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Abstract: In this paper, we give an efficient way to calculate the values of the Mittag–Leffler (h-ML)
function defined in discrete time hN, where h > 0 is a real number. We construct a matrix equation
that represents an iteration scheme obtained from a fractional h-difference equation with an initial
condition. Fractional h-discrete operators are defined according to the Nabla operator and the
Riemann–Liouville definition. Some figures and examples are given to illustrate this new calculation
technique for the h-ML function in discrete time. The h-ML function with a square matrix variable in
a square matrix form is also given after proving the Putzer algorithm.

Keywords: discrete Mittag–Leffler function; matrix Mittag–Leffler function; nabla operator; fractional
h-discrete calculus

1. Introduction

To emphasize the importance of studying the Mittag–Leffler (ML) function in fractional

calculus, one can state that the ML function,
∞

∑
k=0

xk

Γ(γk + 1)
, where γ is a parameter, plays

as important a role in fractional calculus as the exponential function
∞

∑
k=0

xk

Γ(k + 1)
does in

calculus. The study of the ML function began after Mittag–Leffler defined it in 1903 to
generalize the exponential function [1]. This generalization later led us to see that this
function is one of the most important functions in the study of the fractional calculus, and
the work of many researchers over the years has formed a vast body of literature that
explores the function in depth [2–9].

The accurate calculation of the ML function, either defined in discrete or continuous
time, is challenging for mathematicians who model real-world problems. Over the years,
researchers have tried to overcome this challenge by exploring some approximation tech-
niques. For example, several of these techniques are presented in the papers [10–18]. Some
of these approximation techniques have been adapted for commonly used computational
software such as MATLAB and Mathematica. In this paper, we develop a novel approach
for calculating the ML function in discrete time. Our calculation technique relies only on
the values of the Euler gamma function. For this reason, our technique can be seen as an
algorithm rather than an approximation approach. In addition, the discrete domain we
choose allows us to verify that the discrete h-ML function approaches the continuous ML
function as h approaches zero.

In the last few decades, research in fractional calculus has been applied to several
fields of science [19–29]. Within this development, the ML function became a crucial
tool in applied mathematics. Motivated by the work performed in the paper [30] by
Podlubny, we focus in this paper on h-ML functions in discrete time hN. Within hN, we give
calculation techniques for h-ML functions in several forms. The papers [31–33] provide
some background in the field of fractional h-discrete calculus.
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We organize our work in the following way: In Section 2, we provide preliminary
information to aid in understanding our later work. This section includes some basic
definitions in fractional h-discrete calculus along with the Riemann–Liouville definition
of the fractional h-difference operator. In Section 3, we give an iteration scheme for the
fractional h-discrete equation. This scheme allows us to calculate the values of the h-ML
function in hN using approximations for the gamma function. We illustrate our results with
some figures and examples. The graphs were obtained using Mathematica-13 software.
In Section 4, we consider the h-ML function with an n× n matrix parameter. We develop
necessary tools to prove the Putzer algorithm in order to write the h-ML function in
matrix form.

2. Preliminaries

Let h ∈ R+. Denote by hNm = {m, m + h, m + 2h, · · · } and hNn
m = {m, m + h, m +

2h, · · · , n} for any m, n ∈ R, such that n−m
h ∈ N1.

Definition 1 ([32]). For s, ν ∈ R and h > 0,

sν
h = hν Γ( s

h + ν)

Γ( s
h )

,

where the RHS is well defined.

Definition 2 ([32]). Let a ∈ R and γ ∈ R+. For x : hNa → R, the γth-order sum in the nabla
h-fractional sense is defined as

∇−γ
h,a x(t) :=

1
Γ(γ)

t/h

∑
r=a/h

(t− $(rh))γ−1
h x(rh)h, t ∈ hNa,

where h ∈ R+ and $(t) = t− h.

Definition 3 ([32]). For x : hNa → R, the γth-order difference in the Riemann–Liouville nabla
h-fractional sense is defined as

∇γ
h,ax(t) := ∇n

h∇
−(n−γ)
h,a x(t), t ∈ hNa+nh,

where γ, h ∈ R+, a ∈ R, n− 1 < γ ≤ n, and n ∈ N.

Theorem 1 ([31]). Assume x : hNa → R, γ ∈ R+, γ /∈ N1, and n ∈ N1 with n− 1 < γ < n.
Then,

∇γ
h,ax(t) =

1
Γ(−γ)

t/h

∑
r=a/h

(t− $(rh))−γ−1
h x(rh)h, t ∈ hNa.

Lemma 1 ([32]). Let γ ∈ R+ and δ ∈ R, such that Γ(δ+1)
Γ(δ+γ+1) and Γ(δ+1)

Γ(δ−γ+1) are defined.

1. ∇−γ
h,a (t− $(a))δ

h = Γ(δ+1)
Γ(δ+γ+1) (t− $(a))δ+γ

h , t ∈ hNa.

2. ∇γ
h,a(t− $(a))δ

h = Γ(δ+1)
Γ(δ−γ+1) (t− $(a))δ−γ

h , t ∈ hNa.

The following composition property is valid and for the reader’s convenience, and we
include its proof here.

Lemma 2. Let f : hNa → R and γ, δ ∈ R+. Then,

∇−γ
h,a∇

−δ
h,a x(t) = ∇−(γ+δ)

h,a x(t) = ∇−δ
h,a∇

−γ
h,a x(t), t ∈ hNa.
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Proof. Consider

∇−γ
h,a∇

−δ
h,a x(t) = ∇−γ

h,a

[
∇−δ

h,a x(t)
]

= ∇−γ
h,a

[
h

Γ(δ)

t/h

∑
s=a/h

(t− $(sh))δ−1
h x(sh)h

]

=
h

Γ(γ)

t/h

∑
s=a/h

(t− $(sh))γ−1
h

[
h

Γ(δ)

sh/h

∑
r=a/h

(sh− $(rh))δ−1
h x(rh)h

]
h

=
h

Γ(δ)

t/h

∑
r=a/h

x(rh)h

[
h

Γ(γ)

t/h

∑
s=r

(t− $(sh))γ−1
h (sh− $(rh))δ−1

h h

]

=
h

Γ(δ)

t/h

∑
r=a/h

x(rh)h
[
∇−γ

h,rh(t− $(rh))δ−1
h

]
=

h
Γ(δ)

t/h

∑
r=a/h

x(rh)h
[

Γ(δ)
Γ(γ + δ)

(t− $(rh))γ+δ−1
h

]

=
h

Γ(γ + δ)

t/h

∑
r=a/h

(t− $(rh))γ+δ−1
h x(rh)h

= ∇−(γ+δ)
h,a x(t),

where we used item 1 in Lemma 1. The proof is complete.

3. h-Discrete Mittag–Leffler Function

Definition 4. Let λ, µ, a ∈ R and h, υ ∈ R+. The discrete h-ML function with two parameters is
defined by

eh
λ,υ,µ(t, a) = (1− λhυ)

1
hµ

∞

∑
k=0

λk (t− $(a))υk+µ
h

Γ(υk + µ + 1)
, t ∈ hNa.

Clearly, eh
λ,υ,µ(a, a) = 1.

Remark 1. It follows from [20] that eh
λ,υ,υ−1(t, a) converges absolutely if |λhυ| < 1. As it was

stated in [31], for each t ∈ hN0, the following approximation can be proven

lim
h→0

[
hυ−1

(1− λhυ)
eh

λ,υ,υ−1(t, 0)
]
= tυ−1eυ,υ(λtυ),

where eγ,δ(t) =
∞

∑
k=0

tk

Γ(γk + δ)
, γ > 0, δ > 0. With this note, we want to correct the misprint

in the approximation statement in [31].

Next, we list some properties of the h-ML function. Henceforth, we will call this
function the h-discrete Mittag–Leffler function.

Proposition 1. The following are valid.

1. For γ > 0, ∇−γ
h,a eh

λ,υ,µ(t, a) = hγeh
λ,υ,µ+γ(t, a), t ∈ hNa.

2. For γ > 0, ∇γ
h,aeh

λ,υ,µ(t, a) = h−γeh
λ,υ,µ−γ(t, a), t ∈ hNa.

3. For γ ∈ R+ \N1 and n ∈ N1, eh
λ,γ,−n(t, a) = λhγeh

λ,γ,γ−n(t, a), t ∈ hNa+h.
4. For n ∈ N1 and γ ∈ (0, n) \N1, ∇γ

h,aeh
λ,γ,γ−n(t, a) = λeh

λ,γ,γ−n(t, a), t ∈ hNa+h.
5. For γ ≥ 1 and 0 < λhγ < 1, eh

λ,γ,γ−1(t, a) is monotone increasing on hNa.
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Proof. For t ∈ hNa, consider

∇−γ
h,a eh

λ,υ,µ(t, a)

=
h

Γ(γ)

t/h

∑
s=a/h

(t− $(sh))γ−1
h eh

λ,υ,µ(sh, a)

=
h

Γ(γ)

t/h

∑
s=a/h

(t− $(sh))γ−1
h

(1− λhυ)
1

hµ

∞

∑
k=0

λk (sh− $(a))υk+µ
h

Γ(υk + µ + 1)


= (1− λhυ)

1
hµ

∞

∑
k=0

λk

Γ(υk + µ + 1)

[
h

Γ(γ)

t/h

∑
s=a/h

(t− $(sh))γ−1
h (sh− $(a))υk+µ

h

]

= (1− λhυ)
1

hµ

∞

∑
k=0

λk

Γ(υk + µ + 1)

[
∇−γ

h,a (t− $(a))υk+µ
h

]
= (1− λhυ)

1
hµ

∞

∑
k=0

λk

Γ(υk + µ + 1)

[
Γ(υk + µ + 1)

Γ(υk + µ + γ + 1)
(t− $(a))υk+µ+γ

h

]

= (1− λhυ)
1

hµ

∞

∑
k=0

λk (t− $(a))υk+µ+γ
h

Γ(υk + µ + γ + 1)

= hγeh
λ,υ,µ+γ(t, a),

where we used item 1. in Lemma 1. This completes the proof of item 1. Since the proof of
item 2 is similar to the proof of item 1, we omit it. Next, we continue with the proof of item
3. For γ ∈ R+ \N1, n ∈ N1 and t ∈ hNa+h, we have

eh
λ,γ,−n(t, a) = (1− λhγ)

1
h−n

∞

∑
k=0

λk (t− $(a))γk−n
h

Γ(γk− n + 1)

= (1− λhγ)
1

h−n
(t− $(a))−n

h
Γ(−n + 1)

+ (1− λhγ)
1

h−n

∞

∑
k=1

λk (t− $(a))γk−n
h

Γ(γk− n + 1)

= 0 + (1− λhγ)
1

h−n

∞

∑
k=0

λk+1 (t− $(a))γk+γ−n
h

Γ(γk + γ− n + 1)

= λ(1− λhγ)
1

h−n

∞

∑
k=0

λk (t− $(a))γk+γ−n
h

Γ(γk + γ− n + 1)

= λhγeh
λ,γ,γ−n(t, a).

This completes the proof of item 3. For the proof of item 4, consider t ∈ hNa+h. Using items
2 and 3, we have

∇γ
h,aeh

λ,γ,γ−n(t, a) = h−γeh
λ,γ,−n(t, a)

= λeh
λ,γ,γ−n(t, a).

Hence, the proof of item 4 is complete. The proof of item 5 relies on the fact that if
∇hx(t) ≥ 0 on hNa+h, then f is increasing on hNa. For t ∈ hNa+h, consider

∇heh
λ,γ,γ−1(t, a) = eh

λ,γ,γ−2(t, a) (using (2))

= (1− λhγ)
1

hγ−2

∞

∑
k=0

λk (t− $(a))γk+γ−2
h

Γ(γk + γ− 1)

= (1− λhγ)
∞

∑
k=0

(λhγ)k

Γ(γk + γ− 1)
Γ( t−a

h + γk + γ− 1)

Γ( t−a
h )

.
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For h > 0, γ ≥ 1, 0 < λhγ < 1, t ∈ hNa+h and k ∈ N0, Γ( t−a
h + γk + γ− 1) > 0, Γ( t−a

h ) > 0,
Γ(γk + γ− 1) > 0 and (λhγ)k > 0, implying that

∇heh
λ,γ,γ−1(t, a) > 0, t ∈ hNa+h.

Thus, eh
λ,γ,γ−1(t, a) is monotone increasing on hNa. The proof of item 5 is complete.

Theorem 2. Assume λ ∈ R, h ∈ R+, n ∈ N, γ ∈ (n− 1, n), such that |λhγ| < 1. The linear
homogeneous h-difference equation

∇γ
h,ay(t) = λy(t), t ∈ hNa+nh, (1)

has a general solution

y(t) = C1eh
λ,γ,γ−1(t, a) + C2eh

λ,γ,γ−2(t, a) + · · ·Cneh
λ,γ,γ−n(t, a), t ∈ hNa, (2)

where C1, C2, · · · , Cn are constants.

Proof. Fix 1 ≤ i ≤ n. From Proposition 1 (4), we have

∇γ
h,aeh

λ,γ,γ−i(t, a) = λeh
λ,γ,γ−i(t, a),

for t ∈ hNa+h. Hence, for each 1 ≤ i ≤ n, eh
λ,γ,γ−i(t, a) is a solution of (1) on hNa. It follows

that a general solution of (1) is given by (2). The proof is complete.

Corollary 1. Assume λ ∈ R, h ∈ R+, 0 < γ < 1, such that |λhγ| < 1. The IVP{
∇γ

h,0y(t) = λy(t), t ∈ hNh,

y(0) = 1,
(3)

has the unique solution
y(t) = eh

λ,γ,γ−1(t, 0), t ∈ hN0. (4)

3.1. A Way to Compute eh
λ,γ,γ−1(t, 0)

Let m ∈ N1 and consider the IVP associated with (3):{
∇γ

h,0w(t) = λw(t), t ∈ hNmh
h ,

w(0) = 1,
(5)

Rewriting the equation in (5) using Theorem 1, we have

1
Γ(−γ)

t/h

∑
s=0

(t− $(sh))−γ−1
h w(sh)h = λw(t), t ∈ hNmh

h . (6)

Denote by

Hh
−γ−1(t, $(sh)) =

(t− $(sh))−γ−1
h

Γ(−γ)
, s ∈ Nt/h

0 , t ∈ hNmh
h .

Rearranging the terms in (6), we obtain

(
h−γ − λ

)
w(t) +

t/h−1

∑
s=1
Hh
−γ−1(t, $(sh))w(sh)h = −Hh

−γ−1(t, $(0))w(0)h, t ∈ hNmh
h , (7)
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that is

w(t) +
hγ+1

1− λhγ

t/h−1

∑
s=1
Hh
−γ−1(t, $(sh))w(sh) = − hγ+1

1− λhγ
Hh
−γ−1(t, $(0)), t ∈ hNmh

h , (8)

Denote by Ω = hγ+1

1−λhγ and w̃ = [w(h), w(2h), · · · , w(mh)]T . Then, the matrix form of (8) is
given by

Lw̃ = −B,

where

L =



1 0 · · · · · · 0 0
ΩHh

−γ−1(2h, $(h)) 1 · · · · · · 0 0
ΩHh

−γ−1(3h, $(h)) ΩHh
−γ−1(3h, $(2h)) · · · · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

ΩHh
−γ−1(mh− h, $(h)) ΩHh

−γ−1(mh− h, $(2h)) · · · · · · 1 0
ΩHh

−γ−1(mh, $(h)) ΩHh
−γ−1(mh, $(2h)) · · · · · · ΩHh

−γ−1(mh, $(mh− h)) 1


is a lower triangular-strip matrix and

B = Ω



Hh
−γ−1(h, $(0))

Hh
−γ−1(2h, $(0))
Hh
−γ−1(3h, $(0))

...

...
Hh
−γ−1(mh− h, $(0))
Hh
−γ−1(mh, $(0))


.

Since L is non-singular, it follows from (4) that

eh
λ,γ,γ−1(h, 0)

eh
λ,γ,γ−1(2h, 0)

eh
λ,γ,γ−1(3h, 0)

...

...
eh

λ,γ,γ−1(mh− h, 0)
eh

λ,γ,γ−1(mh, 0)


= −L−1B.

Here, L =
[
Lij
]

m×m and B = [Bi]m×1, where

Lij =


1, i = j,
0, i < j,
ΩHh

−γ−1(ih, $(jh)), i > j,

and
Bi = ΩHh

−γ−1(ih, $(0)).

Next, we illustrate the method of calculating the discrete h-ML function with two
examples. We first consider λ as a negative real number and then λ as a positive real
number. In both examples, our results for h = 1 coincide with the calculation of the discrete
h-ML function e1 in the paper [34].
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Example 1. Computation of eh
−0.5,γ,γ−1(t, 0) for t ∈ hN10h

h .

If γ = 0.5 and h = 1, then we have

L =



1.0000 0 0 0 0 0 0 0 0 0
−0.3333 1.0000 0 0 0 0 0 0 0 0
−0.0833 −0.3333 1.0000 0 0 0 0 0 0 0
−0.0417 −0.0833 −0.3333 1.0000 0 0 0 0 0 0
−0.0260 −0.0417 −0.0833 −0.3333 1.0000 0 0 0 0 0
−0.0182 −0.0260 −0.0417 −0.0833 −0.3333 1.0000 0 0 0 0
−0.0137 −0.0182 −0.0260 −0.0417 −0.0833 −0.3333 1.0000 0 0 0
−0.0107 −0.0137 −0.0182 −0.0260 −0.0417 −0.0833 −0.3333 1.0000 0 0
−0.0087 −0.0107 −0.0137 −0.0182 −0.0260 −0.0417 −0.0833 −0.3333 1.0000 0
−0.0073 −0.0087 −0.0107 −0.0137 −0.0182 −0.0260 −0.0417 −0.0833 −0.3333 1.0000


,

B =



−0.3333
−0.0833
−0.0417
−0.0260
−0.0182
−0.0137
−0.0107
−0.0087
−0.0073
−0.0062


.

Then, we have



eh
−0.5,0.5,−0.5(h, 0)

eh
−0.5,0.5,−0.5(2h, 0)

eh
−0.5,0.5,−0.5(3h, 0)

...

...
eh
−0.5,0.5,−0.5(9h, 0)

eh
−0.5,0.5,−0.5(10h, 0)


= −L−1B =



0.3333
0.1944
0.1343
0.1009
0.0798
0.0654
0.0550
0.0472
0.0411
0.0362


.
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After using the matrix method to calculate the h-ML function values, we then seek to
visualize the impact of parameter changes on the graphs generated (see Figure 1). Plotting
over t ∈ hN10h

h for λ = −0.5, h = 1, and γ ∈ [0.1, 0.9], we obtain the result in Figure 1a.
Note that the function is only defined at integer values between 1 and 10, even though we
connect the points for ease of visualization.

(a) (b)

Figure 1. Family of graphs of the h-ML functions when λ = −0.5. (a) e1
−0.5,γ,γ−1(t, 0).

(b) eh
−0.5,0.5,−0.5(t, 0).

More interestingly, plotting over t ∈ hN10h
h for λ = −0.5, γ = 0.5, and h ∈ (0, 1], we

obtain the result in Figure 1b. In addition, the continuous plot graphs t−0.5e0.5,0.5(−0.5t0.5)
are evaluated over t ∈ [1, 10]. From this, we can discern that

h−0.5

1− 0.5h0.5 eh
−0.5,0.5,−0.5(t, 0)→ t−0.5e0.5,0.5(−0.5t0.5) as h→ 0,

which is consistent with Remark 1. It is apparent that the discrete case approaches the
continuous case as h→ 0.

Example 2. Computation of eh
0.5,γ,γ−1(t, 0) for t ∈ hN10h

h .

Once again, after using the matrix method to calculate the h-ML function values, we
then seek to visualize the impact of parameter changes on the graphs generated. Plotting
over t ∈ hN10h

h for λ = 0.5, h = 1, and γ ∈ [0.1, 0.9], we obtain the result in Figure 2a.
Note that the function is only defined at integer values between 1 and 10, even though we
connect the points for ease of visualization.

(a) (b)

Figure 2. Family of graphs of the h-ML functions when λ = 0.5. (a) e1
0.5,γ,γ−1(t, 0). (b) eh

0.5,0.5,−0.5(t, 0).

It is interesting to note that plotting over t ∈ hN10h
h for λ = 0.5, γ = 0.5, and h ∈ (0, 1],

we obtain the result in Figure 2b. In addition, the continuous plot graphs t−0.5e0.5,0.5(0.5t0.5)
are evaluated over t ∈ [1, 10]. The figure confirms the validity of the approximation in
Remark 1

h−0.5

1 + 0.5h0.5 eh
0.5,0.5,−0.5(t, 0)→ t−0.5e0.5,0.5(0.5t0.5) as h→ 0.
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3.2. An Initial Value Problem

Let m ∈ N1 and consider the IVP{
∇γ

h,0w(t) = a(t)w(t) + x(t), t ∈ hNmh
h ,

w(0) = c,
(9)

where a is f : Nmh
h → R, such that

a(t) 6= h−γ, t ∈ Nmh
h .

Denote by w̃ = [w(h), w(2h), · · · , w(mh)]T and F = [x(h), x(2h), · · · , x(mh)]T .Then, the
matrix form of (9) is given by

Mw̃ = F − C,

where

M =



h−γ − a(h) 0 · · · · · · 0 0
hHh
−γ−1(2h, $(h)) h−γ − a(2h) · · · · · · 0 0

hHh
−γ−1(3h, $(h)) hHh

−γ−1(3h, $(2h)) · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
hHh
−γ−1(mh− h, $(h)) hHh

−γ−1(mh− h, $(2h)) · · · · · · h−γ − a(mh− h) 0
hHh
−γ−1(mh, $(h)) hHh

−γ−1(mh, $(2h)) · · · · · · hHh
−γ−1(mh, $(mh− h)) h−γ − a(mh)


is a lower triangular-strip matrix and

C = ch



Hh
−γ−1(h, $(0))

Hh
−γ−1(2h, $(0))
Hh
−γ−1(3h, $(0))

...

...
Hh
−γ−1(mh− h, $(0))
Hh
−γ−1(mh, $(0))


.

Since M is non-singular, the solution of (9) can be computed by the following
numerical algorithm: 

w(h)
w(2h)
w(3h)

...

...
w(mh− h)

w(mh)


=M−1[F − C].

Here,M =
[
Mij

]
m×m and C = [Ci]m×1, where

Mij =


h−γ − a(ih), i = j,
0, i < j,
hHh
−γ−1(ih, $(jh)), i > j,
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and
Ci = chHh

−γ−1(ih, $(0)).

Now, we are in a position to state and prove the general solution to the linear nonho-
mogeneous nabla fractional h-difference equation.

Theorem 3. Let λ ∈ R, h ∈ R+, n ∈ N, γ ∈ (n− 1, n), such that |λhγ| < 1 and g : hNa → R.
The general solution of the linear nonhomogeneous nabla fractional h-difference equation

∇γ
h,ay(t) = λy(t) + G(t), t ∈ hNa+nh, (10)

is given by

y(t) = C1eh
λ,γ,γ−1(t, a) + C2eh

λ,γ,γ−2(t, a) + · · ·Cneh
λ,γ,γ−n(t, a)

+
1

(1− λhγ)

t/h

∑
s=a/h+1

eh
λ,γ,γ−1(t, sh)G(sh)hγ, t ∈ hNa, (11)

where C1, C2, · · · , Cn are constants.

Proof. In view of Theorem 2, it suffices to show that

1
(1− λhγ)

t/h

∑
s=a/h+1

eh
λ,γ,γ−1(t, sh)G(sh)hγ

is a particular solution of (10). Denote by

x(t) =
1

(1− λhγ)

t/h

∑
s=a/h+1

eh
λ,γ,γ−1(t, sh)G(sh)hγ, t ∈ hNa.

It is enough to show that

∇γ
h,ax(t) = λx(t) + G(t), t ∈ hNa+nh. (12)

To see this, for t ∈ hNa, consider

x(t) =
1

(1− λhγ)

t/h

∑
s=a/h+1

eh
λ,γ,γ−1(t, sh)G(sh)hγ

=
1

(1− λhγ)

t/h

∑
s=a/h+1

(1− λhγ)
1

hγ−1

∞

∑
k=0

λk (t− $(sh))γk+γ−1
h

Γ(γk + γ)

G(sh)hγ

=
∞

∑
k=0

λk

 t/h

∑
s=a/h+1

(t− $(sh))γk+γ−1
h

Γ(γk + γ)
G(sh)h


=

∞

∑
k=0

λk

 t/h

∑
s=a/h

(t− $(sh))γk+γ−1
h

Γ(γk + γ)
G(sh)h−

(t− $(a))γk+γ−1
h

Γ(γk + γ)
G(a)h


=

∞

∑
k=0

λk
[
∇−(γk+γ)

h,a G(t)
]
− G(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a). (13)
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Now, consider

∇γ
h,ax(t) = ∇γ

h,a

[
∞

∑
k=0

λk
[
∇−(γk+γ)

h,a G(t)
]]
− G(a)

hγ

(1− λhγ)
∇γ

h,aeh
λ,γ,γ−1(t, a)

= ∇n
h∇
−(n−γ)
h,a

[
∞

∑
k=0

λk
[
∇−(γk+γ)

h,a+h G(t)
]]
− λG(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

=
∞

∑
k=0

λk∇n
h

[
∇−(n−γ)

h,a ∇−(γk+γ)
h,a G(t)

]
− λG(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

=
∞

∑
k=0

λk
[
∇n

h∇
−(γk+n)
h,a G(t)

]
− λG(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

=
∞

∑
k=0

λk∇−γk
h,a G(t)− λG(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

= G(t) +
∞

∑
k=1

λk∇−γk
h,a G(t)− λG(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

= G(t) + λ

[
∞

∑
k=0

λk∇−(γk+γ)
h,a G(t)− G(a)

hγ

(1− λhγ)
eh

λ,γ,γ−1(t, a)

]
= λx(t) + G(t),

where we used Lemma 2. The proof is complete.

4. Matrix h-Discrete Mittag–Leffler Function

In this section, we replace the scalar λ by an n× n matrix A in the h-ML function. Our
goal is to write the matrix h-ML function in discrete time as an n× n matrix function.

Definition 5. Consider the vector spaces Rn of all ordered n-tuples of real numbers and Mn of all
n× n matrices over R. Corresponding to each vector norm on Rn, we define an operator norm on
Mn by

‖A‖ = max
‖y‖=1

‖Ay‖,

for any y ∈ Rn and A ∈ Mn. We observe that ‖In‖ = 1, where In denotes the n× n identity matrix.

Theorem 4 ([35]). Let R be the radius of convergence of a scalar power series

∞

∑
k=0

akxk

and let A ∈ Mn be given with ‖A‖ < R. Then, the matrix power series

∞

∑
k=0

ak Ak

converges if $̄(A) < R. Here, $̄(A) denotes the spectral radius of the matrix A.
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Remark 2. Let λ, µ, a ∈ R and h, υ ∈ R+. Fix t ∈ hNa. We know that the radius of convergence
of the scalar power series

∞

∑
k=0

λk (t− $(a))υk+µ
h

Γ(υk + µ + 1)

is h−υ. Let A ∈ Mn, such that ‖A‖ < h−υ. Then, by Theorem 4, the matrix power series

(t− $(a))υk+µ
h

Γ(υk + µ + 1)

converges if $̄(A) < h−υ. Define

eh
A,υ,µ(t, a) = (In − hυ A)

1
hµ

∞

∑
k=0

Ak (t− $(a))υk+µ
h

Γ(υk + µ + 1)
, t ∈ hNa. (14)

Proposition 2. Let 0 < γ < 1. The following are valid.

1. eh
A,γ,γ−1(a, a) = In.

2. ∇γ
h,aeh

A,γ,γ−1(t, a) = Aeh
A,γ,γ−1(t, a), t ∈ hNa+h.

Theorem 5. Let A ∈ Mn, h ∈ R+ and 0 < γ < 1, such that $̄(A) < h−γ and g : hNa → Rn.
The IVP ∇

γ
h,ay(t) = Ay(t) + G(t), t ∈ hNa+nh,

∇−(1−γ)
h,a y(t)

∣∣∣
t=a

= y(a) = y0,
(15)

has the unique solution

y(t) = eh
A,γ,γ−1(t, a)y0 +

1
(In − hγ A)

t/h

∑
s=a/h+1

eh
A,γ,γ−1(t, sh)G(sh)hγ, t ∈ hNa. (16)

The Putzer algorithm is a tool to write eA in an n× n matrix form for a given n× n
matrix A. Here, we adopt the idea of this algorithm to write the matrix h-ML function
eh

A,γ,γ−1(t, a) in an n× n matrix form. This algorithm allows us to express eh
A,γ,γ−1(t, a) in

terms of eh
λ,γ,γ−1(t, a), where λ is an eigenvalue of the matrix A.

Definition 6. (Matrix Exponential Function). Let A ∈ Mn, h ∈ R+ and 0 < γ < 1, such that
$̄(A) < h−γ. The IVP ∇

γ
h,aY(t) = AY(t), t ∈ hNa+h,

∇−(1−γ)
h,a Y(t)

∣∣∣
t=a

= Y(a) = In,
(17)

has the unique solution, which is called the matrix exponential function. Here, In is the n × n
identity matrix.

Theorem 6. Let A ∈ Mn, h ∈ R+ and 0 < γ < 1, such that $̄(A) < h−γ. If λ1, λ2, · · · , λn are
(not necessarily distinct) eigenvalues of the n× n matrix A, with each eigenvalue repeated as many
times as its multiplicity, then

eh
A,γ,γ−1(t, a) =

n−1

∑
i=0

pi+1(t)Mi, (18)
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where

M0 = In, (19)

Mi = (A− λi In)Mi−1, 1 ≤ i ≤ n− 1, (20)

Mn = 0, (21)

and the vector’s valued function p defined by
p1(t)
p2(t)
p3(t)
· · ·

pn(t)

 (22)

is the solution of the IVP

∇γ
h,a p(t) =



λ1 0 0 0 0
1 λ2 0 0 0
0 1 λ3 · · · 0
...

. . . . . . . . .
...

0 0 · · · 1 λn


p(t), t ∈ hNa+h,

∇−(1−γ)
h,a p(t)

∣∣∣
t=a

= p(a) =


1
0
0
· · ·
0

.

(23)

Proof. Let

Φ(t) =
n−1

∑
i=0

pi+1(t)Mi.

We first show that Φ solves the IVP (17). First, note that

∇−(1−γ)
h,a Φ(a) = ∇−(1−γ)

h,a p1(a)M0 +∇
−(1−γ)
h,a p2(a)M1 + · · · ∇

−(1−γ)
h,a pn(a)Mn−1 = In.
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Now, consider

∇γ
h,aΦ(t)− AΦ(t)

= ∇γ
h,a

[
n−1

∑
i=0

pi+1(t)Mi

]
− A

n−1

∑
i=0

pi+1(t)Mi

=
n−1

∑
i=0
∇γ

h,a pi+1(t)Mi − A
n−1

∑
i=0

pi+1(t)Mi

= ∇γ
h,a p1(t)M0 +

n−1

∑
i=1
∇γ

h,a pi+1(t)Mi − A
n−1

∑
i=0

pi+1(t)Mi

= λ1 p1(t)M0 +
n−1

∑
i=1

[pi(t) + λi+1 pi+1(t)]Mi − A
n−1

∑
i=0

pi+1(t)Mi

=
n−1

∑
i=1

pi(t)Mi +
n−1

∑
i=0

λi+1 pi+1(t)Mi − A
n−1

∑
i=0

pi+1(t)Mi

=
n−1

∑
i=1

pi(t)Mi +
n−1

∑
i=0

pi+1(t)(λi+1 In − A)Mi

=
n−1

∑
i=1

pi(t)(A− λi In)Mi−1 +
n

∑
i=1

pi(t)(λi In − A)Mi−1

= pn(t)(λn In − A)Mn−1

= −pn(t)(A− λn In)
n−1

∏
j=1

(A− λj In)M0

= 0.

Since eh
A,γ,γ−1(t, a) satisfies the IVP (17), we have

Φ(t) = eh
A,γ,γ−1(t, a),

by the unique solution of given IVP. The proof is complete.

Example 3. Let h ∈ R+ and 0 < γ < 1, such that 0.75 < h−γ. Consider the IVP
∇γ

h,aY(t) =


1
4 0 0
1 1

2 1
0 0 3

4

Y(t), t ∈ hNa+h, 0 < γ < 1,

∇−(1−γ)
h,a Y(t)

∣∣∣
t=a

= Y(a) = I3.

(24)
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The eigenvalues of A =

 1
4 0 0
1 1

2 1
0 0 3

4

 are λ1 = 1
4 , λ2 = 1

2 and λ3 = 3
4 . Clearly, $̄(A) = 0.75 <

h−γ. We have

M0 = I3 =

1 0 0
0 1 0
0 0 1

,

M1 = (A− λ1 I3)M0 =

0 0 0
1 1

4 1
0 0 1

2

,

M2 = (A− λ2 I3)M1 =

− 1
4 0 0

1 0 1
0 0 1

4

0 0 0
1 1

4 1
0 0 1

2

 =

0 0 0
0 0 1

2
0 0 1

8

,

M3 = 0

and the vector’s valued function p defined byp1(t)
p2(t)
p3(t)

 (25)

is the solution of the IVP

∇γ
h,a p(t) =


1
4 0 0
1 1

2 0
0 1 3

4

p(t), t ∈ hNa+h,

∇−(1−γ)
h,a p(t)

∣∣∣
t=a

= p(a) =

1
0
0

.

(26)

The equivalent form of (26) is given by∇
γ
h,a p1(t) = 1

4 p1(t), t ∈ hNa+h,

∇−(1−γ)
h,a p1(t)

∣∣∣
t=a

= p1(a) = 1,
(27)

∇
γ
h,a p2(t) = p1(t) + 1

2 p2(t), t ∈ hNa+h,

∇−(1−γ)
h,a p2(t)

∣∣∣
t=a

= p2(a) = 0,
(28)

∇
γ
h,a p3(t) = p2(t) + 3

4 p3(t), t ∈ hNa+h,

∇−(1−γ)
h,a p3(t)

∣∣∣
t=a

= p3(a) = 0.
(29)

Using Theorem 2, the unique solution of the IVP (27) is given by

p1(t) = eh
1
4 ,γ,γ−1

(t, a), t ∈ hNa. (30)

Using Theorem 3, the unique solution of the IVP (28) is given by

p2(t) =
1(

1− hγ

2

) t/h

∑
s=a/h+1

eh
1
2 ,γ,γ−1

(t, sh)p1(sh)hγ, t ∈ hNa. (31)
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Using Theorem 3, the unique solution of the IVP (29) is given by

p3(t) =
1(

1− 3hγ

4

) t/h

∑
s=a/h+1

eh
3
4 ,γ,γ−1(t, sh)p2(sh)hγ, t ∈ hNa. (32)

Thus, the matrix h-ML function is in the following a 3× 3 matrix form

eh
A,γ,γ−1(t, a) = p1(t)M0 + p2(t)M1 + p3(t)M2

= p1(t)

1 0 0
0 1 0
0 0 1

+ p2(t)

0 0 0
1 1

4 1
0 0 1

2

+ p3(t)

0 0 0
0 0 1

2
0 0 1

8



=

p1(t) 0 0
p2(t) p1(t) +

p2(t)
4 p2(t) +

p3(t)
2

0 0 p1(t) +
p2(t)

2 + p3(t)
8

.

Developing the stability, controllability, and observability of systems of fractional
h-difference equations is one important application for the use of the main results of
this section.

5. Conclusions

In this paper, we demonstrated the validity of the following approximation with
some examples.

lim
h→0

[
∞

∑
k=0

λk (t + h)υk+υ−1
h

Γ(υk + υ)

]
= tυ−1

∞

∑
k=0

(λtυ)k

Γ(υk + υ)
,

where 0 < υ < 1. We made this possible by developing a novel matrix method to calculate
the h-ML function on the domain hN. This calculation technique may be considered an algo-
rithm rather than an approximation, and such a characteristic makes this calculation method
unique and reliable. In addition, we proved the Putzer algorithm in fractional h-discrete
calculus, which allowed us to express the matrix h-ML function in n× n matrix form.
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