousness of

symptomatic individuals in I1 and I2, respectively 1.5 [60]
η1, η2 Omicron, Delta SARS-CoV-2 variant’s progression rates 1

14 [69]
η12 Progression rate for co-infection of SARS-CoV-2 variants 1

14 [70]
ζ1, ζ2, ζ12, q1, q2, q12 Recovery rates 1

15 [70]

Table 2. Estimated parameters for both countries using the available datasets.

Parameter Source

β1 1.9219× 10−4 Fit
β2 0.2982 Fit
β12 0.2982 Fit
∆1 0.0171 Fit
∆2 4.4185× 10−5 Fit
v 0.08 Estimated
χ 0.26 Estimated
R0 2.0904 Fit

The classical governing system of differential equations to simulate the infectious
Delta and Omicron variants is
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dS
dt

= (1− χ)Π−
(

β1
N (A1 + θ1I1) +

β2
N (A2 + θ2I2) +

β12
N (A12 + θ12I12) + v + µ

)
S ,

dV
dt

= χΠ + vS −
[
(1− ψ1)

(
β1
N (A1 + θ1I1)

)
+ (1− ψ2)

β2
N (A2 + θ2I2)

+ (1− ψ12)
β12
N (A12 + θ12I12) + µ

]
V ,

dA1
dt

=

(
β1
N (A1 + θ1I1)

)
S + (1− ψ1)

(
β1
N (A1 + θ1I1)

)
V −

(
η1 + ζ1 + µ

)
A1 − ξ1

β2
N (A2 + θ2I2),

dA2
dt

=

(
β2
N (A2 + θ2I2)

)
S + (1− ψ2)

(
β2
N (A2 + θ2I2)

)
V −

(
η2 + ζ2 + µ

)
A2 − ξ2

β1
N (A1 + θ1I1),

dA12
dt

=

(
β12
N (A12 + θ12I12)

)
S + (1− ψ12)

(
β12
N (A12 + θ12I12)

)
V −

(
η12 + ζ12 + µ

)
A12

+ ξ1
β2
N (A2 + θ2I2) + ξ2

β1
N (A1 + θ1I1),

dI1
dt

= η1A1 −
(

q1 + ∆1 + µ

)
I1,

dI2
dt

= η2A2 −
(

q2 + ∆2 + µ

)
I2,

dI12
dt

= η12A12 −
(

q12 + ∆12 + µ

)
I12,

dR
dt

= ζ1A1 + ζ2A2 + ζ12A12 + q1I1 + q2I2 + q12I12 − µR,

(5)

with the initial conditions: 

S(0) = S0 ≥ 0,
V(0) = V0 ≥ 0,
A1(0) = A1,0 ≥ 0
A2(0) = A2,0 ≥ 0,
A12(0) = A12,0 ≥ 0,
I1(0) = I1,0 ≥ 0,
I2(0) = I2,0 ≥ 0,
I12(0) = I12,0 ≥ 0,
R(0) = R0 ≥ 0.

(6)

The generalised time fractional governing model with the non-integer order by apply-
ing the Atangana–Baleanu operator (2) to the model (5) is
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ABC
0 Dς

t S = (1− χ)Π−
(

β1
N (A1 + θ1I1) +

β2
N (A2 + θ2I2) +

β12
N (A12 + θ12I12) + v + µ

)
S

ABC
0 Dς

t V = χΠ + vS −
[
(1− ψ1)

(
β1
N (A1 + θ1I1)

)
+ (1− ψ2)

β2
N (A2 + θ2I2)+

(1− ψ12)
β12
N (A12 + θ12I12) + µ

]
V ,

ABC
0 Dς

tA1 =

(
β1
N (A1 + θ1I1)

)
S + (1− ψ1)

(
β1
N (A1 + θ1I1)

)
V −

(
ς1 + ζ1 + µ

)
A1 − ξ1β2(A2 + θ2I2),

ABC
0 Dς

tA2 =

(
β2
N (A2 + θ2I2)

)
S + (1− ψ2)

(
β2
N (A2 + θ2I2)

)
V −

(
ς2 + ζ2 + µ

)
A2 − ξ2

β1
N (A1 + θ1I1),

ABC
0 Dς

tA12 =

(
β12
N (A12 + θ12I12)

)
S + (1− ψ12)

(
β12
N (A12 + θ12I12)

)
V

−
(

η12 + ζ12 + µ

)
A12 + ξ1

β2
N (A2 + θ2I2) + ξ2

β1
N (A1 + θ1I1),

ABC
0 Dς

t I1 = η1A1 −
(

q1 + ∆1 + µ

)
I1,

ABC
0 Dς

t I2 = η2A2 −
(

q2 + ∆2 + µ

)
I2,

ABC
0 Dς

t I12 = η12A12 −
(

q12 + ∆12 + µ

)
I12,

ABC
0 Dς

tR = ζ1A1 + ζ2A2 + ζ12A12 + q1I1 + q2I2 + q12I12 − µR.

(7)

Let us consider nine kernel values for the sake of simplicity and clarity, then Model (7)
can be written as 

ABC
0 Dς

t [S(t)] = H1(t,S),
ABC
0 Dς

t [V(t)] = H2(t,V),
ABC
0 Dς

t [A1(t)] = H3(t,A1),
ABC
0 Dς

t [A2(t)] = H4(t,A2),
ABC
0 Dς

t [A12(t)] = H5(t,A12),
ABC
0 Dς

t [I1(t)] = H6(t, I1),
ABC
0 Dς

t [I2(t)] = H7(t, I2),
ABC
0 Dς

t [I12(t)] = H8(t, I12),
ABC
0 Dς

t [R(t)] = H9(t,R).

(8)

By applying the fractional integral to Model (8),

S(t)− S(0) = ℵ(ς)H1(t,S) + ℘(ς)
∫ t

0 H1(>,S)(t−>)ς−1d>,
V(t)− V(0) = ℵ(ς)H2(t,V) + ℘(ς)

∫ t
0 H2(>,V)(t−>)ς−1d>,

A1(t)−A1(0) = ℵ(ς)H3(t,A1) + ℘(ς)
∫ t

0 H3(>,A1)(t−>)ς−1d>,
A2(t)−A2(0) = ℵ(ς)H4(t,A2) + ℘(ς)

∫ t
0 H4(>,A2)(t−>)ς−1d>,

A12(t)−A12(0) = ℵ(ς)H5(t,A12) + ℘(ς)
∫ t

0 H5(>,A12)(t−>)ς−1d>,
I1(t)− I1(0) = ℵ(ς)H6(t, I1) + ℘(ς)

∫ t
0 H6(>, I1)(t−>)ς−1d>,

I2(t)− I2(0) = ℵ(ς)H7(t, I2) + ℘(ς)
∫ t

0 H7(>, I2)(t−>)ς−1d>,
I12(t)− I12(0) = ℵ(ς)H8(t, I12) + ℘(ς)

∫ t
0 H8(>, I12)(t−>)ς−1d>,

R(t)−R(0) = ℵ(ς)H9(t,R) + ℘(ς)
∫ t

0 H9(>,R)(t−>)ς−1d>,

(9)

where ℵ(ς) = 1−ς
AB(ς) and ℘(ς) = ς

AB(ς)Γ(ς) .
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3. Mathematical Analysis

The boundedness, existence, uniqueness, and stability analyses are discussed in this section.
Assume a set U of continuous real-valued variables specified on a finite interval i and

U fulfilling

‖(S ,V ,A1,A2,A12, I1, I2, I12,R)‖ = ‖S‖+ ‖V‖+ ‖A1‖+ ‖A2‖+ ‖A12‖+
‖I1‖+ ‖I2‖+ ‖I12‖+ ‖R‖,

(10)

in the Banach space. 

‖S‖ = sup{|M1(t)| : t ∈ i} ≤ ω1,
‖V‖ = sup{|M2(t)| : t ∈ i} ≤ ω2,
‖A1‖ = sup{|M3(t)| : t ∈ i} ≤ ω3,
‖A2‖ = sup{|M4(t)| : t ∈ i} ≤ ω4,
‖A12‖ = sup{|M5(t)| : t ∈ i} ≤ ω5,
‖I1‖ = sup{|M6(t)| : t ∈ i} ≤ ω6,
‖I2‖ = sup{|M7(t)| : t ∈ i} ≤ ω7,
‖I12‖ = sup{|M8(t)| : t ∈ i} ≤ ω8,
‖R‖ = sup{|M9(t)| : t ∈ i} ≤ ω9.

Moreover, in the finite domain, a set U(t) = {υ(i) × υ(i)}, υ(i) of continuous
real-valued functions has the supremum norm property in the Banach space.

3.1. Boundedness of the Governing Model (5)

Theorem 1. All the solutions are bounded with positive initial conditions and N (t) ≤ Π
µ , ∀t > 0.

Proof. The growth rate for the population can be expressed by (5) as

ABC
0 Dς

tN = ABC0 Dς
t S + ABC0 Dς

t V + ABC0 Dς
tA1 +

ABC
0 Dς

tA2 +
ABC
0 Dς

tA12+

ABC
0 Dς

t I1 +
ABC
0 Dς

t I2 +
ABC
0 Dς

t I12 +
ABC
0 Dς

tR2.
(11)

Equation (11) yields

ABC
0 Dς

tN (t) = Π− µN (t). (12)

Applying the Laplace transformation to Equation (12), we obtain

sςN̄ (s)− sς−1N (0)
(1− ς)sς + ς

=
Π
s
− µN̄ (s). (13)

N̄ (s) =
Π
(
(1− ς)sς + ς

)
s
(
(1 + µ(1− ς))sς + µς

) +
sς−1N (0)

s
(
(1 + µ(1− ς))sς + µς

) . (14)

After performing a simple calculation and the inverse Laplace transform to Equation (21),
one can see

N (t) =
Πς

µ
+

[
Π(1− ς)−Πς(1 + µ(1− ς)) + 1

µ(1 + µ(1− ς))

]
Eς

(
− µς

(1 + µ(1− ς))
tς

)
. (15)
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Thus, for the limiting case t→ 0,

N (t) ≤ Π
µ

. (16)

One can say that

0 ≤ N (t) ≤ Π
µ

. (17)

Finally, with the evidence from (17), it is proven that each populations’ individualsare
bounded.

3.2. Positivity of Solution

Theorem 2. The closed set:

D =

{
(S ,V ,A1,A2,A12, I1, I2, I12,R) ∈ R9

+ : S + V +A1 +A2 +A12 + I1 + I2 + I12 +R ≤
Π
µ

}
.

is positively invariant in the context of Model (7).

Proof. Adding all the equations of System (7) gives

ABC
0 Dς

tN = Π− µN (t)− [∆1I1 + ∆2I2 + ∆12I12], (18)

and from (18), we have that

Π− (µ + 3∆)N ≤ ABC
0 Dς

tN < Π− µN ,

where ∆ = min{∆1, ∆2, ∆12}.

We obtainN (t) ≤ Π
µ as t→ ∞ by applying the Laplace transform of the AB derivative

to the above inequality. Hence, System (7) has a solution in i. Thus, the given system is
positively invariant.

3.3. Lipschitz Condition

Now, we prove the Lipschitz condition for the model.

Theorem 3. The seven above-mentioned kernels (8):

{H1(t,S),H2(t,V),H3(t,A1),H4(t,A2),H5(t,A12),H6(t, I1),H7(t, I2),H8(t, I12),H9(t,R)},

satisfy the Lipschitz condition.

Proof. Firstly, we verify Lipschitz condition for kernel H1. Assume S and S1 are two
functions, and their corresponding norm is

‖H1(t,S)−H1(t,S1)‖ =
∥∥∥∥((1− χ)Π− (

β1

N (A1 + θ1I1) +
β2

N (A2 + θ2I2)

+
β12

N (A12 + θ12I12) + v + µ)S
)
−(

(1− χ)Π− (
β1

N (A1 + θ1I1) +
β2

N (A2 + θ2I2) +
β12

N (A12 + θ12I12) + v + µ)S1

)∥∥∥∥.

(19)
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Upon simplification and applying the norm property, we obtain

‖H1(t, S)−H1(t,S1)‖ ≤ (
β1

N (A1 + θ1I1) +
β2

N (A2 + θ2I2)

+
β12

N (A12 + θ12I12) + v + µ)‖S(t)− S(t1)‖,

‖H1(t, S)−H1(t,S1)‖ ≤ ϕ1‖S(t)− S(t1)‖, (20)

taking ϕ1 = β1
N (A1 + θ1I1) +

β2
N (A2 + θ2I2) +

β12
N (A12 + θ12I12) + v + µ, where (A1 +

θ1I1), (A2 + θ2I2), and (A12 + I12) are bounded.
In a similar way, we can verify the Lipschitz condition for the kernel:

H2(V),H3(A1),H4(A2),H5(A12),H6(I1),H7(I2),H8(I12), andH9(R),

‖H2(t,V)−H2(t,V1)‖ ≤ ϕ2‖V(t)− V(t1)‖,
‖H3(t,A1)−H3(t,A1,1)‖ ≤ ϕ3‖A1(t)−A1(t1)‖,
‖H4(t,A2)−H4(t,A2,1)‖ ≤ ϕ4‖A2(t)−A2(t1)‖,
‖H5(t,A12)−H5(t,A12,1)‖ ≤ ϕ5‖A12(t)−A12(t1)‖,
‖H6(t, I1)−H6(t, I1,1)‖ ≤ ϕ6‖I1(t)− I1(t1)‖,
‖H7(t, I2)−H7(t, I2,1)‖ ≤ ϕ7‖I2(t)− I2(t1)‖.
‖H8(t, I12)−H8(t, I12,1)‖ ≤ ϕ8‖I12(t)− I12(t1)‖.
‖H9(t,R)−H9(t,R1)‖ ≤ ϕ9‖R(t)−R(t1)‖.

(21)

3.4. Existence of the Solution

In this part, we prove the existence of the solution of the model. Model (9) can be
expressed in the presence of the memory function:

S(t) = Υ(t) + ℵ(ς)H1(t,S) + ℘(ς)
∫ t

0 H1(>,S)(t−>)ς−1d>,
V(t) = Υ(t) + ℵ(ς)H2(t,V) + ℘(ς)

∫ t
0 H2(>,V)(t−>)ς−1d>,

A1(t) = Υ(t) + ℵ(ς)H3(t,A1) + ℘(ς)
∫ t

0 H3(>,A1)(t−>)ς−1d>,
A2(t) = Υ(t) + ℵ(ς)H4(t,A2) + ℘(ς)

∫ t
0 H4(>,A2)(t−>)ς−1d>,

A12(t) = Υ(t) + ℵ(ς)H5(t,A12) + ℘(ς)
∫ t

0 H5(>,A12)(t−>)ς−1d>,
I1(t) = Υ(t) + ℵ(ς)H6(t, I1) + ℘(ς)

∫ t
0 H6(>, I1)(t−>)ς−1d>,

I2(t) = Υ(t) + ℵ(ς)H7(t, I2) + ℘(ς)
∫ t

0 H7(>, I2)(t−>)ς−1d>,
I12(t) = Υ(t) + ℵ(ς)H8(t, I12) + ℘(ς)

∫ t
0 H8(>, I12)(t−>)ς−1d>,

R(t) = Υ(t) + ℵ(ς)H9(t,R) + ℘(ς)
∫ t

0 H9(>,R)(t−>)ς−1d>.

(22)

Theorem 4. Suppose the linear growth condition holds and S(t) is the solution of the governing
model. Then, we have

sup
t∈[0,i]

‖S(t)‖2 ≤ sup
t∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3(1 + ‖S(t)‖2)εℵ2(ς)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
. (23)

Proof. Let ∀n ≥ 1:

γn(t) = inf{i, inf{t ∈ [0,i] : ‖S(t)‖ ≥ n}}; (24)

one can observe that limn→∞ γn → A and also set

Sn(t) = inf{t, γn}, ∀t ∈ [0,i]. (25)
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‖Sn(t)‖2 − 3‖Υ(t)‖2 = 3ℵ2(ς)‖H1(t,Sn)‖2 + 3
∥∥∥∥(℘(ς)) ∫ t

0

[
H1(>,Sn)(t−>)ς−1

]
d>
∥∥∥∥2

. (26)

Applying the Hölder inequality and the linear growth condition on (26),

‖Sn(t)‖2 − 3‖Υ(t)‖2 = 3ℵ2(ς)ε(1 + ‖Sn(t)‖2) + 3
(

tςε

AB(ς)Γ(ς)

) ∫ t

0

(
1 + ‖Sn(>)‖2

)
d>. (27)

‖Sn(t)‖2 < ‖Sn(t)‖2 + 1 ≤ 3‖Υ(t)‖2 + 3ℵ2(ς)ε(1 + ‖Sn(t)‖2) +∫ t

0
3
(

tςε

AB(ς)Γ(ς)

)(
1 + ‖Sn(>)‖2

)
d>. (28)

By taking the supremum on both sides of (28),

sup
>∈[0,i]

‖Sn(>)‖2 ≤ 1 + sup
>∈[0,i]

‖Sn(>)‖2 ≤

sup
>∈[0,i]

{
1 + 3‖γ(>)‖2 + 3ℵ2(ς)ε(1 + ‖Sn(>)‖2)

}

+ 3
(

iς+1ε

AB(ς)Γ(ς)

) ∫ t

0

(
1 + sup

σς∈[0,>]
‖Sn(σ

ς)‖2
)

d>.

(29)

Applying the Gronwall inequality on (29),

sup
t∈[0,i]

‖Sn(t)‖2 + 1 ≤ sup
t∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖Sn(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
. (30)

sup
t∈[0,γn ]

‖Sn(t)‖2 ≤ sup
t∈[0,γn ]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖Sn(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
. (31)

lim
n→∞

sup
t∈[0,i]

‖Sn(t)‖2 ≤ lim
n→→∞

sup
t∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖Sn(t)‖2)

}
×

exp
(

3iς+1ε

AB(ς)Γ(ς)

)
.

(32)

In a similar way, we can verify

supt∈[0,i] ‖Vn(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖Vn(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖A1,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖A1,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖A2,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖A2,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖A12,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖A12,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖I1,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖I1,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖I2,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖I2,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖I12,n(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖I12,n(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
,

supt∈[0,i] ‖Rn(t)‖2 ≤ supt∈[0,i]

{
3‖Υ(t)‖2 + 1 + 3ℵ2(ς)ε(1 + ‖Rn(t)‖2)

}
× exp

(
3iς+1ε

AB(ς)Γ(ς)

)
.

(33)
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Now, the Picard recursions approach assists in proving the existence of the solution;
thus, the recursive formula for System (9) upon setting

Υ(t) = S0(t) ∈ i2([0,i],R),
Υ(t) = V0(t) ∈ i2([0,i],R),
Υ(t) = A1,0(t) ∈ i2([0,i],R),
Υ(t) = A2,0(t) ∈ i2([0,i],R),
Υ(t) = A12,0(t) ∈ i2([0,i],R),
Υ(t) = I1,0(t) ∈ i2([0,i],R),
Υ(t) = I2,0(t) ∈ i2([0,i],R),
Υ(t) = I12,0(t) ∈ i2([0,i],R),
Υ(t) = R0(t) ∈ i2([0,i],R).

Taking the first equation from System (9),

Sn(t) = S0(t) + ℵ(ς)H1(t,Sn−1(t)) + ℘(ς)
∫ t

0

[
H1(>,Sn−1(>))(t−>)ς−1

]
d>. (34)

The induction technique is applied, such that Sn(t) ∈ i2[0,i],R, ∀n ≥ 1:

‖Sn(t)‖2 = 3‖S0(t)‖2 + 3ℵ2(ς)‖H1(t,Sn−1(t))‖2 +

(
3iς

AB(ς)Γ(ς)

) ∫ t

0
‖H1(>,Sn−1)(>)‖2d>.

‖Sn(t)‖2 = 3‖S0(t)‖2 + 3ℵ2(ς)ε(1 + ‖Sn−1(t)‖2) +

(
3iςε

AB(ς)Γ(ς)

) ∫ t

0
(1 + ‖Sn−1(>)‖2)d>.

‖Sn(t)‖2 ≤ µ1 +

(
3iςε

AB(ς)Γ(ς)

) ∫ t

0
‖Sn−1(>)‖2d>, (35)

where

µ1 = 3‖S0(t)‖2 + 3ℵ2(ς)ε(1 + ‖Sn−1(t)‖2) +

(
3iς+1ε

AB(ς)Γ(ς)

)
,

and taking the max on both sides of (35),

max
1≤n≤i

‖Sn(t)‖2 ≤ max
1≤n≤i

µ1 +

(
3iςε

AB(ς)Γ(ς)

) ∫ t

0
‖S0(>)‖2 + max

1≤n≤i
‖Sn(>)‖2d>. (36)

max
1≤n≤i

‖Sn(t)‖2 ≤ max
1≤n≤i

µ1 +

(
3Aςε

AB(ς)Γ(ς)

) ∫ t

0
‖S0(>)‖2 + max

1≤n≤i
‖Sn(>)‖2d>, (37)

where

µ2 = max
1≤n≤i

µ1 +

(
3iςε

AB(ς)Γ(ς)

) ∫ t

0
sup

1≤j≤>
‖S0(j)‖2d>.

Thus, the Gronwall inequality yields

max
1≤n≤i

‖Sn(t)‖2 ≤ µ2exp
(

3iς+1ε

AB(ς)Γ(ς)

)
. (38)
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Taking an arbitrary i,

‖Sn(t)‖2 ≤ µ2exp
(

3iς+1ε

AB(ς)Γ(ς)

)
, ∀ t ∈ [0,i]. (39)

Now,

‖S1(t)− S0(t)‖2 = ‖S1(t)− Υ(t)‖2

≤ 2
∥∥∥∥ℵ2(ς)(H1(t,Sn−1(t)))

∥∥∥∥2

+ 2
∥∥∥∥( 3iς

AB(ς)Γ(ς)

) ∫ t

0
(H1(>,Sn−1)(>))d>

∥∥∥∥2

≤ 2
(
ℵ(ς)

)
ε(1 + sup

t∈[0,i]
‖S0(t)‖) +

2iςε

AB(ς)Γ(ς)

∫ t

0
(1 + sup

j∈[0,i]
‖S0(j)‖)d>

(40)

Similarly,

‖S2(t)− S1(t)‖2 ≤ 2ℵ2(ς)ϕ1‖S1(t)− S0(t)‖2 +
2iς

AB(ς)Γ(ς)
ϕ1

∫ t

0
‖S1(>)− S0(>)‖2d>

≤ ∆
[

2ℵ2(ς)ϕ1 +
2i2ς

AB(ς)Γ(ς)
ϕ1

]
.

(41)

In the same way,

‖S3(t)− S2(t)‖2 ≤2ℵ2(ς)ϕ1 sup
1≤t≤i

‖S2(t)− S1(t)‖2+

2iς ϕ1

AB(ς)Γ(ς)

∫ t

0
sup

1≤j≤>
‖S2(j)− S1(j)‖2d>,

≤ ∆
[

2ℵ2(ς)ϕ1 +
2i2ς ϕ1

AB(ς)Γ(ς)

]2

. (42)

We claim that

‖Sn+1(t)− Sn(t)‖2 ≤ ∆
[

2ℵ2(ς)ϕ1 +
2i2ς ϕ1

AB(ς)Γ(ς)

]n

, (43)

is valid ∀n ≥ 1. Clearly, one can obtain the requested result upon plugging in n = 0. We
need to show its validity for n + 1.

‖Sn+2(t)− Sn+1(t)‖2 ≤ 2ℵ2(ς)ϕ1‖Sn+1(t)− Sn(t)‖2 +
2iς

AB(ς)Γ(ς)
ϕ1

∫ t

0
‖Sn+1(j)− Sn(j)‖2d>

≤ 2ℵ2(ς)ϕ1 sup
1≤t≤A

‖Sn+1(t)− Sn(t)‖2 +
2iς

AB(ς)Γ(ς)
ϕ1

∫ t

0
sup

1≤j≤>
‖Sn+1(j)− Sn(j)‖2d>

≤ ∆
[

2ℵ2(ς)ϕ1 +
2i2ς ϕ1

AB(ς)Γ(ς)

]n+1

. (44)

Finally, we acquire upon the induction hypothesis

‖Sn+2(t)− Sn+1(t)‖2 ≤ ∆
[

2ℵ2(ς)ϕ1 +
2i2ς

AB(ς)Γ(ς)
ϕ1

]n+1

. (45)
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A feasible choice of ϕ1 yields

∞

∑
n=0

∆
[

2ℵ2(ς)ϕ1 +
2i2ς ϕ1

AB(ς)Γ(ς)

]n

< ∞. (46)

Similarly, 

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ2 +

2i2ς ϕ2
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ3 +

2i2ς ϕ3
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ4 +

2i2ς ϕ4
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ5 +

2i2ς ϕ5
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ6 +

2i2ς ϕ6
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ7 +

2i2ς ϕ7
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ8 +

2i2ς ϕ8
AB(ς)Γ(ς)

]n

< ∞,

∑∞
n=0 ∆

[
2ℵ2(ς)ϕ9 +

2i2ς ϕ9
AB(ς)Γ(ς)

]n

< ∞.

(47)

3.5. Uniqueness of the Solution

Let S(t) and S1 be two solutions of the fractional governing model, then

S(t)− S1(t) = ℵ(ς)(H1(t,S)−H1(t,S1)) + ℘(ς)
∫ t

0

[
(H1(>,S)−H1(>,S1))(t−>)ς−1

]
d>.

Evaluating the norm, such as

‖S(t)− S1(t)‖2 = 2
∥∥∥∥ℵ(ς)(H1(t,S)−H1(t,S1))

∥∥∥∥2

+ 2

×
∥∥∥∥℘(ς) ∫ t

0

[
(H1(>,S)−H1(>,S1))(t−>)ς−1

]
d>
∥∥∥∥2

,

‖S(t)− S1(t)‖2 < 2ℵ2(ς)‖(H1(t,S)−H1(t,S1))‖2 +

2iς

AB(ς)Γ(ς)

∫ t

0
‖(H1(>,S)−H1(>,S1))‖2d>.

Applying the Lipschitz condition,

‖S(t)− S1(t)‖2 ≤ 2ℵ2(ς)ϕ1‖S − S1‖2 +
2iς ϕ1

AB(ς)Γ(ς)

∫ t

0
‖S − S1‖2d>,

‖S(t)− S1(t)‖2 ≤ 2iς ϕ1

AB(ς)Γ(ς)

∥∥∥∥ 1

1− 2
(
ℵ(ς)

)2

ϕ1

∥∥∥∥× ∫ t

0
‖S − S1‖2d>,
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with (
1

1− 2
(
ℵ(ς)

)2

ϕ1

)
6= 0,

the suggested Gronwall inequality is

‖S − S1‖2 = 0.

Therefore, we see that

S = S1. (48)

Similarly, 

V = V1,
A1 = A1,1,
A2 = A2,1,
A12 = A12,1,
I1 = I1,1,
I2 = I2,1,
I12 = I12,1,
R = R1.

(49)

With the evidence of (49), we can say that the generalised fractional governing
model (8) has a unique solution.

3.6. The Basic Reproduction Number of the Model

The DFE of the model (7) is

Ξ0 = (S∗,V∗,A∗1 ,A∗2 ,A∗12, I∗1 , I∗2 , I∗12,R∗2),
= (S∗,V∗, 0, 0, 0, 0, 0, 0, 0),

with

S∗ = (1− χ)Π
v + µ

, V∗ = (µχ + v)Π
µ(v + µ)

,

following the approach of [71]. The transfer matrices for the model are given, respectively,

F =



β1 [S∗+(1−1ג)V∗ ]
N ∗ 0 0 β1θ1 [S∗+(1−1ג)V∗ ]

N ∗ 0 0
0 β2 [S∗+(1−2ג)V∗ ]

N ∗ 0 0 β2θ2 [S∗+(1−2ג)V∗ ]
N ∗ 0

0 0 β12 [S∗+(1−12ג)V∗ ]
N ∗ 0 0 β12θ12 [S∗+(1−12ג)V∗ ]

N ∗
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V =



L1 0 0 0 0 0
0 L2 0 0 0 0
0 0 L3 0 0 0
−ς1 0 0 L4 0 0

0 −ς2 0 0 L5 0
0 0 −ς12 0 0 L6

 (50)

where

L1 = ς1 + ζ1 + µ, L2 = ς2 + ζ2 + µ, L3 = ς12 + ζ12 + µ, L4 = q1 + ∆1 + µ,
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L5 = q2 + ∆2 + µ, L6 = q12 + ∆12 + µ.

The basic reproduction number of the model (7) is given by R0 = ρ(FV−1) =
max{R0D,R0M,R0DM}, where R0D, R0M, and R0DM are the associated reproduction
numbers for the Delta and Omicron SARS-CoV-2 variants and their co-infection, respec-
tively, given by

R0D =
β1(L4 +−ς1θ1)[(1− v)(1ג + µ) + [1vµג

µ(v + µ)L1L4N ∗
,

R0M =
β2(L5 +−ς2θ2)[(1− v)(2ג + µ) + [2vµג

µ(v + µ)L2L5N ∗
,

R0DM =
β12(L6 +−ς12θ12)[(1− v)(12ג + µ) + [12vµג

µ(v + µ)L3L6N ∗
.

3.7. Local Asymptotic Stability of the Disease-Free Equilibrium of the Model

Theorem 5. The DFE Z0 of the model (7) is locally asymptotically stable (LAS) if R0 < 1 and
unstable ifR0 > 1.

Proof. The local stability of the model (7) was analysed by the Jacobian matrix of System (7)
evaluated at the disease-free equilibrium Z0, given by

−(v + µ) 0 − β1
N ∗ S∗ − β2

N ∗ S∗ − β12
N ∗ S∗ − β1

N ∗ θ1S∗ − β2
N ∗ θ2S∗ − β12

N ∗ θ12S∗ 0

v −µ − β′1
N ∗ V∗ − β′2

N ∗ V∗ − β′12
N ∗ V∗ − β′1

N ∗ θ1V∗ − β′2
N ∗ θ2V∗ − β′12

N ∗ θ12V∗ 0

0 0 β1K∗1
N ∗ −L1 0 0 β1θ1K∗1

N ∗ 0 0 0

0 0 0 β2K∗2
N ∗ −L2 0 0 β2θ2K∗2

N ∗ 0 0

0 0 0 0 β12K∗12
N ∗ −L3 0 0 β12θ12K∗12

N ∗ 0
0 0 ς1 0 0 0 −L4 0 0
0 0 0 ς2 0 0 0 −L5 0
0 0 0 0 ς12 0 0 0 −L6
0 0 ζ1 ζ2 ζ12 q1 q2 q12 −µ


where K∗i = S∗ + (1 − ∗i)Vג and β

′
i = (1 − ,i)βiג (i = 1, 2, 12). The eigenvalues are

given by

ϕ1 = −µ, ϕ2 = −µ, ϕ3 = −µ, ϕ4 = −(µ + v),

and the solutions of the characteristic polynomial equations:

ϕ2 +

(
L1 + L2 −

β1[S∗ + (1− [∗V(ג
N ∗

)
ϕ + L1L2(1−R0W) = 0, (51)

and
ϕ3 + χ11 ϕ2 + χ22 ϕ + χ33 = 0, (52)

where

χ11 =

(
L3 + L4 + L5 −

β2[S∗ + $(1− ς)φvV∗]
N ∗

)
χ22 =

(
L3L4 + L3L5 + L4L5 −

β2(L4 + L5 + ς2θ2)S∗
N ∗ − β2$(1− ς)(ς3θ2 + L3φv + L5φv)V∗

N ∗

)
χ33 = L3L4L5(1−R0D) = 0.

From the Routh–Hurwitz criterion, Equation (51) has roots with negative real parts if
and only ifR0W < 1. Furthermore, Equation (52) has roots with negative real parts if and
only if χ11 > 0, χ33 > 0, and χ11χ22 > χ33. If R0D < 1, χ11 > 0, and χ33 > 0, hence, the
DFE, Z0, is locally asymptotically stable ifR0 = max{R0W ,R0D} < 1.
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Since Im (ϕk) = 0, for k = 0, 1, 2, 3, ..., 9,

|arg(ϕk)| = π >
ςπ

2
, for 0 < ς < 1.

4. Stability Analysis

Here, we discuss the stability analysis of the designed fractional governing model.

Hyers–Ulam–Rassias Stability

The stability analysis of the Atangana–Baleanu fractional COVID-19 model is pre-
sented here.

Let us re-write Model (9):{
ABCDς

t [(t)ג] = H(t, ,((t)ג
(0)ג = ,0ג 0 < t < i < ∞.

(53)

where the vectors (t)ג = (S(t),V(t),A1(t),A2(t),A12(t), I1(t), I2(t), I12(t),R(t)) and
A = (H1,H2,H3,H4,H5,H6,H7,H8,H9) are continuous vector functions.

Definition 3 ([72]). Assume the fractional order is 0 < ς < 1 and H : [0,i]×R9
+ → R9

+ is a
continuous mapping. Then, Model (53) is Hyers–Ulam-stable if ∃ K > 0 and N > 0 such that, for
each solution ג ∈ V([0,i],R9

+), the following inequality exists:

||ABCDς
t ,H(t−[(t)ג] ||((t)ג ≤ N , ∀t ∈ [0,i], (54)

∃ a solution ′ג ∈ V([0,i],R9
+) of the model (53) such as

−(t)ג|| ||(t)′ג ≤ KN , ∀t ∈ [0,i]. (55)

Definition 4 ([72]). Assume the fractional order is 0 < ς < 1. The function H : [0,i]×R9
+ →

R9
+ and Ω : [0,i]→ R9

+ are continuous mappings. Then, Model (53) is generalised Hyers–Ulam–
Rassias-stable with respect to Ω if ∃ VH,ω > 0 such that, for each solution ג ∈ V([0,i],R9

+), the
following inequality exists:

||ABCDς
t ,H(t−[(t)ג] ||((t)ג ≤ Ω(t), ∀t ∈ [0,i], (56)

∃ a solution ′ג ∈ V([0,i],R9
+) of the model (53) such as

−(t)ג|| ||(t)′ג ≤ VH,ΩΩ(t), ∀t ∈ [0,i]. (57)

Now, to prove that Model (53) is generalised Hyers–Ulam–Rassias-stable, we assume
that:

[C1] H : [0,i]×R9
+ → R9

+ is a continuous mapping.

[C2] ∃ VH > 0 such that, for each solution ,ג ′ג ∈ V([0,i],R9
+),

−(t)ג|| ||(t)′ג ≤ VH||ג− ,||′ג ∀t ∈ [0,i].

[C3] Let Ω ∈ ([0,i],R+) be an increasing mapping, and let WΩ > 0 such that∫ t

0
Ω(>)d> ≤WΩΩ(t), ∀> ∈ [0,i].

Theorem 6. Assuming that [C1]− [C3] exist, Model (53) is generalised Hyers–Ulam–Rassias-
stable with respect to Ω on the interval provided that ℵ(ς)VH < 1.
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Proof. Let ′ג ∈ V([0,i],R9
+) be a solution of Model (53). Then, the unique solution of

Model (53) is as proven above.

(t)ג = (0)ג + ℵ(ς)H(t, ((t)ג + ℘(ς)
∫ t

0
H(>, .<ς−1d(<−t)((<)ג (58)

With the evidence of (56), we can say∥∥∥∥ג′(t)− (0)ג + ℵ(ς)H(t, ((t)′ג + ℘(ς)
∫ t

0
H(>, <ς−1d(<−t)((<)′ג

∥∥∥∥
≤ ℵ(ς)Ω(t) +

iς

AB(ς)Γ(ς)

∫ t

0
Ω(>)d>,

≤
(
ℵ(ς) + iς

AB(ς)Γ(ς)
WΩ

)
Ω(t).

Therefore,∥∥∥∥ג(t)− (t)′ג
∥∥∥∥ ≤ −(t)′ג∥∥∥∥ −(0)ג ℵ(ς)H(t, −((t)′ג ℘(ς)

∫ t

0
H(>, <ς−1d(<−t)((<)′ג

∥∥∥∥,

≤
−(t)′ג∥∥∥∥ −(0)ג ℵ(ς)H(t, −((t)ג ℘(ς)

∫ t

0
H(>, <ς−1d(<−t)((<)ג

−ℵ(ς)H(t, −((t)′ג ℘(ς)
∫ t

0
H(>, <ς−1d(<−t)((<)′ג

+ℵ(ς)H(t, ((t)′ג + ℘(ς)
∫ t

0
H(>, <ς−1d(<−t)((<)′ג

∥∥∥∥,

≤
−(t)′ג∥∥∥∥ −(0)ג ℵ(ς)H(t, −((t)′ג ℘(ς)

∫ t

0
H(>, <ς−1d(<−t)((<)′ג

∥∥∥∥+
ℵ(ς)

∥∥∥∥H(t, ,H(t−((t)ג ((t)′ג
∥∥∥∥+ ℘(ς)

∫ t

0

∥∥∥∥(H(>, ,<)H−((<)ג ς−1(<−t)(((<)′ג
∥∥∥∥d>,

≤
(
ℵ(ς) + Aiς

AB(ς)Γ(ς)
WΩ

)
Ω(t) + ℵ(ς)VH‖ג(t)− ‖((t)′ג (59)

+
iς

AB(ς)Γ(ς)
VH

∫ t

0
−(<)ג‖ .<d‖(<)′ג

Now, ℵ(ς)VH < 1, so

−(t)ג‖ ‖(t)′ג ≤
(ℵ(ς) + iς

AB(ς)Γ(ς)WΩ)Ω(t)

1− ℵ(ς)VH
+

iς

AB(ς)Γ(ς)VH

1− ℵ(ς)VH

∫ t

0
−(<)ג‖ .<d‖(<)′ג (60)

Gronwall’s inequality yields

−(t)ג‖ ‖(t)′ג ≤
[ℵ(ς) + iς

AB(ς)Γ(ς)WΩ

1− ℵ(ς)VH
exp(t)

]
Ω(t). (61)

With the setting VH,Ω =

[
ℵ(ς)+ iς

AB(ς)Γ(ς)WΩ

1−ℵ(ς)VH
exp(t)

]
, we have

−(t)ג‖ ‖(t)′ג ≤ VH,ΩΩ(t). (62)
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Inequality (62) has authenticated that Model (53) is Hyers–Ulam–Rassias-stable with
respect to Ω.

5. Simulations of the SARS-CoV-2 Model (7)

In this part, we give a graphical analysis of the numerical results for the cases of India
and Pakistan. For this, we estimated the real values of the natural death rates and transmis-
sion rates for both countries. In India, the life expectancy is 69.66 years, and the population
is 211,120,000 [73]; therefore, we set the natural death rate to be 1,393,409,033

69.66 per day, while
the natural death rate was obtained as 1

69.66 per day. The life expectancy for Pakistan is
67.27 years, and the population is 225,199,929 [74]; therefore, we set the natural death rate to
be 225,199,929

67.27 per day, while the natural death rate was obtained as 1
67.27 per day. The initial

conditions were obtained thusly for each of the countries. For India: as at 10 May 2021,
cumulative cases recorded: 22,992,517; cumulative deaths recorded: 249,992. The initial con-
ditions were set thusly: S(0) = 1,300,000,000, V(0) = 35,906,905, A1(0) = I1(0) = 7,641,000,
R1(0) = 0, A2(0) = Av

2(0) = I2(0) = 7,641,000, R2(0) = 0. For Pakistan: as at 1 July
2021, cumulative cases recorded: 959,685; cumulative deaths recorded: 22,345. The initial
conditions were set thusly: S(0) = 180,000,000,V(0) = 20,000,000, A1(0) = I1(0) = 319,895,
R1(0) = 0,A2(0) = Av

2(0) = I2(0) = 319,895,R2(0) = 0. Using the data available for the
daily cumulative number of confirmed SARS-CoV-2 deaths in India [73], the estimated
contact rates were β1 = 1.9219× 10−4 and β2 = 1.9219× 10−4, while the estimated disease-
induced death rates were ∆1 = 0.0171 and ∆2 = 4.4185× 10−5, respectively. Likewise, from
the data available to us for daily cumulative confirmed SARS-CoV-2 deaths in Pakistan [74],
the estimated contact rates were β1 = 0.0099 and β2 = 0.3954, while the estimated disease-
induced death rates were ∆1 = 0.0027 and ∆2 = 1.1312× 10−5. The model fitting was
performed based on the period when the Delta variant was dominant or first reported in the
selected countries. For India, the simulation period for the fitting was from 10 May 2021 to
8 November 2021. This was almost around the time when the World Health Organization
(WHO) declared the Delta variant a Variant Of Concern (VOC) [57]. For Pakistan, the simu-
lation period was from 1 July 2021 (around the time the first case of the SARS-CoV-2 Delta
variant was first reported in the country) to 8 November 2021. The estimated parameter
values are shown in Table 2. For both countries, we show the dynamics of the proposed
co-infection model in Figures 1–4.

The simulation for India is depicted in Figures 1 and 2. The number of susceptible
people decreased over time since people were exposed to the coronavirus, which spread in
a particular region in Figure 1a. The vaccination effect was also studied in the proposed
model. When the vaccination ratio increased in India for the Delta variant, as observed
in Figure 1b, as a result, the number of asymptomatic infected and symptomatic infected
people decreased, which is displayed in Figures 1c and 2b. This was due to vaccination
leading to a stronger immune response against the Delta variant. There was no vaccination
program against the Omicron variant. Therefore, the asymptomatic infected and symp-
tomatic people infected with the Omicron variant increased, as shown in Figures 1d and 2c.
Likewise, as shown in Figure 2a,d, the number of coinfected asymptomatic and symp-
tomatic people increased since there was no strategy to develop an immune response
against the Omicron and Delta variants. Figure 2e denotes the recovered people, which
increased with the passage of time. This happened because some people have naturally
strong immunity and can fight off some diseases without taking medicine or vaccines.
Similarly, the behaviour of each class for the Pakistan data was the same as for India.

The simulation for Pakistan is depicted in Figures 3 and 4. The number of susceptible
people decreased over time since people were exposed to the coronavirus, which spread in
a particular region in Figure 3a. The vaccination effect was also studied in the proposed
model. When the vaccination ratio increased in India for the Delta variant, as observed
in Figure 3b, as a result, the number of asymptomatic infected and symptomatic infected
people decreased, which is displayed in Figures 3c and 4b. This was due to vaccination
leading to a stronger immune response against the Delta variant. There was no vaccination
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program against the Omicron variant. Therefore, the asymptomatic infected and symp-
tomatic people infected with the Omicron variant increased, as shown in Figures 3d and 4c.
Likewise, as shown in Figure 4a,d, the number of coinfected asymptomatic and symp-
tomatic people increased since there was no strategy to develop an immune response
against the Omicron and Delta variants. Figure 4e denotes the recovered people, which
increased with the passage of time. This happened because some people have naturally
strong immunity and can fight off some diseases without taking medicine or vaccines.

There were some differences in the behaviours of each class regarding the maximum
value of each class. This was due to the the large population of India and different natural
and transmission rates for both countries.
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Figure 1. Simulations of the proposed model for India data.
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Figure 2. Simulations of the proposed model for India data.
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Figure 3. Simulations of the proposed model for Pakistan data.
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Figure 4. Simulations of the proposed model for Pakistan data.

6. Conclusions

Nature can be understood in a better way and can even be predicted more accurately if
the constraints of developed approaches, theories, and techniques are updated, questioned,
and revised according to modern scientific discoveries and the occurrence of unexpected
physical phenomena. The global non-singular Atangana–Baleanu operator with the pres-
ence of a memory function and the growth condition was used to build a generalised
fractional model for the two variants of the SARS-COVID-19 outbreak in order to capture
the complex dynamics. The Picard recursions approach validated the existence of the
solution of the proposed fractional model, and the Banach fixed-point theory also verified
the solution’s uniqueness. The model was shown to be globally asymptotically stable
in the stability analysis of the Atangana–Baleanu fractional-order dual versions utilising
the Hyers–Ulam–Rassias approach. Finally, the fractional Adams–Bashforth numerical
approach was applied for the numerical simulation and graphical behaviour presented. A
graphic analysis was performed to show the proposed model’s asymptotically global sta-
bility. We are confident about the established results of our model, which has the capability
to provide more efficient and better predictions.

Our model was put forth based on the focal points of two distinct COVID-19 variants.
Those infected with either variant or both variants were called co-infection classes in
the model. Further research on COVID-19 co-infections with other diseases, such as TB,
influenza, malaria, and other diseases, has been prompted by the appearance of many
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COVID-19 variants. While this is the first study on the co-infection of the Delta and Omicron
variants that we are aware of, more research on the mathematics (stochastic, agent-based
modelling, within-/intra-host) and epidemiological dynamics of this co-infection is needed.
We had much difficulty estimating various parameters in our study due to the inadequacies
and inconsistencies of a number of components and the characteristics of the new COVID-
19 variants. Therefore, future research on the interactions between various COVID-19
variants using more accurate data and in-depth information is worthwhile.
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