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RS-11129 Belgrade, Serbia
8 Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of

Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
9 Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and

Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
10 Center for Biotechnology, Khalifa University of Science and Technology,

Abu Dhabi P.O. Box 127788, United Arab Emirates
* Correspondence: igor.pantic@med.bg.ac.rs or igorpantic@gmail.com; Tel.: +381-113607102;

Fax: +381-113611261

Abstract: In this work, we demonstrate that it is possible to create supervised machine-learning
models using a support vector machine and random forest algorithms to separate yeast cells exposed
to hyperosmotic stress from intact cells. We performed fractal, gray level co-occurrence matrix
(GLCM), and discrete wavelet transform analyses on digital micrographs of nuclear regions of
interest of a total of 2000 Saccharomyces cerevisiae cells: 1000 exposed to hyperosmotic environments
and 1000 control cells. For each nucleus, we calculated values for fractal dimension, angular second
moment, inverse difference moment, textural contrast, correlation feature, textural variance, and
discrete wavelet coefficient energy. The support vector machine achieved an acceptable classification
accuracy of 71.7% in predicting whether the cell belonged to the experimental or control group. The
random forest model performed better than the support vector machine, with a classification accuracy
of 79.8%. These findings can serve as a starting point for developing AI-based methods that use
GLCM, fractal, and wavelet data to classify damaged and healthy cells and make predictions about
various physiological and pathological phenomena associated with osmotic stress.

Keywords: cell; signal analysis; nucleus; stress; supervised learning

1. Introduction

In recent years, many new machine learning (ML) algorithms have been developed
that can analyze and model data obtained from two-dimensional signals [1–4]. Many of
these algorithms are based on supervised machine learning (SML) techniques such as
binomial logistic regression, decision trees, support vector machines, and artificial neural
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networks [5–7]. These techniques and the resulting sensing systems have the potential to
greatly improve image recognition and classification in various biological and medical fields.
The use of SML for analyzing microscopic data in histology, pathology, and cell biology
is a relatively new area of research, but it holds great promise for being integrated into
future diagnostic protocols and procedures. Additionally, AI can automate and speed up
decision-making in these fields by quickly processing large amounts of data. Furthermore,
some supervised machine learning models may be able to detect patterns in microscopic
data related to tissue and cell structure that are not visible to even the most experienced
professionals [8–12].

There are many ways to train and test a machine learning model applicable to mi-
croscopy. RGB (red, green, blue) pixel intensities obtained from micrographs in JPG and
BMP formats can sometimes be used as input data for AI training, such as in convolutional
neural networks [13–15]. Another way is to perform a two-dimensional signal analysis and
obtain a set of quantifications that are used as inputs. Recently different forms of texture
analysis were suggested as an objective and efficient way to generate these quantifications
that can be used for machine learning. An example would be gray-level co-occurrence
matrix (GLCM) analysis, where pairs of resolution units with the assigned gray-level
intensity quantifications are analyzed using second-order statistics [1,16–18]. This way,
several important textural features can be calculated, such as angular second moment as
an indicator of textural uniformity or inverse difference moment as an indicator of local
homogeneity. Approaches based on GLCM have been used on numerous occasions to
detect subtle morphological alterations in cells and tissues in various experimental settings,
both in vivo and in vitro. It was suggested that GLCM as a method may detect changes in
nuclear chromatin following the induction of cell damage. Sometimes, discrete wavelet
transform (DWT), as a form of mathematical image analysis, is used as an addition to
GLCM to provide useful insight into the changes in GLCM features [1,18]. Both GLCM and
DWT indicators can be utilized to develop a machine learning model for the classification
of microscopic phenomena or for predicting pathological processes.

Fractal analysis of microscopic data is also a way to obtain quantifications for machine
learning that can later be used for classification or prediction. Fractal analysis enables
us to indirectly measure the complexity of a signal, typically by determining the fractal
dimension value. This technique is often used in microscopy in binarized or grayscale
images of biological structures and can sometimes be useful in evaluating different regions
of interest (ROIs) in micrographs representing parts of tissue or cellular components.
Fractal analysis of nuclear structure was shown to be a potentially useful predictor of some
pathological processes, with fractal dimension also being a potentially valuable prognostic
indicator for the outcome of some diseases [19–21].

Osmotic stress is a potentially important contributing factor to the development
of many diseases, particularly the ones associated with inflammation [22]. Protective
biochemical responses and signaling pathways that are activated as the result of osmotic
stress, although not entirely understood, are present in almost all organisms. Mild stress in
some cells usually does not lead to substantial and microscopically-visible morphological
changes; however, this does not necessarily imply that the cell remains structurally and
functionally intact [23–25]. So far, to the best of our knowledge, fractal, GLCM, and
wavelet analyses have not been used for the development of a computer sensing system
capable of evaluating morphological changes associated with osmotic stress. Recently,
machine learning models have been developed on several occasions for the prediction and
classification of various physiological and pathological phenomena associated with osmotic
stress. Some examples would be the prediction of ethanol yields in yeast fermentation
cultures during high-sugar osmotic stress [26] or the classification of electrophysiological
responses resulting from such stress in plants [27]. However, none of these or similar
machine learning methods used fractal, GLCM, and wavelet data as inputs.

Our research presented in this article indicates that exposure of yeast cells to hyper-
osmotic stress causes notable alterations in the GLCM, fractal, and wavelet parameters
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of their nuclear structure. We also demonstrate that it is possible to use these indicators
as input data for machine learning models, such as the ones based on random forest and
support vector machine algorithms, to identify cells that have been exposed to hyperos-
motic stress with acceptable accuracy. These findings provide a foundation for initiating
the development of AI-based techniques that leverage GLCM, fractal, and wavelet data to
distinguish between damaged and healthy cells and to forecast diverse physiological and
pathological phenomena linked with osmotic stress.

2. Materials and Methods

Saccharomyces cerevisiae yeast cells similar to the ones described previously [8],
previously purchased from commercially available sources, were kept in Yeast Extract
Peptone–Dextrose (YPD) broth in an orbital shaker at 25 ◦C and pH 6.5 ± 0.2 with agitation
at 200 rpm. The cell samples for the experiments were later transferred to special tissue
chamber/slides, as mentioned in our previous publication [8]. The genetic information
of Saccharomyces cerevisiae—a widely studied microorganism in molecular genetics and
cell biology—can be found at The European Nucleotide Archive. The cells were exposed
to a hyperosmotic environment by adding NaCl to reach 0.8 M concentration for 2 h,
after which normal tonicity was swiftly restored. We created digital micrographs of the
treated and control cells in JPG format using a TCA1000-C instrument equipped with
an Aptina MT9J003 CMOS sensor mounted on OPTIC900TH Trinocular Biological Micro-
scope (COLO LabExperts, Novo Mesto, Slovenia). The size of the micrographs was set
to 3584 (width) × 2748 (height) resolution units, and the bit depth equaled 24. A similar
approach was applied in our previously published work [8], although, in our study, we
modified the values of color temperature, saturation, hue and other parameters in order
to make the micrographs even more suitable for GLCM analysis. The micrographs were
converted to an 8-bit grayscale format for the calculation of GLCM parameters.

For GLCM evaluation, we used our modification of plugins previously developed
by Julio E. Cabrera and Toby C. Cornish for the ImageJ software (National Institutes of
Health, Bethesda, MD, USA, version 1.53e based on 64-bit Java 1.8.0_172). We analyzed a
total of 2000 circular nuclear regions of interest (ROI): 1000 ROIs of the cells exposed to a
hyperosmotic environment and 1000 ROIs from control cells (Figure 1). As in our previous
work, for each ROI, the values of 5 GLCM indicators were determined: angular second
moment (ASM), inverse difference moment (IDM), contrast (CON), correlation (COR), and
textural variance (VAR). The standard GLCM method is performed on gray-scale images,
where each pixel is given a value based on its gray intensity. After that, value pairs are
analyzed using second-order statistics, and GLCM features are calculated.

Considering that p(i,j) is the (i,j)th entry of the normalized co-occurrence matrix, the
value of the inverse difference moment as the measure of local homogeneity was calculated
as follows:

IDM = ∑
i

∑
j

1

1+(i− j)2 p(i, j)

Angular second moment describing the uniformity (orderliness) within the distribu-
tion of gray levels was determined as follows:

ASM =∑
i

∑
j
{p(i, j)}2

Considering that µ and σ are the mean and the standard deviation, respectively, of
rows x and y, within the normalized GLCM, the contrast and correlation features were
determined as follows:

CON = ∑
i

∑
j
(i− j)kPd[i, j]n
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COR =

∑
i

∑
j
(ij)p(i, j)− µxµy

σxσy

The contrast in these terms essentially relates to the degree of variation of gray level
intensities in the two-dimensional signal, whereas the correlation represents the linear
dependencies of gray levels on the other levels of the neighboring resolution units [8,28].
The level of dispersion of the gray level intensity distribution, when considering the value
of the GLCM mean, was quantified as variance:

VAR =
Ng

∑
i=1

Ng

∑
j=1

(i− µ)2 p(i, j)

All the quantifications were analyzed as a part of a data frame (a two-dimensional
data structure) in the Python Data Analysis Library (pandas)—an open-source platform for
data analysis and manipulation.
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Figure 1. Saccharomyces cerevisiae yeast cells exposed to a hyperosmotic environment (right half
of the image, 6 cells) and control cells (left half of the image, 6 cells). Although microscopically, no
significant morphological differences can be observed, nuclear ROIs of these cells have different
values of GLCM, fractal and wavelet indicators. For example, the first cell of the control group (upper
left cell, marked with the black arrow) had a nuclear IDM of 0.163 and a fractal dimension of 1.551.
The morphologically similar cell exposed to a hyperosmotic environment (right half of the image,
marked with the white arrow) had an IDM value of 0.149 and a fractal dimension of 1.434.

Discrete wavelet transform (DWT) analysis of nuclear ROIs was performed in “Mazda”
software previously prepared for the COST B21 European project “Physiological modelling
of MR Image formation” and COST B11 AQ6 European project “Quantitative Analysis of
Magnetic Resonance Image Texture”. The platform was created by Dr. Michal Strzelecki
and Dr. Piotr Szczypinski (Institute of Electronics, Technical University of Lodz, Poland)
and can perform a variety of tasks related to texture analysis [29–32]. For the purpose of
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our study, we calculated wavelet coefficient energy during a filtering cascade of rows and
columns of data using high-pass filtering (Figure 2). Briefly, the linear transformation was
performed on data vectors which had the length of an integer power of two. The vectors
were transformed to the same length but numerically different vectors, after which the
data was separated into various frequency components depending on the scale. Factor 2
subsampling was performed after a cascade of filterings was implemented on the data. We
used different combinations of low-pass (L) and high-pass filters (H). For the details on the
procedure, the reader is referred to the previously published works on the method [29,33].
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The energy (En) was calculated as follows:

En =
∑ x,y∈ROI

(
dsubband

x,y

)2

n

where subband locations are marked as x and y, and n represents the number of ROI pixels.
Fractal analysis was carried out in FracLac, V. 2.5—a platform designed for ImageJ

software by A. Karperien, Charles Sturt University, Australia/Canada—previously used
on numerous occasions for description and quantification of complex biological structures
and phenomena [34,35]. For each ROI, after binarization, we calculated the value of the
fractal dimension using the box-counting method. As explained in previous publications,
this method applies a number of boxes over the structure at different scales (ε), after which
a graph is created representing the logarithmic value of the number of boxes (N) at least
partially filled with the structure (Figure 3). The fractal dimension is calculated based
on the slope of the linear regression of log(1/ε) versus log N(ε) for all ε [20,35]. Fractal
dimension may be viewed as an indirect measure of complexity and level of detail and
previously was used to detect small, microscopic alterations in biological structures that
are generally not visible using conventional means.

Raw data obtained from fractal, GLCM, and DWT analyses were statistically analyzed
in SPSS (v. 25.0, IBM Corporation, Chicago, IL, USA). The multivariate analysis of variance
(MANOVA) was used to determine whether there were any differences between the two
groups of cells. Regarding the ML models, the raw data were later used as inputs for
training and testing ML models. The first model was based on a support vector machine
algorithm, a supervised learning non-probabilistic binary linear classifier. This model
regards individual data points as a mathematical p-dimensional vector, and its main task
is developing the ability to separate the data along a (p-1)-dimensional hyperplane(s).
Support vector machines are commonly used both for the classification and regression of
data in biological sciences, with frequent application in image analysis and prediction of
biological phenomena based on two-dimensional signals.

The second machine learning model involved the development of random decision
forests classifier, an ensemble method in which multiple decision trees are constructed
and averaged for their prediction output. Generally, random forests are more capable of
classification compared to individual trees, although the interpretability of the model may
be reduced in some circumstances. As with the support vector machine, random forests
are a form of supervised learning, meaning that the model learns when given a series of
examples with known input and output. During the training, the model reveals a pattern
of data organization or a rule that connects inputs with output.
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Figure 3. The fractal dimension of ROIs was calculated based on the slope of the regression line
of log(1/ε) versus log N(ε) for all scales. The value of the fractal dimension in this example is
1.6142. The standard deviations for the experimental and control groups of cells were 0.155 and
0.142, respectively.

Both models were trained in scikit-learn machine learning library for the Python
programming language using Google Colaboratory—a platform which enables the scientist
to write and execute Python code in a browser. The Colaboratory includes a hosted Jupyter
notebook service which can be used to import various libraries and modules for machine
learning. The target data of both trained models were the class of the cell which was set
to either ‘0’ for the controls or ‘1’ for the cells exposed to the hyperosmotic environment.
Approximately 80% of the sample was used for training, and 20% was used for model
testing. Classification accuracy for both models was quantified using the scikit-learn
“metrics” module [36]. Optimization of hyperparameters was performed with Grid Search
(GridSearchCV module in scikit-learn). For the SVM classifier, it was determined that the
optimal hyperparameters were radial basis function (RBF) kernel, “C” hyperparameter of 1,
and “gamma” set to “scale”. For the random forests model, the “entropy” value was found
to be the optimal “criterion” and “log 2” optimal for the maximal number of features. The
optimal number of estimators was found to be 100. For the evaluation of the discriminatory
power of the models, we used receiver operating characteristics (ROC) analysis, also in
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the scikit-learn “metrics” module, and the area under the ROC curve was determined.
Furthermore, in scikit-learn, we calculated the classification accuracies of the models.

3. Results
3.1. Results of GLCM, Fractal, and DWT Analyses

One of the important objectives of our study was to determine to what extent exposure
to a hyperosmotic environment leads to the changes in GLCM, fractal, and DWT indicators
of yeast nuclear structure. The mean values of the nuclear angular second moment and in-
verse difference moment in the control group of cells (untreated cells) were 0.0015 ± 0.0011
and 0.167 ± 0.013, respectively (Table 1). In the experimental group (cells exposed to
hyperosmotic stress conditions), a statistically significant reduction of ASM was observed
(p < 0.01, Figure 4) to the average value of 0.00076 ± 0.00092, indicating the decrease of
nuclear textural uniformity in the hyperosmotic environment. A similar reduction was
noticed in the mean value of IDM, which equaled 0.154 ± 0.012 in the stressed cells. This
result implied that osmotic stress leads to the reduction of local textural homogeneity in
cell nuclei.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Average values of nuclear GLCM indicators in cells exposed to hyperosmotic environment 

and controls. 

Table 1. Average values of GLCM, fractal and DWT indicators of nuclear ROIs on cells exposed to 

hyperosmotic environment and controls. * p < 0.05 ** p < 0.01. 

 Osmotic Stress Controls 

Angular second moment 0.00076 ± 0.00092 ** 0.0015 ± 0.0011 

Inverse difference moment 0.154 ± 0.012 ** 0.167 ± 0.013 

Contrast 59.87 ± 8.78 ** 51.03 ± 9.17 

Correlation 0.0019 ± 0.0023 ** 0.0041 ± 0.0037 

Variance 799.39 ± 363.96 ** 507.17 ± 434.37 

Fractal dimension 1.454 ± 0.155 ** 1.538 ± 0.142 

DWT coefficient energy 0.369 ± 0.089 * 0.250 ± 0.084 

The average value of DWT coefficient energy in controls was 0.250 ± 0.084, while in 

the experimental group, it significantly increased to 0.369 ± 0.089 (p < 0.05). On the other 

hand, the fractal dimension of the nuclear structure was reduced from 1.538 ± 0.142 to 

1.454 ± 0.155 (p < 0.05). This result indicated that exposure to a hyperosmotic environment 

might be associated with the reduction of fractal complexity of nuclear structure. The scale 

of changes in DWT coefficient energy and fractal dimension values was much less pro-

nounced when compared to the changes in GLCM features. 

Figure 4. Average values of nuclear GLCM indicators in cells exposed to hyperosmotic environment
and controls.



Fractal Fract. 2023, 7, 272 8 of 14

Table 1. Average values of GLCM, fractal and DWT indicators of nuclear ROIs on cells exposed to
hyperosmotic environment and controls. * p < 0.05 ** p < 0.01.

Osmotic Stress Controls
Angular second moment 0.00076 ± 0.00092 ** 0.0015 ± 0.0011

Inverse difference moment 0.154 ± 0.012 ** 0.167 ± 0.013
Contrast 59.87 ± 8.78 ** 51.03 ± 9.17

Correlation 0.0019 ± 0.0023 ** 0.0041 ± 0.0037
Variance 799.39 ± 363.96 ** 507.17 ± 434.37

Fractal dimension 1.454 ± 0.155 ** 1.538 ± 0.142
DWT coefficient energy 0.369 ± 0.089 * 0.250 ± 0.084

The correlation feature in GLCM analysis was also reduced from 0.0041 ± 0.0037 in
the control group to 0.0019 ± 0.0023 in the experimental group (p < 0.01). This result was
in line with the observed changes in ASM and IDM and indicated the increase of linear
dependencies of gray levels on the other levels of the neighboring resolution units. On the
other hand, there was a statistically highly significant increase in both contrast and variance.
The mean value of the contrast textural feature in the control group was 51.03 ± 9.17, while
in the experimental group, it was 59.87 ± 8.78 (p < 0.01). The average textural variance
of the cell nuclei in controls was 507.17 ± 434.37; in the cells exposed to hyperosmotic
conditions, it was 799.39 ± 363.96. The variance values showed the highest degree of
variability of all quantified textural features.

The average value of DWT coefficient energy in controls was 0.250 ± 0.084, while in
the experimental group, it significantly increased to 0.369 ± 0.089 (p < 0.05). On the other
hand, the fractal dimension of the nuclear structure was reduced from 1.538 ± 0.142 to
1.454 ± 0.155 (p < 0.05). This result indicated that exposure to a hyperosmotic environment
might be associated with the reduction of fractal complexity of nuclear structure. The
scale of changes in DWT coefficient energy and fractal dimension values was much less
pronounced when compared to the changes in GLCM features.

3.2. Machine Learning Models

Based on the fractal, wavelet, and GLCM data, both the support vector machine
and random forests model were successfully trained and tested. The support vector
machine had an acceptable classification accuracy of 71.7% in predicting whether the cell
belonged to the experimental or the control group. The area under the ROC curve for this
model was 0.74, indicating acceptable, although not excellent discriminatory power in
separating treated from intact cells (Figure 5). The random forests model outperformed
the support vector machine model since its classification accuracy was determined to be
79.8%. The area under the ROC curve for this model equaled 0.85, indicating a relatively
good discriminatory power (Figure 6).
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4. Discussion

Our study shows that exposing yeast cells to hyperosmotic stress results in significant
changes in the nuclear texture, which can be quantified using GLCM and DWT methods,
as well as significant changes in the nuclear fractal dimension. We also propose using
GLCM, fractal, and DWT indicators as input data for machine learning models, such as
support vector machines and random forests. The models trained on a relatively small
sample achieved a decent level of classification accuracy and discriminatory power when
distinguishing between treated and healthy cells. These findings and models can serve as a
foundation for further developing AI-based methods for detecting osmotic shock injury in
cells and their components.

In the field of cell biology, the use of computational methods, such as GLCM, DWT,
and fractal analysis, to analyze the texture of cell nuclei is relatively new and has not
been widely tested. There are several limitations and concerns regarding the sensitivity
and validity of these methods. They can be applied to various cell populations, both
in vivo and in vitro, and can provide information about structural homogeneity in cell and
tissue micrographs [17,20,35]. However, it should be noted that textural homogeneity does
not always correlate with homogeneity in histological terms. The use of DWT indicators
for quantifying textural heterogeneity also requires further validation by future studies.
Likewise, fractal analysis is a mathematical and biophysical method that can be used to infer
the complexity of a signal, whether one-dimensional or two-dimensional, as in our study,
but its potential applications in this field also remain to be confirmed by future research.

This is not the first time we have used Saccharomyces cerevisiae to create machine
learning models for assessing cell damage. In a recent study, we examined the impact
of sublethal doses of ethanol on GLCM indicators such as angular second moment and
inverse difference [8]. Ethanol caused similar changes as hyperosmotic stress caused by
NaCl, with a reduction in textural uniformity and local homogeneity of cell nuclei. In
addition to GLCM analysis, we proposed machine learning models based on random trees,
multilayer perceptron, and binomial logistic regression. All three models showed high
classification accuracy, and the neural network performed best in terms of the area under
the receiver operating characteristics curve (the AUC equaled 0.87). The changes in GLCM
indicators are somewhat in accordance with the results of our current study since alcohol
can cause hyperosmotic stress under certain conditions. However, we should note that
these alterations in the nuclear structure are more likely to result from ethanol-induced
damage to the genetic material of the cells or the reorganization of chromatin in nuclei due
to the activation of specific signaling pathways associated with ethanol damage.

Fractal analysis has previously been used to indirectly quantify structural complexity
and level of detail in micrographs of cells and tissues [20,21]. The analysis of neurons in
the central and peripheral nervous system is perhaps the most extensive application of
this method in microscopy, as fractal dimension can aid in the assessment of branching



Fractal Fract. 2023, 7, 272 10 of 14

patterns of axons and dendrites. [37–39]. However, there have been several studies that
tried to quantify fractal dimension and other fractal indicators in cell nuclei and chromatin.
The fractal dimension of euchromatin and heterochromatin seems to differ. In recent years,
there have been attempts to introduce the so-called “fractal globule” model of chromatin
organization as an alternative to the conventional equilibrium model. Chromatin, as a
macromolecule, and DNA possess certain self-similarity traits, and their fractality remains
to be fully investigated. In our study, we applied fractal analysis solely to identify subtle
morphological alterations in cell nuclei and to generate data for the ML model training.

Exposure to a hyperosmotic environment in Saccharomyces cerevisiae yeast cells
leads to a significant reduction of cell volume and activation of numerous adaptation
mechanisms [40–42]. These cells are exceptionally resilient to high tonicity; the viability is
generally preserved, and the cells have numerous well-preserved genes that are involved
in osmoprotection. Severe osmotic shock in yeast often leads to cell cycle arrest, growth
inhibition, and reduced metabolic activity. Glycerol, trehalose, and erythritol as compatible
solutes to NaCl are being produced to counteract the high osmolarity of the extracellular
space. In addition, during hyperosmotic stress caused by NaCl or other osmotically
active compounds, a number of stress-response pathways are activated, such as the high
osmolarity glycerol (HOG) pathway or the stress-activated protein kinase pathway (SAPK).
This all leads to significant changes in DNA transcription and gene expression and possibly
to the reorganization of nuclear chromatin patterns. Furthermore, hyperosmotic stress
may be associated with the increased production of reactive oxygen species and oxidative
stress to the cell genetic material. While it is currently unclear which of these processes is
responsible for the observed changes in computational texture indicators, it is plausible to
speculate that the primary factor contributing to these changes is the epigenetic alterations
that occur as part of the cell’s adaptation mechanisms to damage.

The most interesting aspect of our study is probably the fact that computational
methods were able to detect subtle changes in cell morphology that were not clearly visible
during standard microscopy. The analyzed cells did not show visible signs of programmed
cell death, necrosis, or substantial nuclear injury. Even to the researcher with wide previous
experience in the fields of microscopy and cell biology, cells from both groups appeared
morphologically identical, and there was no subjective way of adequately separating and
classifying them into the two groups. Some minor alterations in nuclear structure, such as
the darkened areas on the nuclear periphery (visible in Figure 1), were not specific to the
experimental group and could easily be a physiological variation characteristic of this cell
type or a minor variation in light exposure and white balance during microscopy and cell
acquisition. On the other hand, computational methods showed significant differences in
fractal, textural, and wavelet indicators between the groups. This potentially demonstrates
the power of these methods in detecting discrete morphological phenomena, increasing
their scientific value in the field of pathology. In the future, these methods may be useful as
part of computer-aided diagnostic systems in pathology for classifying different types of
pathological cells or separating pathologically changed cells from intact cells in various
experimental and clinical conditions. However, the various steps and other limitations of
these methods will need to be addressed before this can happen. There are a few significant
limitations of our study that may hamper its impact in the fields of microscopy and cell
biology. As mentioned earlier, all the applied computational methods are relatively new in
this area of research. They have not undergone rigorous testing for their validity, accuracy,
and quality assurance in general. Inter- and intra-observer reliability of the methods is
undetermined for most cell populations and tissues. Despite some efforts in the past to
perform quality assurance, this remains a significant obstacle to the use of the techniques in
contemporary histology and pathology. The second limitation is the relatively high degree
of variability of the values of fractal and GLCM indicators across different softer platforms
and under different experimental settings. For example, the values of the angular second
moment and inverse difference moment can drastically differ when micrographs are created
in different sizes and resolutions or when a different image acquisition system is used.
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The same applies to various microscope settings such as exposure, hue, saturation, and
white balance, which may greatly depend on the type of microscope, the imaging device
and default preferences set within imaging software. Finally, the fact that we were able
to observe changes in computational indications in this yeast culture does not necessarily
imply that the changes are present in other cultures, particularly when various fixation
and staining protocols are applied. To draw definitive conclusions on the changes in
chromatin textural patterns during hyperosmotic stress and the potential usefulness of
pattern recognition approaches in this field, future studies should utilize specific staining
procedures aimed at visualizing chromatin structure in yeast. In our research, we only
quantified 5 GLCM indicators: angular second moment, inverse difference moment, textural
contrast, correlation, and variance. However, GLCM and other similar forms of textural
analysis can be used to obtain many more textural features. The examples include entropy,
sum entropy, difference entropy, information measures of correlation, maximal correlation
coefficient and other quantifications. According to the original work of Haralick et al. [43], a
total of 28 textural features can be theoretically extracted from gray-tone spatial-dependence
matrices, and today different computing platforms can be used to quantify the majority
of them. Future studies would need to use all possible features to design the ML models
with the best performance before this approach can be included in contemporary cell
biology and pathology practice. The same reasoning applies to fractal analysis, where
other features can also be quantified apart from the fractal dimension. The most important
example would be the lacunarity feature, a measure of the level of “gappiness” within a
fractal, which is frequently calculated alongside the fractal dimension to provide better
insight into the changes in complexity. In the future, it would be interesting to see the
classification accuracy and discriminatory power of the RF and SVM models constructed
with the combination of lacunarity and GLCM data as inputs.

The machine learning approach applied in our study also has certain limitations
that need to be discussed. Support vector machine and random forest are just two of
many supervised ML algorithms that can be trained by presenting a series of examples
of input and (correct) output or target data [44]. Other models that are also potentially
valuable include neural networks, various decision trees other than random forest, as well
as models that rely on binomial logistic regression analysis. Some of these approaches
may be better for the identification of specific patterns within the GLCM and DWT data
and may yield higher discriminatory power and classification accuracy when trained in
this setting. In the future, it would be advisable to develop and compare all possible ML
models, after which the best one could be deployed as a web or other application. In our
study, the samples used for training and testing were relatively low. It is possible that with
a larger amount of especially GLCM data, one could develop a complex model (i.e., the
one based on a multilayer perceptron network) that would have outstanding performance
in cell classification. Finally, another important limitation concerning ML relates to the fact
that ML models, in general, suffer from low interpretability. Random forest and support
vector machines are no exception, and although we may obtain interesting results on their
performance, it is still difficult to explain how the model actually functions and what
actual inner mechanisms lead to its decisions in cell classification. This, along with the
abovementioned general lack of quality assurance of computational techniques for data
generation, greatly limits the overall reproducibility of the results. Future works will have
to be focused on how to resolve these issues before these types of models become ready
to be integrated into contemporary research and diagnostic protocols in pathology and
other fields.

5. Conclusions

In conclusion, machine learning models such as those based on random forests and
support vector machines can be trained using GLCM and DWT data to identify yeast cells
that have been previously exposed to a hyperosmotic environment. Osmotic stress induces
significant changes in nuclear textural indicators, suggesting that GLCM and DWT methods
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can detect subtle structural alterations in cell nuclei under these experimental conditions.
Our study highlights the significance of textural analysis computational methods and
machine learning approaches in the morphological assessment of yeast cells and presents
potentially useful data for future research in the fields of cellular physiology and pathology.
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