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Abstract: In this article, we demonstrated various Hermite-Hadamard and Fejér type inequalities
for modified h-convex functions. We showed several inequalities for the products of two modified
h-convex functions. New identities related to inequalities in various forms are also established for
different values of the h(¢;) function. We believe that the approach presented in this paper will
inspire more research in this area.
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1. Introduction

Convex functions are different from other function classes in that they are widely used
in the areas of mathematics, statistics, optimization theory, and applied sciences. It results
from the fact that its specific and practical meaning has a geometric interpretation. It is also
one of the fundamentals of inequality theory and has developed into the main motivating
element behind a number of inequalities. Convex analysis in the field of inequality theory
has proven it to be the most significant and successful use of this notion since the concept
of a convex function is beneficial in many fields of mathematical analysis and statistics.
With the use of this concept, a number of traditional and analytical inequalities have
been established, especially those of the Hermite-Hadamard, Fejér, Hardy, Simpson, and
Ostrowski types [1-3].

One of the fundamental theorems of inequality theory is the notion of a convex
function as follows:

Definition 1. On a non-empty interval I on the real line R, define the real function x. The function
K is said to be convex on I if inequality

K(@e6 + (1= @) < @i(0) + (1 — pr)x(p),
holds for all 5, u € I and ¢; € [0,1].

The Hermite-Hadamard inequality, which is the significant component of the widespread
use and great geometrical interpretation of convex functions, has attracted a lot of interest
in fundamental mathematics. Due to its numerous applications, especially in the fields
of numerical analysis, engineering, physical science, and chemistry, this inequality has
attracted the interest of several researchers from around the world. Recent years have
seen rapid development in the theory of inequality. Many inequalities can be obtained
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for convex functions; nevertheless, among those, Hermite-Hadamard’s inequality is one
of the most widely as well as intensively studied results. It is worth reflecting on the
fact that the theories of inequality and convexity are closely related to one another. The
idea of inequality is more intriguing as a result of this reality. In recent years, several
new extensions, generalizations, and definitions of novel convexity have been given, and
parallel developments in the theory of convexity inequality, particularly integral inequalities
theory, have been emphasized. The Hermite-Hadamard inequality is formally expressed
as follows:

Letx : I C R — R be a convex function on the interval I of real numbers, y1,y, € 1

and 71 < 2.
K(’YH—’Yz) <! /sz(é)ddg x(1) +x(72) 1)
2 21 JIn 2
The inequality in (1) will hold in reverse directions if x is a concave function. The Hermite—
Hadamard inequality, which is based on geometry, gives an upper and lower estimate
for the integral mean of any convex function defined on a closed and limited domain,
which includes the endpoints and midpoint of the domain of the function. Due to the
significance of this inequality, several variations of the Hermite-Hadamard inequality
have been examined in the literature for various classes of convexity, including harmonically
convex, exponentially convex, s-convex, i-convex, and co-ordinate convex functions [4-19].

In [4], the definition of modified /-convexity and the Hermite-Hadamard inequality
for the modified h-convex functions are shown as follows:

Definition 2. Let x,h : | C R — R be positive functions. Then « is called a modified h-convex
function if
K(@ed + (1= @) < h(@r)e(0) + (1 — h(ge) ) (p),

Vo, ue ], ot €[0,1].

Theorem 1. Let k : I — R be modified h-convex function on the interval [y1, y2] with 1 < 72,
then we have

T+ 1 72 1
1c< 1 5 2) < p—— Al x(6)ds < (1) + {x(72) —K(vl)}/o hgder. ()

If h(@t) = @y is taken in (2), then the classical Hermite—Hadamard inequality is obtained.
The Hermite-Hadamard inequalities, also known as Hermie-Hadamard-Fejér in-

equalities (Fejér inequalities), or its weighted versions are the most well-known inequalities
relating to the integral mean of a convex function «.

Theorem 2 ([20]). Let ¥ : I — R be convex on I and let 1,7, € I with 1 < 7y,. Then the
inequality

K<’” ;”) /W2 9(5)ds < /vzx(é)ﬁ(é)dé < M/”ﬁ(&)d(s 3)

T 1 2 T

holds, where 9 : [y1, 2] — R is non-negative and symmetric to %

We are discussing the Hermite-Hadamard inequality if #(6) = 1 is considered in (3).
Hermite-Hadamard- and Fejér-type inequalities have received substantial study and appli-
cation in the last several decades in the fields of numerical analysis, information theory,
optimisation theory, special means theory, and approximation theory. Numerous papers
and monographs have further information regarding those inequalities. For recent results
and generalizations regarding Fejér inequality see [20-25].

Moreover, in [4], Noor et al. proved a Fejér inequality using the modified h-convex
functions again.
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Lemma 1 (See [4]). Let x be modified h-convex function. Then
k(11472 =0) < x(m1) +x(72) —x(8), V€ [r1,72],
where & = gry1 + (1= ¢1)12, 91 € [0,1].
Definition 3 (See [18]). A function h : | — R is said to be a super-additive function if
(6 + ) = h(8) + h(p)
forallé,u e ].

Definition 4 (See [19]). Two functions x : X — Rand ¢ : X — Rare said to be similarly ordered,
if
(k(0) = x(1))(9(6) = 8(n)) = 0

forevery §,u € X.

Theorem 3 (See [26]). Let«, 9 : [y1,72] — [0, 00) be convex functions on [y1,v2] C R, y1 < 72.
Then

1 T2 1 1
k(8)8(6)dé < =M(7, + —N(71, 4
o | RO80)8 < IM (1,72 + N ) @

and

+ + 1 72 1 1
2x( 2 )o( 02 ) < T [T @)9(000 + gMOn 1)+ 3N ), 6
2 2 T2 =7 I 6 3

where

M(v1,72) = x(71)8(71) + x(72)8(72) and N(v1,72) = x(71)0(72) +x(72)8(11)-

In this study, in the first part, the basic identities used in the theory of inequality are
given. In addition, inequalities and results obtained in the literature related to modified
h-convex functions are provided. Modified h-convex function properties and fundamental
calculus principles are used in the second section to arrive at conclusions that pertain to
both sides of the Hadamard and Fejér inequalities.

Using the characteristics of modified h-convex functions, our aim in this article is to
produce novel inequalities. These inequalities are related to the integral of the product
of two functions. Furthermore, for different values of the /(¢;) function, new identities
related to inequalities in different forms are obtained.

2. Main Results

Theorem 4. Let « : [y1,72] — R be a modified h-convex function on the interval [7y1,y,] with
Y1 < Y2,k € L{y1,72] and O : [y1,72] — R is non-negative, integrable and symmetric with
respect to 1512 then

where
¥

E(x, ) :K(yz)/ * 9(5)ds.

T
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Proof. Since « : [y1,72] — R can be the modified h-convex function and ¢ : [y1, 2] — R
is non-negative, integrable and symmetric with respect to 71+72 , we can obtain that

/ " (6)8(8)do

T

1

= {7 oo+ [ xtn + 72 - 000 + 72 - ot

T
) +x(71+ 72— 6)]8(0)dd

o
A [K(,;;_—% o B (s 22 ) o
/ [h(%_,yl)K(M)Jr(1—}1(322__;51))1((72)

+h(5 )( )+ ( h(;S _771 ))x(yz)}ﬂ((s)d(s

g4
- s [ ) (S ot [

This completes the proof. [

NI~ NI~ N-

Remark 1. In Theorem 4,

1. Ifwe take h(@¢) = @y, then we have the right-hand side of the Fejér inequality,
2. If we choose h(¢:) = @ and 9(6) = 1, then we have the right-hand side of the Hermite—
Hadamard inequality.

Corollary 1. Let h be a super-additive function. Under the assumptions of Theorem 4, then we
have the following inequalities:

/.,yzx(é)z?(é)dé < [K(”)K(”)hu)ﬂ(yz)} /72 9(8)d6.

m 2 T

Also if we take 9(5) =1,

1 72 k(71) —x(72)
72_%/ x(@)ds < S E 1) 4 k().

Theorem 5. Let x, 9 : [y1,72] — R be two modified h-convex functions such that k and ¢ are
similarly ordered functions. If k, 9 € L[y, 2], then

1 72 k(y1)0(v1) —x(72)0(y2) (72, ( 12—96
— / K(8)8(6)d5 < x(72)8(72) + o /71 h(rm - %>d5.
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Proof. Since x and ¢ are modified h-convex functions, then

_5 5 _5 5—
K(6)0(8) = K(” m+ =N 72)0(727& n 72)

=" "M T—m =N
PG o (1) o)
Pl oo (10555 Jo)
= (22 Yxren)
(22 %) (1-n( 222 ) ) tetretan) + x(ro0m))
NS

By using the similarly ordered properties of x and ¢, we have

Y2—90
hz(,H)K(’Yl)ﬁ(’h)

(2220 (1 220 ) Y irm)otn) + x(r2)9(72))

+<1h<;f;gi>)idvﬂ00m)

= k(72)8(72) + {x(71)8(11) — k(72)8(72) }h (7722__,51)

IN

x(5)8(5)

IN

Integrating the above inequality with respect to 6 € [y1,72], we obtain the required
result. [

Corollary 2. In Theorem 5,
1. Ifwe take h(p:) = @y, then we have

1 /sz(é)ﬁ(é)dé - k(v1) (1) +x(r2)8(v2)  M(71,72)

T2— " 2 B 2 ’

2. Ifwechoose h(@:) =1, then

—— [ k(@005 < xla)o (),

3. Ifwe choose h(¢pt) = (¢t)°, we obtain

— ! — /7 TZ K(6)8(8)d6 < K(Wl)ﬁ('yl)sisl"(”)ﬁ(WZ).

Theorem 6. Let x and ¢ be two modified h-convex functions such that x and © are similarly ordered
functions. If h ( %) # L, then we have

1 K<71+72>l9<71+72>—Q(K,ﬂ,h,(s)

a7

Wzivy/nxwy%@d@

<
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where
LD 0
Q(K,ﬂ,h,é) = (1 2h(%))2M(71/')’2) + (72 B lh><1 —Zh(%))
T2 T2
< tn) +x02)} [ 0008+ (0(0) + 00} [ 0)dp
and

M(71,72) = x(71)0(711) + €(72)8(72)-

Proof. Since x and ¢ are modified h-convex functions, then we get

K(’Y1+’Yz)l9<71 +72> _ K<71+72+5—5>ﬁ(71+72+5—5>

2 2 2 2

n(3)sn+m-0+ (1-n(3) )x@)

« {h(é)ﬂ(vl =)+ (1 _ h(;))&(&)].
Using the Lemma 1 and «, ¢ are similarly ordered functions, then
()57

[h (;) {k(m) +x(12)} + (1 —2n G) ) K(a)]

<[(3) tom) + e + (1-20(3 ) )]

= 12 (3 ) IKn)Bm) + x(1)B() + K(7209(m) + x(72)9(72)}

IN

IN

(5 ) (1-20(3) ) Hxtm) + x(2201006) + 10(30) + 8032 x(0)
+ (1 - 2h<;>)zx(5)19(5)

(3 )2M0n 72

+h(;) (1 _ Zh(;)) (1) +5(72)}8(0) + {B(11) + 8(72) }x(5)]

+ (1 _ 2h<;>>2x(5)19(5).

Integrating the above inequality with respect to § € [y1, 2], we obtain the required re-
sult. [

IN

Corollary 3. In Theorem 6, if we choose h(¢;) = 1, then

T+ 72 Tt 1
o( 2 Yo 1)~ 2min, )+

K é ls é dé 7

v(x,9)

where
Yk, 8) = {x(m1) +€(72)} L ” 8(8)ds + {O0(m1) + 9(12)} A ” k(8)do.
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In addition to the above inequality, if 9(5) = 1, then

1 /wjz K(0)dd < k(1) +x(72)] — K(W)

T2—7 2

Remark 2. From Theorems 5 and 6, we obtain the following identities:

1 71+’Yz)19<71+72

oy L) e

1 Y2
= " -/71 K(0)8(0)ds
k(7r1)8(11) —x(12)8(72) [72, (12 —9
= K)ol IR C=

Theorem 7. Let x and ¢ be two modified h-convex functions such that x and © are similarly ordered
functions. Then we have the following inequality:

K(’h ;%)19(71 -2M/2> —h(i) [1 —h(;ﬂd)(’(fﬂr?f)

= {1 o <;>]272 E ga! /7:1;72 K(0)8()dd + Pl(;)r’h E g4! /”?2”2 K(2)9(0)ds,

where

o) = M) [ [1=1(%) + (1(2)) o

and
M(71,72) = x(71)0(71) + x(72)8(72)-

Proof. From x and ¢ are the modified h-convexity functions, then we can obtain

05
AN

(2 (Pt

(-
< {[()]C ‘%wh(;) ( M}
{n(3) (52 +ﬁw>+h<5)ﬂ<% +150)]
= (O] o5+ )
+[i(3)
w(3)]

X

x5+ 2500+ z“)
1 _
h(zﬂ{?{( 2(Pt’r1+(pt’72)l9<q)t’r1+ Z(Pt’Yz)

— 2
+K<(gt’h + Z(Pt’YZ)ﬁ( 247 Y1+ (gt’Yz)}
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Again using the definition of modified h-convex function, we can obtain
Mt Tt
()(e)
< |1-n( 21{ 2 9 Ve (20, 1 P,
- 2 2 2 2 2

NP (o 2—¢ 9t 2—q
+[h(2)} K<2’Y1+2 72)19(2714- 5 ’Yz)

+[(-n(2 )) (( ))2} )9(72) + x(1209(7)
@ L) (5 e o5 )
(T30 o)
s(3)-n(3)] [ —h(%) + (1(2)) ] txemotn) + xtrsta).

In the inequality mentioned above, we obtain the preferred result by integrating both sides
with regard to ¢; € [0,1]. O

Theorem 8. Let « be modified h1-convex function, ¢ be the modified hy-convex function and x and
O similarly ordered functions. x® € L[y, y2] and hhhy € L[0,1], then

! /72 (6)9(5)ds
K
T2—71In

1
[M(71,72) — N(’h,’Yz)}/o h(@t)ha(@r)der + S(x, 8,71, hp)
CD(K/ ﬁrhl/hZ)

IN

IN

where
@(c,0,in,02) = x(12)00r2) [ 11~ s(g1) ~ Il gy

1 1
#x(1)0(12) [ In(gdgr +x(12)2(n1) [ halpr)dg
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and

M(v1,72) = x(v1)8(71) +x(72)0(r2), N(71,72) = x(71)0(72) +x(72)9(71)-

Proof. Since x and ¢ are modified h;-convex and hy-convex functions, respectively, we ob-
tain

h(@e)x (1) + (1 = hi(et))x(72)
ha (@) (1) + (1 —ha(@r))0(72),

k(@ry1+ (1= @t)72)

<
o1+ (1 —@r)r2) <

for all ¢; € [0,1]. Hence,

k(@1 + (1= @6)12)8(@rr1 + (1= 91)72)
hy (@) ha(@e)x(71) (1) + M (@) (1 = ha (@) ) (71)0(72)
+(1 = h(@e) )2 (@r)x(72)8 (1) + (1 — I (@) ) (1 — ha (@) )k (72)8(72)
= x(72)0(72) + h1(et)ha(@e){M(71,72) = N(711,72) }
+ha (@) {x(71)0(72) = x(72)8(72) } + h2 (@) {x(72)8(71) — x(72)8(72) }-

By integrating both sides with respect to ¢; over the interval [0, 1], we obtain the required
result.

Since x and ¢ are similarly ordered functions, we can write N(y1,v2) < M(v1,72)-
Therefore, the second inequality follows easily. O

IN

Remark 3. In Theorem 8, if we take hi(@¢) = ha(@t) = @4, then we obtain the inequality (4).

Theorem 9. Let « be a modified hy-convex function and ¢ be a modified hy-convex function, x and
© are similarly ordered functions. k® € L[y1, 2] and hihy € L0, 1], then we have

y
1 K<71+’Yz>19<’h+72>_ 1 /ZK(é)ﬁ(é)d(S
2]11(%)]’12(%) 2 2 Y271 I

1 1
2{[M(71/72) — N(71,72)] /0 21 (@t)ha(@t) — h1(@r) — ha(@t)]depr — N(%Wz)}

IN

+2}121<%>{[M(71,72) —N(71,72)] /01 [h2(@e) = 21 (1) ha (1)) d

1
HEM)O0r) — K9] [ 2n(gr) = g |

+2P111(§){[M(71,72) = N(71,72)] /01 [ (@) = 2 (ge)hal o)l

1
+Hn)8(m) = x(m)o(r)] [ hater) ~ e

1

+M { [M(71,72) = N(711,72)] /01 h (@) ho (@) dey

F(r2)0(m) — x(m)o(n)] [ (o)
Hr)o() — Km)on)] | a(onden + x(r)on) |

where

M(7v1,72) = x(71)0(711) +x(72)8(72), N(71,72) = x(71)0(7r2) + x(72)0(71)-
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Proof. Let x and & be modified h;-convex and hy-convex functions, respectively. Then we
obtain

Y1+ 72 Y1+ 72
f(B2)e(m ")

K(Wpt+ L=¢)r  (L=¢)n +¢m>ﬂ

Y198+ ( 1 — ¢t)Y (1 — @1)v1 + €0t72>
2

( :
)

< {h1(l> (r19e + (1= 9t)72) <1—h1< ) K((1— @) 71+<Pt72)}

1
{ ( ) (119t + (1= @1)72) (1—h2<2 >l9 (1—¢r) ’Yl+<Pt’72)}

= ( > ( >{K 119t + (1= @) r2)8(v19t + (1 — 1) 72)
(1= )11+ @r72)0((1 = @6 ) 11 + @r12)}
(3 ) (3 ) e+ (1= 012800 = g + o)
(L= @)1 + @r12) (119t + (1 — 91)72) }
(3 ) (xnr-+ (1= 9)12)0((1 = g + prr2)
—xk((1 = @)1 + @12)0((1 — )11 + @r712) }
+hz< >{K((1 =91+ eer2)(119r + (1= 91)72)

— k(1= @)1 + @r72)0((1 — @)1 + ¢r72) }
+x((1 = @1)r1 + @72)0((1 — @1) 71 + @r72)-

Again, using the definition of modified /1;-convex and hy-convex functions, we have

+ +
K<’Yl : 72)19(’71 : ’Yz)
h (;)hz (;) {x(ree + (1= @t)12)8(v19t + (1 — @1)72)
+x((1 = )71 + @12)8((1 — @)1 + @e72) }

iy <1)h2 (1) ([ (91) + o) — 2 (@2 (@] M (11, 72) — N1, 72)] + N(11,72)}

IN

+h1< ){w ) — 2 (@0)ha(90)] [M(71,72) — N1, 72)
20 (91) — 1 [k(r1)8(m) — K(12)8(7)]}
+h2( ){[h( ) — 20 () ha(@0))[M(11,72) — N1, 72)]

+2ha(ge) =1 [x(711)8(11) = x(11)9(72)]}

K(y
+x((1 = @) 71 + @712)0((1 = @t) 1 + @r72)-
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References

Integrating both sides of the above inequality over [0, 1], we obtain
1 1 gt
K<,yl+’)/2)l9(’)/l+')/2> /ZK((S)ﬁ(§)d5
2h1(%)h2(%) 2 2 T2— 71 I

1 1
2{[M(71/72) — N(71,72)] /0 (21 (@i)ha(@t) — h1(@r) — ha(@r)]depr — N(%/“Yz)}

IN

+){[M(71,72) = N(71,72)] /01 (2 (@t) — 2h1 (@i )ha (@) ]d e

20s (3
1
Hr(n)8(m) = x(12)0(n)] [ 2 (gr) ~ 1l

+2h11<%) {[M(%/“Yz) = N(71,72)] /01 [ (1) = 2h1 (1) 2 (1)l

1
Hr)0(7) — x(r)9(72)] [ [2ha(en) 1l

1

1
+2}11<12>;12(%){[M(71/72)—N(71,72)]/0 hl((Pt)hZ((Pt)d(Pt

F(r2)0(n) — x(m)06r)] [ n(g0)dgn
HRm)80r2) — x()3)] [ lgddgn + xm)om) b

The proof is completed. [

Remark 4. In Theorem 9, if we take hi(¢:) = ha(¢t) = @4, then we obtain the inequality (5).

3. Conclusions

In this study, the properties of modified /-convex functions are investigated. By using
the properties of modified h-convex functions, new integral inequalities of the Hermite—
Hadamard and Fejér types, well known in the literature, are obtained. The properties of
the modified h-convex functions are used in this study to encourage the development of
numerous Hermite-Hadamard inequalities.
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