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Abstract: Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation.
In this paper, we present a spectral collocation method with tempered fractional Jacobi functions
(TFJFs) as basis functions and obtain an efficient algorithm to solve tempered-type fractional differen-
tial equations. We set up the approximation error as O(Nµ−ν) for projection and interpolation by
the TFJFs, which shows “spectral accuracy” for a certain class of functions. We derive a recurrence
relation to evaluate the collocation differentiation matrix for implementing the spectral collocation
algorithm. We demonstrate the effectiveness of the new method for the nonlinear initial and boundary
problems, i.e., the fractional Helmholtz equation, and the fractional Burgers equation.
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1. Introduction

Anomalous diffusion transport is often observed in nature and well described with
fractional calculus (FC). Two kinds of anomalous diffusions are super diffusion and sub
diffusion, according to the superlinear or sublinear growth of the variance of the variable
of interest. Anomalous diffusion models, as the limit of a continuous time random walk
(CTRW) with a heavy-tailed power–law probability distribution function, lead to diverging
moments which can be problematic from a physical point of view. Exponentially tempering
the power–law distributions is a popular way to temper the power–law distribution, which
has both mathematical and technique advantages [1–3]. The FC involves an exponentially
tempered factor, referred to as tempered fractional calculus (TFC), which describes the
transition between normal and anomalous diffusions (or the anomalous motion in finite
time or bounded physical space). TFC models have been applied in many scientific and
engineering fields, such as poro-elasticity [4], ground water hydrology [5], geophysical
flows [6], etc.

The application of TFC models to realistic problems requires numerical schemes that
are available to solve the tempered fractional differential (TFD) equations. The difficulty of
numerically solving the TFD equations is partially caused by the tempered fractional oper-
ators involving weak singular and exponential kernels. However, there is a lot of work that
contributes to it. Li and Deng [7] presented the weighted and shifted Grünwald difference
for the tempered fractional diffusion equations. Wang and Li [4] presented a fast difference
scheme for a tempered fractional Burgers equation in porous media. Deng and Zhang [8]
provided the variational formulation and efficient implementation for solving both spacial
and temporal tempered fractional problems. Chen and Deng [9] proposed a second-
order accurate numerical method for space–time tempered fractional diffusion–wave equa-
tions. Ding and Li [10] proposed a high-order algorithm for time-Caputo-tempered partial
differential equations with Riesz derivatives in two spatial dimensions. Guo et al. [11]
presented efficient fractional linear multistep methods for tempered fractional calculus.
Cao et al. [12] studied finite difference/finite element methods for tempered time fractional
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advection–dispersion equations with fast evaluation of the Caputo derivative. Local discon-
tinuous Galerkin methods were studied by Sun et al. [13] for the time-tempered fractional
diffusion equation and by Safari et al. [14] for a class of time–space tempered fractional
diffusion equations. Bu and Oosterlee [15] proposed a multigrid method for tempered
fractional diffusion equations. Çelik and Duman [16] studied the finite element method
for a symmetric tempered fractional diffusion equation. Zayernouri et al. [17] studied two
classes of regular and singular tempered fractional Sturm–Liouville problems, in which a
Petrov–Galerkin spectral method for solving tempered fractional ODEs is developed, and
the tempered Jacobi poly-fractonomials are used as basis functions. Hanert and Piret [18]
proposed a Chebyshev pseudospectral method to solve the space–time tempered fractional
diffusion equation. Chen et al. [19] considered a Laguerre spectral-Galerkin method for
solving tempered fractional diffusion equations on unbounded domain. Luo et al. [20]
presented a Lagrange-quadratic spline optimal collocation method for the time-tempered
fractional diffusion equation. Moghaddam et al. [21] suggested sinc collocation for the
TFD equation, and Liemert and Kienle [22] used the Fourier spectral method to solve the
tempered fractional wave–diffusion equation.

Meanwhile, Li et al. [23] discussed the existence, uniqueness, and stability of the
tempered fractional ordinary differential equations. Deng et al. [24] discussed the reflecting
boundaries for tempered fractional diffusion operators in the context of demonstrating
the well-posedness of PDEs with generalized boundary conditions. From a mathematical
view, the tempered fractional calculus operators are equivalent to the fractional substantial
calculus after a suitable range of parameters [25]. One can also refer to [26,27] and references
therein for the numerical methods of the substantial fractional differential equations.

Motivated by the generalized Jacobi functions in [28] and the method in [17], we aim
to develop a high-accuracy spectral collocation method that uses the tempered fractional
Jacobi functions (TFJFs) as the basis functions for solving TFD equations in this work. The
main contributions of this paper are as follows:

† We define the TFJFs and derive the approximation results of orthogonal projection
and interpolation based on the TFJFs.

† We derive the differentiation matrix of the tempered fractional Caputo derivative and
give a fast and stable evaluation method based on the recurrence relationship.

† We demonstrate the effectiveness of the proposed spectral collocation method for the
initial or boundary value problems, i.e., the fractional Helmholtz equation, and the
fractional Burgers equation.

The outline of the paper is as follows. In the next section, we review some definitions
and properties of tempered fractional calculus. We also define the TFJFs and show their
properties. We present the approximation properties based on the TFJFs in Section 3.
In Section 4, we present the spectral collocation method based on the TFJFs and derive
a recurrence relation for the fast generation of the collocation fractional differentiation
matrix. Finally, we discuss the condition number of the fractional differentiation matrix.
In Section 5, we apply the spectral collocation to the initial value problems of nonlinear
fractional ordinary differential equation. In Section 6, we apply the spectral collocation to
the fractional Helmholtz equation and the fractional Burgers equation. Several numerical
tests are presented in this section. The paper ends with some conclusions in Section 7.

2. Preliminaries
2.1. Definitions of Tempered Fractional Calculus

In the sequence, we start with the definitions of tempered fractional operators.

Definition 1. For κ ≥ 0, the left and right tempered fractional integrals of function u(t) on (a, b)
of order µ > 0 are defined, respectively, by [5,8,29]

aIµ,κ
t u(t) :=

1
Γ(µ)

∫ t

a

e−κ(t−s)u(s)
(t− s)1−µ

ds, tI
µ,κ
b u(t) :=

1
Γ(µ)

∫ b

t

e−κ(s−t)u(s)
(s− t)1−µ

ds,
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where Γ(·) is the Euler gamma function.

Definition 2. For κ ≥ 0, the left and right tempered Riemman–Liouville fractional derivatives of
function u(t) on (a, b) of order µ > 0 are defined, respectively, by [5,8,29]

R
a D

µ,κ
t u(t) :=

e−κt

Γ(n− µ)

dn

dtn

∫ t

a

eκsu(s)
(t− s)µ−n+1 ds,

and
R
t D

µ,κ
b u(t) :=

eκt

Γ(n− µ)

dn

dtn

∫ b

t

e−κsu(s)
(s− t)µ−n+1 ds,

where n− 1 < µ ≤ n.

By direct calculation, the following relations are obtained:

R
a D

µ,κ
t u(t) :=

(
d
dt

+ κ

)n

aIn−µ,κ
t u(t),

and
R
t D

µ,κ
b u(t) := (−1)n

(
d
dt
− κ

)n

tI
n−µ,κ
b u(t),

where
(

d
dt ± κ

)n
= ∑n

k=0
k!(n−k)!

n! (±κ)n−k dk

dtk .

Definition 3. For κ ≥ 0, the left and right tempered Caputo fractional derivatives of function u(t)
on (a, b) of order µ > 0 are defined by [8,23]

C
a D

µ,κ
t u(t) := aIn−µ,κ

t

(
d
dt

+ κ

)n
u(t) =

e−κt

Γ(n− µ)

∫ t

a

(eκsu(s))(n)

(t− s)µ−n+1 ds,

and

C
t D

µ,κ
b u(t) := tI

n−µ,κ
b (−1)n

(
d
dt
− κ

)n
u(t) =

(−1)neκt

Γ(n− µ)

∫ b

t

(e−κsu(s))(n)

(s− t)µ−n+1 ds,

where n− 1 < µ ≤ n.

If κ ≡ 0, then the left and right tempered fractional calculus reduce to the left and
right (non-tempered) fractional calculus, denoted by aIµ

t , tI
µ
b , R

a Dµ
t , R

t Dµ
b , C

a Dµ
t and C

t Dµ
b ,

respectively. Then, we have

aIµ,κ
t u(t) = e−κt

aIµ
t (e

κtu(t)), tI
µ,κ
b u(t) = eκt

tI
µ
b (e
−κtu(t)),

R
a D

µ,κ
t u(t) = e−κt R

a Dµ
t (e

κtu(t)), R
t D

µ,κ
b u(t) = eκt R

t Dµ
b (e
−κtu(t)),

C
a D

µ,κ
t u(t) = e−κt C

a Dµ
t (e

κtu(t)), C
t D

µ,κ
b u(t) = eκt C

t Dµ
b (e
−κtu(t)).

Similar to the corresponding non-tempered case, for 0 < µ < 1 and u(t) be ab-
solutely continuous in [a, b], the relations between the Riemann–Liouville and Caputo
derivatives are

R
a Dµ,κ

t u(t) = C
a Dµ,κ

t u(t) +
1

Γ(1− µ)
e−κt(t− a)−µu(a), (1)

and
R
t Dµ,κ

b u(t) = C
t Dµ,κ

b u(t) +
1

Γ(1− µ)
e−κt(b− t)−µu(b). (2)
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For practical purposes, we consider the linear transform from [a, b] to [−1, 1] as

s =
2(t− a)

b− a
− 1, t ∈ [a, b] (or t =

b− a
2

(s + 1) + a, s ∈ [−1, 1]).

Then, it holds that

aIµ,κ
t u(t) =

(
b− a

2

)µ

−1Iµ,κ̃
s ũ(s), tI

µ,κ
b u(t) =

(
b− a

2

)µ

sI
µ,κ̃
1 ũ(s),

and
C
a D

µ,κ
t u(t) =

(
2

b− a

)µ
C
−1D

µ,κ̃
s ũ(s), C

t D
µ,κ
b u(t) =

(
2

b− a

)µ
C
s D

µ,κ̃
1 ũ(s),

where κ̃ = b−a
2 κ, ũ(s) = u(t) = u( b−a

2 (s + 1) + a).

2.2. Tempered Fractional Jacobi Functions (TFJFs)

In this subsection, we introduce the TFJFs and derive some properties for use. Denote
PN(I) as the space of all algebraic polynomials with degree at most N defined on I =:
(−1, 1). Let Pα,β

n (s) (α, β > −1), s ∈ I be the Jacobi orthogonal polynomials, satisfying∫ 1

−1
Pα,β

n (s)Pα,β
m (s)ωα,β(s)ds = γ

α,β
n δmn, (3)

where ωα,β(s) = (1− s)α(1 + s)β,

γ
α,β
n =

2α+β+1Γ(n + α + 1)Γ(n + β + 1)
(2n + α + β + 1)n!Γ(n + α + β + 1)

,

and δmn is the Kronecker symbol, i.e.,

δmn =

{
1, if m = n,
0, otherwise.

The derivative relation of the Jacobi polynomials is of importance:

dk

dsk Pα,β
n (s) = dα,β

n,k Pα+k,β+k
n−k (s), dα,β

n,k =
Γ(n + k + α + β + 1)
2kΓ(n + α + β + 1)

, n ≥ k. (4)

The following relation is useful:

Pα,β
n (s) =

d
ds

[
Âα,β

n Pα,β
n−1(s) + B̂α,β

n Pα,β
n (s) + Ĉα,β

n Pα,β
n+1(s)

]
, (5)

where 

Âα,β
n =

−2(n + α)(n + β)

(n + α + β)(2n + α + β)(2n + α + β + 1)
,

B̂α,β
n =

2(α− β)

(2n + α + β)(2n + α + β + 2)
,

Ĉα,β
n =

2(n + α + β + 1)
(2n + α + β + 1)(2n + α + β + 2)

.

(6)

Some additional properties of Jacobi polynomials can be referred to [30,31].

Definition 4. Define the TFJFs by

Jα,β,δ,κ
n,l (s) =: e−κs(1 + s)δPα,β

n (s), Jα,β,δ,κ
n,r (s) =: eκs(1− s)δPα,β

n (s),
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for s ∈ I, n = 0, 1, · · · .

From the properties of Jacobi polynomials and Definition 4, we can easily derive the
following lemma:

Lemma 1. The TFJFs have the following properties.

P1. Three-term recurrence relation: For n ≥ 1, Jα,β,δ,κ
n+1,l (s) =

(
Aα,β

n s− Bα,β
n

)
Jα,β,δ,κ
n,l (s)− Cα,β

n Jα,β,δ,κ
n−1,l (s),

Jα,β,δ,κ
n+1,r (s) =

(
Aα,β

n s− Bα,β
n

)
Jα,β,δ,κ
n,r (s)− Cα,β

n Jα,β,δ,κ
n−1,r (s),

(7)

with starting terms

Jα,β,δ,κ
0,l (s) = e−κs(1 + s)δ,

Jα,β,δ,κ
1,l (s) = e−κs(1 + s)δ

(
α + β + 2

2
s +

α− β

2

)
,

Jα,β,δ,κ
0,r (s) = eκs(1− s)δ,

Jα,β,δ,κ
1,r (s) = eκs(1− s)δ

(
α + β + 2

2
s +

α− β

2

)
,

(8)

where 

Aα,β
n =

(2n + α + β + 1)(2n + α + β + 2)
2(n + 1)(n + α + β + 1)

,

Bα,β
n =

(2n + α + β + 1)(2n + α + β + 2)
2(n + 1)(n + α + β + 1)

,

Cα,β
n =

(n + α)(n + β)(2n + α + β + 2)
(n + 1)(n + α + β + 1)(2n + α + β)

.

P2. Orthogonality: For α, β > −1,∫
I

Jα,β,δ,κ
n,l (s)Jα,β,δ,κ

m,l (x)vα,β,δ,κ
l (s)ds = γ

α,β
n δnm, (9)

∫
I

Jα,β,δ,κ
n,r (s)Jα,β,δ,κ

m,r (x)vα,β,δ,κ
r (s)ds = γ

α,β
n δnm, (10)∫

I
Jα,β,δ,κ
n,l (s)Jα,β,δ,κ

m,r (x)vα,β,δ
h (s)ds = γ

α,β
n δnm, (11)

where

v
α,β,δ,κ
l (s) = e2κsωα,β−2δ(s) = e2κs(1− s)α(1 + s)β−2δ,

v
α,β,δ,κ
r (s) = e−2κsωα−2δ,β(s) = e−2κs(1− s)α−2δ(1 + s)β,

v
α,β,δ,κ
h (s) = ωα−δ,β−δ(s) = (1− s)α−δ(1 + s)β−δ.

Proof. The three-term recurrence relation given by Equation (7) is a straightforward result
from the corresponding relation of Jacobi polynomials.

We derive, from Definition 4, that∫
I

Jα,β,δ,κ
n,l (s)Jα,β,δ,κ

m,l (s)vα,β,δ,κ
l (s)ds =

∫
I

Pα,β
n (s)Pα,β

m (s)ωα,β(s)ds.

Then, we have the orthogonality (9). We can derive the other equalities (10) and (11)
similarly. This ends the proof.
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Remark 1. The orthogonalities (9) and (10) are in the inner product of space L
v

α,β,δ,κ
l

(I) and

L
v

α,β,δ,κ
r

(I), respectively. The relationship (11) means that elements between the two above spaces

are under measure v
α,β,δ,κ
h .

The tempered fractional derivatives of the TFJFs can also be represented by the same
class of functions.

Theorem 1. For n ≥ 0, there holds

R
−1D

µ,κ
s

(
Jα,β,β,κ
n,l (s)

)
= λ

β,µ
n Jα+µ,β−µ,β−µ,κ

n,l (s), α ∈ R, β > µ− 1.

R
s D

µ,κ
1

(
Jα,β,α,κ
n,r (s)

)
= λ

α,µ
n Jα−µ,β+µ,α−µ,κ

n,r (s), α > µ− 1, β ∈ R.

where

λ
β,µ
n =

Γ(n + β + 1)
Γ(n + β− µ + 1)

.

Proof. From Definitions 4, we have

R
−1D

µ,κ
s

(
Jα,β,β,κ
n,l (s)

)
= e−κs R

−1D
µ

s

(
(1 + s)βPα,β

n (s)
)

.

Then, by Theorem 3.1 in [28], where

R
−1D

µ

s

(
(1 + s)βPα,β

n (s)
)
= λ

β,µ
n (1 + s)β−µPα+µ,β−µ

n (s),

the desired result can be obtained. The second equality is derived similarly.

3. Approximation by the TFJFs
3.1. Error Estimate of Projection Operators

We introduce the (N + 1)-dimensional spaces of the TFJFs as

Fδ,κ
N,l := e−κs(1 + s)δPN = span

{
Jα,β,δ,κ
0,l , Jα,β,δ,κ

1,l , · · · , Jα,β,δ,κ
N,l

}
,

and
Fδ,κ

N,r := eκs(1− s)δPN = span
{

Jα,β,δ,κ
0,r , Jα,β,δ,κ

1,r , · · · , Jα,β,δ,κ
N,r

}
.

Let α, β > −1. Denote Pδ,κ
N,l : L2

v
α,β,δ,κ
l

(I)→ Fδ,κ
N,l as the orthogonal projection such that

(Pδ,κ
N,lu− u, v)

v
α,β,δ,κ
l

= 0 ∀v ∈ Fδ,κ
N,l , (12)

and Pδ,κ
N,r : L2

v
α,β,δ,κ
r

(I)→ Fδ,κ
N,r as the orthogonal projection such that

(Pδ,κ
N,ru− u, v)

v
α,β,δ,κ
r

= 0 ∀v ∈ Fδ,κ
N,r. (13)

Consider Pδ,κ
N,l . One can express the orthogonal projection as

Pδ,κ
N,lu(s) =

N

∑
k=0

ûk Jα,β,δ,κ
k,l (s), (14)

with

ûk =

∫ 1
−1 u(s)Jα,β,δ,κ

k,l (s)vα,β,δ,κ
l (s)ds

‖Jα,β,δ,κ
k,l ‖2

v
α,β,δ,κ
l

.



Fractal Fract. 2023, 7, 277 7 of 26

For any u ∈ L2
v

α,β,δ,κ
l

(I), we have eκs(1+ s)−δu ∈ L2
ωα,β(I). Since the Jacobi polynomials

{Pα,β
n (x)}n≥0 are mutually orthogonal and complete in L2

ωα,β(I), it uniquely holds that

eκs(1 + s)−δu(s) =
∞

∑
n=0

ûnPα,β
n (s),

where

ûn =

∫ 1
−1 eκs(1 + s)−δu(s)Pα,β

n (s)ωα,β(s)ds

‖Pα,β
n ‖2

ωα,β

=

∫ 1
−1 u(s)Jα,β,β,κ

n,l (s)vα,β,δ,κ
l (s)ds

‖Jα,β,δ,κ
n,l ‖2

v
α,β,δ,κ
l

.

That is, the unique representation of u is

u(s) =
∞

∑
n=0

ûne−κs(1 + s)δPα,β
n (s) =

∞

∑
n=0

ûn Jα,β,δ,κ
n,l (s), s ∈ I a.e.

Hence, the set {Jα,β,δ,κ
n,l }n≥0 is complete in L2

v
α,β,δ,κ
l

(I). By the definition of the projection

operator and Parseval equality, one has

‖Pδ,κ
N,lu− u‖2

v
α,β,δ,κ
l

=
∞

∑
n=N+1

|ûn|2γ
α,β
n → 0 (N → ∞).

It is clear that a parallel statement for Pδ,κ
N,r holds. We do not repeat that.

To describe the projection error, we define

B̌ν
α,β,δ,l(I) :=

{
u ∈ L2

v
α,β,δ,κ
l

(I) : R
−1D

µ,κ
s u ∈ L2

v
α+µ,β−µ,δ−µ,κ
l

(I), 0 ≤ µ ≤ ν

}
,

and

B̌ν
α,β,δ,r(I) :=

{
u ∈ L2

v
α,β,δ,κ
r

(I) : R
s D

µ,κ
1 u ∈ L2

v
α−µ,β+µ,δ−µ,κ
r

(I), 0 ≤ µ ≤ ν

}
.

We have the following error estimate results about the projection operators defined in
(12) and (13).

Theorem 2. Let α > −1, β > ν− 1, 0 ≤ µ ≤ ν. For any u ∈ B̌ν
α,β,β,l(I),

‖R
−1D

µ,κ
s (Pβ,κ

N,lu− u)‖
v

α+µ,β−µ,β−µ,κ
l

≤ cNµ−ν‖R
−1D

ν,κ
s u‖

v
α+ν,β−ν,β−ν,κ
l

.

and for α > ν− 1, β > −1, u ∈ B̌ν
α,β,α,r(I),

‖R
s D

µ,κ
1 (Pα,κ

N,ru− u)‖
v

α−µ,β+µ,α−µ,κ
r

≤ cNµ−ν‖R
s D

ν,κ
1 u‖

v
α−ν,β+ν,α−ν,κ
r

.

Proof. We first consider Pβ,κ
N,l . From Equation (14) and the orthogonality of Lemma 1,

one has

Pβ,κ
N,lu− u =

∞

∑
k=N+1

ûk Jα,β,β,κ
n,l .
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Now from Theorem 1, one has

‖R
−1D

µ,κ
s (Pβ,κ

N u− u)‖2
v

α+µ,µ−β,µ−β,κ
l

=
∞

∑
k=N+1

|ûk|2
(

λ
β,µ
k

)2
γ

α+µ,β−µ
k ,

=
∞

∑
k=N+1

|ûk|2
(

λ
β,ν
k

)2
γ

α+ν,β−ν
k

Γ(k + β− ν + 1)Γ(k + α + µ + 1)
Γ(k + β− µ + 1)Γ(k + α + ν + 1)

≤ Γ(N + β− ν + 2)Γ(N + α + µ + 2)
Γ(N + β− µ + 2)Γ(N + α + ν + 2)

∞

∑
k=N+1

|ûk|2
(

λ
β,ν
k

)2
γ

α+ν,β−ν
k

≤ cN2(µ−ν)‖R
−1D

ν,κ
s u‖2

v
α+ν,ν−β,ν−β,κ
l

.

Then the estimate is derived.
In a similar way, we can obtain the error estimate for Pα,κ

N,r.

For the special case of δ = 0, we have the following error estimate.

Theorem 3. For α, β > −1. If u ∈ L2
v

α,β,0,κ
l

(I) such that v(s) = eκsu(s) ∈ Bm
α,β(I), we have

‖P0,κ
N,lu− u‖

v
α,β,0,κ
l

≤ cN−m‖∂m
s v‖Bm

α,β
.

If u ∈ L2
v

α,β,0,κ
r

(I) such that v(s) = eκsu(s) ∈ Bm
α,β(I), we have

‖P0,κ
N,ru− u‖

v
α,β,0,κ
r

≤ cN−m‖∂m
s v‖Bm

α,β
,

where the non-uniformly Jacobi-weighted Sobolev space

Bm
α,β(I) :=

{
v : ∂k

s v ∈ L2
ωα+k,β+k (I), 0 ≤ k ≤ m

}
,

equipped with the inner product and norm

(u, v)Bm
α,β

=
m

∑
k=0

(
∂k

s u, ∂k
s v
)

ωα+k,β+k
, ‖u‖Bm

α,β
=
√
(u, u)Bm

α,β
.

Proof. For u ∈ L2
v

α,β,0,κ
l

(I), it is easy to know that P0,κ
N,lu = P0,0

N v (P0,κ
N,ru = P0,0

N v for

u ∈ L2
v

α,β,0,κ
r

(I)) and ‖Pδ,κ
N,lu− u‖

v
α,β,0,κ
l

= ‖P0,0
N v− v‖ωα,β (also ‖Pδ,κ

N,ru− u‖
v

α,β,0,κ
r

= ‖P0,0
N v−

v‖ωα,β ). Then, by utilizing the approximation result of P0,0
N (Theorem 3.35 in page 118

of [30]), we can achieve the desired estimate result.

3.2. Error Estimate of Interpolation Operators

In the sequence, we denote {ξi}N
i=0 as the Jacobi–Gauss–Lobatto points(JGL) in I,

which are also the roots of (1− s2)Pα,β
N−1(s) at the same time.

For a function u(s) ∈ C(I), which satisfies eκs(1 + s)−δu(s) being continuous on I for
some δ > −1, we define the interpolation operator Πδ,κ

N,l : C(I) → Fδ,κ
N,l at given nodes

{ξi}N
i=0 as

Πδ,κ
N,lu(s) = u(s), s = ξi, i = 0, 1, · · · , N. (15)

Similarly, for a function u(s) ∈ C(I), which satisfies e−κs(1− s)−δu(s) being continu-
ous on I for some δ > −1, we define the interpolation operator Πδ,κ

N,r : C(I)→ Fδ,κ
N,r at the

same nodes {ξi}N
i=0 as

Πδ,κ
N,ru(s) = u(s), s = ξi, i = 0, 1, · · · , N. (16)
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If eκs(1 + s)−δu(s) ∈ C(I), we can define the Jacobi–Gauss–Lobatto interpolation
operator Π0,0

N for eκs(1 + s)−δu(s). Then,

Πδ,κ
N,lu(s) = e−κs(1 + s)δΠ0,0

N eκs(1 + s)−δu(s).

In the same way, if e−κs(1− s)−δu(s) ∈ C(I), we can define the Jacobi–Gauss–Lobatto
interpolation operator Π0,0

N for e−κs(1− s)−δu(s). Then,

Πδ,κ
N,ru(s) = eκs(1− s)δΠ0,0

N e−κs(1− s)−δu(s).

Theorem 4. For α, β > −1. If v = eκs(1 + s)−δu ∈ Bm
α,β(I), then

‖Πδ,κ
N,lu− u‖

v
α,β,δ,κ
l

≤ cN−m‖∂m
s v‖Bm

α,β
.

and if v = e−κs(1− s)−δu ∈ Bm
α,β(I), then

‖Πδ,κ
N,ru− u‖

v
α,β,δ,κ
r

≤ cN−m‖∂m
s v‖Bm

α,β
.

Proof. Since ‖Πδ,κ
N,lu− u‖

v
α,β,δ,κ
l

= ‖Π0,0
N v− v‖ωα,β , by utilizing the approximation result

of Π0,0
N (Theorem 3.43, page 137 of [30]), we can obtain the desired estimate. The second

estimate is derived similarly.

From the above estimate in Theorem 4, one has

‖Πδ,κ
N,lu‖v

α,β,δ,κ
l

≤ ‖Πδ,κ
N,lu− u‖

v
α,β,δ,κ
l

+ ‖u‖
v

α,β,δ,κ
l

≤ C‖u‖
v

α,β,δ,κ
l

. (17)

and
‖Πδ,κ

N,ru‖
v

α,β,δ,κ
r

≤ C‖u‖
v

α,β,δ,κ
r

. (18)

This is the stability of the interpolations Πδ,κ
N,l and Πδ,κ

N,r.
Now, we give an inverse inequality.

Theorem 5. For −1 < α, β < 1, it holds

‖R
−1Dµ,κ

s φ‖
v

α+µ,β−µ,β−µ,κ
l

≤ CNµ‖φ‖
v

α,β,β,κ
l

, ∀φ ∈ Fβ,κ
N,l ,

‖R
s Dµ,κ

1 φ‖
v

α−µ,β+µ,α−µ,κ
r

≤ CNµ‖φ‖
v

α,β,α,κ
r

, ∀φ ∈ Fα,κ
N,r.

Proof. For φ(s) ∈ Fβ,κ
N,l , let φ(s) = ∑N

k=0 φ̂k Jα,β,β,κ
k,l (s) and one has

‖φ‖2
v

α,β,β,κ
l

=
N

∑
k=0
|φ̂k|2γ

α,β
k .

On the other hand, from Theorem 1, one has

R
−1Dµ,κ

s φ =
N

∑
k=0

φ̂k
R
−1Dµ,κ

s Jα,β,β,κ
k,l (s) =

N

∑
k=0

φ̂kλ
β,µ
k Jα+µ,β−µ,β−µ,κ

k,l (s).
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Then,

‖R
−1Dµ,κ

s φ‖2
v

α+µ,β−µ,β−µ,κ
l

=
N

∑
k=0
|φ̂k|2

(
λ

β,µ
k

)2
γ

α+µ,β−µ
k =

N

∑
k=0

(
λ

β,µ
k

)2 γ
α+µ,β−µ
k

γ
α,β
k

|φ̂k|2γ
α,β
k

≤Γ(N + β + 1)Γ(N + α + µ + 1)
Γ(N + β− µ + 1)Γ(N + α + 1)

N

∑
k=0
|φ̂k|2γ

α,β
k ≤ CN2µ‖φ‖2

v
α,β,β,κ
l

.

This is the first inequality. For φ(s) ∈ Fα,κ
N,r, let φ(s) = ∑N

k=0 φ̂k Jα,β,α,κ
k,r (s) and one has

‖φ‖2
v

α,β,α,κ
r

=
N

∑
k=0
|φ̂k|2γ

α,β
k .

On the other hand, from Theorem 1, one has

R
s Dµ,κ

1 φ =
N

∑
k=0

φ̂k
R
s Dµ,κ

1 Jα,β,α,κ
k,r (s) =

N

∑
k=0

φ̂kλ
α,µ
k Jα−µ,β+µ,α−µ,κ

k,r (s).

Then

‖R
s Dµ,κ

1 φ‖2
v

α−µ,β+µ,α−µ,κ
r

=
N

∑
k=0
|φ̂k|2

(
λ

α,µ
k

)2
γ

α−µ,β+µ
k =

N

∑
k=0

(
λ

α,µ
k

)2 γ
α−µ,β+µ
k

γ
α,β
k

|φ̂k|2γ
α,β
k

≤Γ(N + α + 1)Γ(N + β + µ + 1)
Γ(N + α− µ + 1)Γ(N + β + 1)

N

∑
k=0
|φ̂k|2γ

α,β
k ≤ CN2µ‖φ‖2

v
α,β,α,κ
r

.

This is the second inequality.

Then, we have the following estimate.

Theorem 6. For α, β > ν− 1 and 0 ≤ µ ≤ ν. If u ∈ B̌ν
α,β,β,l(I), then

‖R
−1Dµ,κ

s (Π
β,κ
N,lu− u)‖

v
α+µ,β−µ,β−µ,κ
l

≤ cNµ−ν‖R
−1Dν,κ

s u‖
v

α+ν,β−ν,β−ν,κ
l

,

and if u ∈ B̌ν
α,β,α,r(I), then

‖R
s Dµ,κ

1 (Πα,κ
N,ru− u)‖

v
α−µ,β+µ,α−µ,κ
r

≤ cNµ−ν‖R
s Dν,κ

1 u‖
v

α−ν,β+ν,α−ν,κ
r

.

Proof. Since Π
β,κ
N,l(P

β,κ
N,lu) = Pβ,κ

N,lu, then, from Theorems 2, 5 and the stability (17), one has

‖R
−1Dµ,κ

s (Π
β,κ
N,lu− u)‖

v
α+µ,β−µ,β−µ,κ
l

≤‖R
−1Dµ,κ

s (Π
β,κ
N,l(P

β,κ
N,lu− u))‖

v
α+µ,β−µ,β−µ,κ
l

+ ‖R
−1Dµ,κ

s (Pβ,κ
N,lu− u)‖

v
α+µ,β−µ,β−µ,κ
l

≤C1Nµ‖Πβ,κ
N,l(P

β,κ
N,lu− u)‖

v
α,β,β,κ
l

+ C2Nµ−ν‖R
−1Dν,κ

s u‖
v

α+ν,β−ν,β−ν,κ
l

≤C3Nµ‖Pβ,κ
N,lu− u‖

v
α,β,β,κ
l

+ C2Nµ−ν‖R
−1Dν,κ

s u‖
v

α+ν,β−ν,β−ν,κ
l

≤cNµ−ν‖R
−1Dν,κ

s u‖
v

α+ν,β−ν,β−ν,κ
l

.
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Then we obtain the first estimate. Since Πα,κ
N,r(P

α,κ
N,ru) = Pα,κ

N,ru, then from Theorems 2, 5
and the stability (18), one has

‖R
s Dµ,κ

1 (Πα,κ
N,ru− u)‖

v
α−µ,β+µ,α−µ,κ
r

≤‖R
s Dµ,κ

1 (Πα,κ
N,r(P

α,κ
N,ru− u))‖

v
α−µ,β+µ,α−µ,κ
r

+ ‖R
s Dµ,κ

1 (Pα,κ
N,ru− u)‖

v
α−µ,β+µ,α−µ,κ
r

≤C1Nµ‖Πα,κ
N,r(P

α,κ
N,ru− u)‖

v
α,β,α,κ
r

+ C2Nµ−ν‖R
s Dν,κ

1 u‖
v

α−ν,β+ν,α−ν,κ
r

≤C3Nµ‖Pα,κ
N,ru− u‖

v
α,β,β,κ
r

+ C2Nµ−ν‖R
s Dν,κ

1 u‖
v

α−ν,β+ν,α−ν,κ
r

≤cNµ−ν‖R
s Dν,κ

1 u‖
v

α−ν,β+ν,α−ν,κ
r

.

This ends the proof.

4. Differentiation Matrix of the Collocation Method

Let {ξi}N
i=0 be the JGL points defined as in the previous subsection and {Li(s)}N

i=0 be
the Lagrange interpolation basis functions with respect to the nodes {ξi}N

i=0, that is,

Li(s) =
N

∏
j=0,j 6=i

s− ξ j

ξi − ξ j
, i = 0, · · · , N.

4.1. Differentiation Matrix for the Left Tempered Derivative

For the interpolation operator Πδ,κ
N,l , the tempered fractional Lagrange interpolation

basis functions are defined by

Fδ,κ
i,l (s) := e−κ(s−ξi)

(
1 + s
1 + ξi

)δ

Li(s), i = 0, 1, 2, · · · , N, (19)

which satisfies Fδ,κ
i,l (ξk) = δik. Given function u(s) ∈ C(I) satisfies eκs(1 + s)−δu(s) being

continuous on I for some δ > −1. It can be interpolated by

u(s) ≈ uN(s) =
N

∑
i=0

u(ξi)Fδ,κ
i,l (s).

Naturally, the tempered Caputo fractional derivative of u(s) can be approximated by
its interpolation

C
−1Dµ,κ

s u(s) ≈
N

∑
i=0

u(ξi)
C
−1Dµ,κ

s Fδ,κ
i,l (s).

Now, we compute the differentiation matrix of the left tempered Caputo derivative
(DMLTCD), which is denoted as[

Dµ,κ
s,l

]
(N+1)×(N+1)

:= ( C
−1Dµ,κ

s Fδ,κ
i,l (ξk))

N
k,i=0.

To evaluate C
−1Dµ,κ

s Fδ,κ
i,l (s), the link between the Lagrange interpolation function Li(s)

and the Jacobi polynomials should be used (Theorem 3.28 of page 87 in [30])

Li(s) =
N

∑
j=0

lijP
α,β
j (s), (20)

where

lij =
Pα,β

j (ξi)ωi

γ
α,β
j

, j = 0, 1, · · · , N − 1; liN =
Pα,β

N (ξi)ωi(
2 + α+β+1

N

)
γ

α,β
N

,
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and {ωi}N
i=0 are the weights corresponding with the nodes {ξi}N

i=0 in the Jacobi–Gauss–
Lobatto quadrature. Then, we obtain that

C
−1Dµ,κ

s Fδ,κ
i,l (s) =

eκξi

(1 + ξi)δ

N

∑
j=0

lij C
−1Dµ,κ

s Jα,β,δ,κ
i,l (s). (21)

Denote

Sδ,κ,µ
n,α,β,l(s) := −1Iµ,κ

s

(
Jα,β,δ,κ
n,l (s)

)
=

1
Γ(µ)

∫ s

−1
(s− t)µ−1e−κ(s−t) Jα,β,δ,κ

n,l (t)dt.
(22)

In the sequence, we demonstrate how to compute Sδ,κ,µ
n,α,β,l(s).

Theorem 7. Let α, β, δ > −1 and µ > 0, s ∈ I. Then Sn,l := Sδ,κ,µ
n,α,β,l(s) and Ŝn,l := µSδ,κ,µ+1

n,α,β,l (s)
satisfy

Sn+1,l = (Aα,β
n s− Bα,β

n )Sn,l − Cα,β
n Sn−1,l − Aα,β

n Ŝn,l , n ≥ 1

and
Ŝn+1,l = ÃnŜn,l − B̃nŜn−1,l + (1 + s)

(
ãnSn−1,l + b̃nSn,l + c̃nSn+1,l

)
, n ≥ 1

with the starting terms

S0,l =
Γ(δ + 1)

Γ(δ + µ + 1)
e−κs(1 + s)δ+µ,

Ŝ0,l =
µ

δ + µ + 1
(1 + s)S0,l ,

S1,l =

(
(α + β + 2)(δ + 1)

2(δ + µ + 1)
(1 + s)− (β + 1)

)
S0,l ,

Ŝ1,l =

(
(α + β + 2)(δ + 1)

2(δ + µ + 2)
(1 + s)− (β + 1)

)
Ŝ0,l ,

respectively, where by denoting f α,β
n = 1 + (δ + µ + 1)Aα,β

n Ĉα,β
n ,

Ãn =
−(Aα,β

n + Bα,β
n )− (δ + µ + 1)Aα,β

n B̂α,β
n

f α,β
n

,

B̃n =
Cα,β

n + (δ + µ + 1)Aα,β
n Âα,β

n

f α,β
n

,

ãn =
µAα,β

n Âα,β
n

f α,β
n

, b̃n =
µAα,β

n B̂α,β
n

f α,β
n

, c̃n =
µAα,β

n Ĉα,β
n

f α,β
n

,

(23)

in which Aα,β
n , Bα,β

n , Cα,β
n and Âα,β

n , B̂α,β
n , Âα,β

n are given in Lemma 1 and (6), respectively.

Proof. By making use of the relation (7), we have

Sn+1,l = −1Iµ,κ
s

(
(Aα,β

n s− Bα,β
n )Jα,β,δ,κ

n,l (s)− Cα,β
n Jα,β,δ,κ

n−1,l (s)
)

= Aα,β
n −1Iµ,κ

s

(
sJα,β,δ,κ

n,l (s)
)
− Bα,β

n Sn,l − Cα,β
n Sn−1,l .
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Thus,

−1Iµ,κ
s

(
sJα,β,δ,κ

n,l (s)
)
=

e−κs

Γ(µ)

∫ s

−1
(s− t)µ−1t(1 + t)δPα,β

n (t)dt

=
e−κs

Γ(µ)

[
−
∫ s

−1
(s− t)µ(1 + t)δPα,β

n (t)dt + s
∫ s

−1
(s− t)µ−1(1 + t)δPα,β

n (t)dt
]

=− Ŝn,l + sSn,l .

Then, we obtain the first equality. With integration by parts, and from (5), we have∫ s

−1
(s− t)µ(1 + t)δ+1Pα,β

n (t)dt

=
∫ s

−1
(s− t)µ(1 + t)δ+1

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]′
dt

= −
∫ s

−1

[
(s− t)µ(1 + t)δ+1

]′[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt

= −(δ + µ + 1)
∫ s

−1
(s− t)µ(1 + t)δ

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt

+ µ(1 + s)
∫ s

−1
(s− t)µ−1(1 + t)δ

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt.

Hence, we have

Ŝn+1,l =
e−κs

Γ(µ)

∫ s

−1
(s− t)µ(1 + t)δPα,β

n+1(t)dt

=
e−κs

Γ(µ)

∫ s

−1
(s− t)µ(1 + t)δ

(
(Aα,β

n t− Bα,β
n )Pα,β

n (t)− Cα,β
n Pα,β

n−1(t)
)

dt

=
e−κs

Γ(µ)

[
Aα,β

n

∫ s

−1
(s− t)µt(1 + t)δPα,β

n (t)dt
]
− Bα,β

n Ŝn,l − Cα,β
n Ŝn−1,l

=
e−κs

Γ(µ)

[
Aα,β

n

∫ s

−1
(s− t)µ(1 + t)δ+1Pα,β

n (t)dt
]
− (Aα,β

n + Bα,β
n )Ŝn,l − Cα,β

n Ŝn−1,l

=
[
−(δ + µ + 1)Aα,β

n Ĉα,β
n

]
Ŝn+1,l +

[
−(δ + µ + 1)Aα,β

n B̂α,β
n − (Aα,β

n + Bα,β
n )
]
Ŝn,l

+
[
−(δ + µ + 1)Aα,β

n Âα,β
n − Cα,β

n

]
Ŝn−1,l + µ(1 + s)Aα,β

n

[
Âα,β

n Sn−1,l + B̂α,β
n Sn,l + Ĉα,β

n Sn+1,l

]
.

By working out Ŝn+1,l , we obtain the desired relation for n ≥ 1. The starting terms can
be derived by direct calculation.

Now, since
C
−1Dµ,κ

s Jα,β,δ,κ
i,l (s) = −1In−µ,κ

s (eκs Jα,β,δ,κ
i,l (s))(n),

we can evaluate quickly and stably by Theorem 7.

4.2. Differentiation Matrix for the Right Tempered Derivative

For the interpolation operator Πδ,κ
N,r, the tempered fractional Lagrange interpolation

basis functions are defined by

Fδ,κ
i,r (s) := eκ(s−ξi)

(
1− s
1− ξi

)δ

Li(s), i = 0, 1, 2, · · · , N, (24)

which satisfies Fδ,κ
i,r (ξk) = δik. Given function u(s) ∈ C(I) satisfies that e−κs(1− s)−δu(s) is

continuous on I for some δ > −1. It can be interpolated by

u(s) ≈ uN(s) =
N

∑
i=0

u(ξi)Fδ,κ
i,r (s).
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Naturally, the right tempered Caputo fractional derivative of u(s) can be approximated
by its interpolation

C
s Dµ,κ

1 u(s) ≈
N

∑
i=0

u(ξi)
C
s Dµ,κ

1 Fδ,κ
i,r (s).

Now, we compute the differentiation matrix of the right tempered Caputo deriva-
tive(DMRTCD), which is denoted as[

Dµ,κ
s,r

]
(N+1)×(N+1)

:= ( C
s Dµ,κ

1 Fδ,κ
i,r (ξk))

N
k,i=0.

Similar to the above subsection, we use (20) to obtain

C
s Dµ,κ

1 Fδ,κ
i,r (s) =

e−κξi

(1− ξi)δ

N

∑
j=0

lij C
s Dµ,κ

1 Jα,β,δ,κ
i,r (s). (25)

Now, denote

Sδ,κ,µ
n,α,β,r(s) := sI

µ,κ
1

(
Jα,β,δ,κ
n,r (s)

)
=

1
Γ(µ)

∫ 1

s
(t− s)µ−1e−κ(t−s) Jα,β,δ,κ

n,r (t)dt.
(26)

Theorem 8. Let α, β, δ > −1 and µ > 0, s ∈ I. Then Sn,r := Sδ,κ,µ
n,α,β,r(s) and Ŝn,r := µSδ,κ,µ+1

n,α,β,r (s)
satisfy

Sn+1,r = (Aα,β
n s− Bα,β

n )Sn,r − Cα,β
n Sn−1,r + Aα,β

n Ŝn,r, n ≥ 1

and
Ŝn+1,r = C̃nŜn,r − B̃nŜn−1,r + (1− s)

(
ãnSn−1,r + b̃nSn,r + c̃nSn+1,r

)
, n ≥ 1

with the starting terms

S0,r =
Γ(δ + 1)

Γ(δ + µ + 1)
eκs(1− s)δ+µ,

Ŝ0,r =
µ

δ + µ + 1
(1− s)S0,r,

S1,r =

(
− (α + β + 2)(δ + 1)

2(δ + µ + 1)
(1− s) + (α + 1)

)
S0,r,

Ŝ1,r =

(
− (α + β + 2)(δ + 1)

2(δ + µ + 2)
(1− s) + (α + 1)

)
Ŝ0,r,

respectively, where

C̃n =
Aα,β

n − Bα,β
n − (δ + µ + 1)Aα,β

n B̂n

f α,β
n

, (27)

and f α,β
n , B̃n and ãn, b̃n, c̃n are given in Theorem 7.

Proof. By making use of the relation (7), we have

Sn+1,r = sI
µ,κ
1

(
(Aα,β

n s− Bα,β
n )Jα,β,δ,κ

n,r (s)− Cα,β
n Jα,β,δ,κ

n−1,r (s)
)

= Aα,β
n sI

µ,κ
1

(
sJα,β,δ,κ

n,r (s)
)
− Bα,β

n Sn,r − Cα,β
n Sn−1,r.



Fractal Fract. 2023, 7, 277 15 of 26

Thus,

sI
µ,κ
1

(
sJα,β,δ,κ

n,r (s)
)
=

eκs

Γ(µ)

∫ 1

s
(t− s)µ−1t(1− t)δPα,β

n (t)dt

=
eκs

Γ(µ)

[∫ 1

s
(t− s)µ(1− t)δPα,β

n (t)dt + s
∫ 1

s
(t− s)µ−1(1− t)δPα,β

n (t)dt
]

=Ŝn,r + sSn,r.

Then, we obtain the first equality. With integrating by parts and from (5), we have∫ 1

s
(t− s)µ(1− t)δ+1Pα,β

n (t)dt

=
∫ 1

s
(t− s)µ(1− t)δ+1

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]′
dt

= −
∫ 1

s

[
(t− s)µ(1− t)δ+1

]′[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt

= (δ + µ + 1)
∫ 1

s
(t− s)µ(1− t)δ

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt

− µ(1− s)
∫ 1

s
(t− s)µ−1(1− t)δ

[
Âα,β

n Pα,β
n−1(t) + B̂α,β

n Pα,β
n (t) + Ĉα,β

n Pα,β
n+1(t)

]
dt.

Hence, we have

Ŝn+1,r =
eκs

Γ(µ)

∫ 1

s
(t− s)µ(1− t)δPα,β

n+1(t)dt

=
eκs

Γ(µ)

∫ 1

s
(t− s)µ(1− t)δ

(
(Aα,β

n t− Bα,β
n )Pα,β

n (t)− Cα,β
n Pα,β

n−1(t)
)

dt

=
eκs

Γ(µ)

[
Aα,β

n

∫ 1

s
(t− s)µt(1− t)δPα,β

n (t)dt
]
− Bα,β

n Ŝn,r − Cα,β
n Ŝn−1,r

=
eκs

Γ(µ)

[
−Aα,β

n

∫ 1

s
(t− s)µ(1− t)δ+1Pα,β

n (t)dt
]
+ (Aα,β

n − Bα,β
n )Ŝn,r − Cα,β

n Ŝn−1,r

=
[
−(δ + µ + 1)Aα,β

n Ĉα,β
n

]
Ŝn+1,r +

[
−(δ + µ + 1)Aα,β

n B̂α,β
n + Aα,β

n − Bα,β
n

]
Ŝn,r

+
[
−(δ + µ + 1)Aα,β

n Âα,β
n − Cα,β

n

]
Ŝn−1,r

+ µ(1− s)Aα,β
n

[
Âα,β

n Sn−1,r + B̂α,β
n Sn,r + Ĉα,β

n Sn+1,r

]
.

By working out Ŝn+1,r, we obtain the desired relation for n ≥ 1. The starting terms
can be derived by direct calculation.

The evaluation of the DMRTCD is similar to the previous part. In fact, the matrix
Dµ,κ

s,l can be obtained from Dµ,κ
s,r by Dµ,κ

s,l (i, j) = −Dµ,κ
s,r (n + 1− i, n + 1− j) according to the

relation between the left and right tempered fractional calculus.
In order to understand the behavior of the fractional calculus, we cite the following

result (see Proposition 2.1 in [32]):

Lemma 2. For a continuous function u(x) on [−1, 1],

lim
s→−1+

[
−1Iµ

s (1 + s)δu
]
(s) =


0, if µ > −δ,
u(−1)Γ(δ + 1), if µ = −δ,
∞, if µ < −δ.

From the above Lemma, it is known that the first row of the DMLTCD is all zeros
when δ > µ, and all infinity when δ < µ, so is the last row of the DMRTCD. In practice,
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the first row and column of the DMCHD (the DMRTCD) are removed according to initial
or boundary value conditions. The DMLTCD (the DMRTCD) is full for every µ > 0, and
the condition number of the DMLTCD (the DMRTCD) is like the first- or second-order
differentiation matrix in the collocation method, as usual. We compute the condition
numbers for different values of µ and show those in Figure 1 (for 0 < µ < 1) and Figure 2
(for 1 < µ < 2). The behavior of the condition number of the DMLTCD (the DMRTCD) is
like O(N2µ) from numerical tests.
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Figure 1. Condition number of DMLTCD with 0 < µ < 1, α = β = 0, δ = 0, κ = 1.

10
1

10
2

10
3

N

10
2

10
4

10
6

10
8

10
10

10
12

C
o
n
d
it
io

n
 N

u
m

b
e
r

= = =0, =1

=1.1

=1.3

=1.5

=1.7

=1.9

N
2.5

N
2.6

N
3

N
3.4

N
3.8

Figure 2. Condition number of DMLTCD with 1 < µ < 2, α = β = 0, δ = 0, κ = 1.
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Before providing more numerical results of tests, I would like to mention that all codes
were compiled by using MatLab R2019a on pc with AMD Ryzen 7, 5800H with Radeon
Graphics 3.20 GHz, RAM 16 G.

5. Applications to Nonlinear Initial Value Problems

Let 0 < µ < 1. In this section, we apply the spectral collocation method to the initial
value problem of nonlinear fractional ordinary differential equation below:{ C

0 Dµ,κ
x u(x) = f (x, u), 0 < x ≤ T,

u(0) = u0.
(28)

Hereafter, we assume that f (x, u) is continuous in the given domain and satisfies the
Lipschitz condition with respect to the second variable, which guarantees the existence and
uniqueness of the solution.

The spectral collocation method based on the TFJFs for (28) is to find uN ∈ Fδ,κ
N,l

such that

C
0 Dµ,κ̃

x uN(x) = f (x, uN(x)), x = xα,β
j =

T(1 + ξ j)

2
, j = 1, 2, · · · , N, (29)

and
uN(0) = u0. (30)

The above two equations lead to the following linear system(
2
T

)µ

Dµ,κ̃
s,l u = f(u), (31)

where Dµ,κ̃
s,l is the submatrix of Dµ,κ̃

s,l , which deletes the first row and column of Dµ,κ̃
s,l ,

u = uN(x), f(u) = f (x, u) + uad0, x = [xα,β
1 , xα,β

2 , · · · , xα,β
N ]T , d0 the first column of Dµ,κ̃

s,l .
We need to solve a nonlinear system (31) when f is nonlinear with respect to u. The

iteration methods can be used, e.g., Newton method. To measure the accuracy of the
method, we define the errors by

E0 = max
i=1,2,··· ,N

{|u(xi)− uN(xi)|},

where u(x) and uN(x) are the exact and numerical solutions, respectively.

Example 1. Consider (28) and f (x, u) = g(x)− u2, where g(x) is determined by

g(x) = u2 + C
0 Dµ,κ

x u(x).

The following two cases of the exact solutions are considered [33]:

C1. u(x) = e−κx(x2 − x) with T = 5.

C2. u(x) = e−κx
(

x8 − 3x4+µ/2 + 9
4 xµ
)

with T = 1.

Clearly, the homogeneous initial condition u(0) = 0 is fulfilled. In this example, the Newton
method is applied to solving the nonlinear system (31), which takes the following form:

un+1 = un + (D + 2diag(un))−1(Dun + un. ∗ un − g), n = 0, 1, · · · ,

where g = [g(xα,β
1 ), g(xα,β

2 ), · · · , g(xα,β
N )]T and D = ( 2

T )
µDµ,κ̃

s,l .

Since u(x) ∈ F0,κ
2 , with two degrees of freedom (N = 2, δ = 0), the method solves the

problem C1 exactly without consideration of nonlinear approximation. It is noticed that the
predictor–corrector method to solve the same problem in [33] achieves accuracy 10−4 by
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h = 1/160, whilst our method achieves an accuracy 10−16 by N = 2 (the iterative number
is less than 8 in the Newton method).

For the exact solution u /∈ Fδ,κ
N for any δ > −1 in C2, we test different N, δ and apply

the Newton method with maximum iterative step 20 to solve the nonlinear system. We list
the error E0 by N = 10, 20, 40, 80, 160 and δ = µ− 1 + 5 ∗ 10−11 for the case C2 in Table 1.
We also list the results by the predictor–corrector method to solve the same problem in [33].
It is shown our method is more superior.

Table 1. The numerical errors E0 of Example 1 with C2 solution (α = 0, β = 0, κ = 1).

N(1/h) µ = 0.2 [33] µ = 0.2 µ = 0.5 [33] µ = 0.5 µ = 0.9 [33] µ = 0.9

10 5.811 × 10−1 1.0898 × 10−7 2.441 × 10−2 8.4114 × 10−7 7.771 × 10−3 1.3961 × 10−6

20 2.001 × 10−1 5.1711 × 10−10 6.381 × 10−3 2.8558 × 10−9 1.441 × 10−3 3.3180 × 10−9

40 6.501 × 10−2 3.8736 × 10−13 2.821 × 10−3 7.4061 × 10−12 6.001 × 10−4 7.5808 × 10−12

80 8.351 × 10−3 1.2290 × 10−13 3.841 × 10−4 3.6507 × 10−13 1.521 × 10−4 1.1427 × 10−13

160 4.721 × 10−4 1.8164 × 10−11 2.231 × 10−5 1.5149 × 10−12 1.541 × 10−5 1.7109 × 10−13

6. Applications to the Fractional Helmholtz and Burgers Equations
6.1. Fractional Helmholtz Equation

Let 1 < µ < 2. In this subsection, we apply the spectral collocation method to the
following fractional Helmholtz equation:{

λ2u(x)− C
a Dµ,κ

x u(x) = f (x), a < x < b,
u(a) = ua, u(b) = ub.

(32)

The spectral collocation method based on the TFJFs for (32) is to find uN ∈ Fδ,κ
N

such that

λ2uN(x)− C
a Dµ,κ

x uN(x) = f (x), x = xα,β
j , j = 1, 2, · · · , N − 1, (33)

and
uN(a) = ua, uN(b) = ub. (34)

The above two equations lead to the following linear system:(
λ2I−

(
2

b− a

)µ

D̃µ,κ̃
s,l

)
u = f, (35)

where I is the unitary matrix, D̃µ,κ̃
s,l is the inner part of Dµ,κ̃

s,l , i.e., without the last row and

column of Dµ,κ̃
s,l , f = f (x) + uad0 + ubdN , d0 and dN the first and last columns of Dµ,κ̃

s,l .
To measure the accuracy of the method, we define the errors by

E0(N) = max
i=1,··· ,N−1

{|u(xi)− uN(xi)|},

where u(x) and uN(x) are exact and numerical solutions, respectively. To understand the
convergence behavior of the method, we define the order of convergence by

Ord(N1, N2) = −
log(E0(N1))− log(E0(N2))

log(N1)− log(N2)
.

Example 2. Consider (32) with [a, b] = [0, 2]. The source term f (x) is chosen such that the
problem satisfies one of the following two cases:

C1. Smooth solution: u(x) = e−κx sin(πx).
C2. Solution with low regularity: u(x) = e−κx[2σ+1xσ − x2σ+1].
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The homogeneous boundary conditions are implemented for two cases. The term C
a Dµ,κ

x u(x) in
C1 is approximated by

C
0 Dµ,κ

x e−κx sin(πx) ≈ e−κx
L

∑
k=1

(−1)kπ2k+1

Γ(2k + 2− µ)
x2k+1−µ,

with L = 50 to compute the right-hand function (RHF) f (x).

For the smooth solution C1, we solve Equation (32) by δ = 0. We list the errors E0
in Tables 2–4 for different values of parameters µ, α, β, κ and λ, which show that spectral
accuracy can be achieved for a large range of parameters. It is observed that there is no
significant difference between the Chebyshev method (α = β = −0.5) and the Legendre
method (α = β = 0) or other Jacobi methods by precision (see Table 3).

Table 2. Errors E0 of Example 2 with solution C1 (α = β = 0, δ = 0, κ = 1, λ = 0).

N µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.7 µ = 1.9 µ = 1.99

4 1.781 × 10−1 1.191 × 10−1 9.844 × 10−2 1.091 × 10−1 9.028 × 10−2 4.519 × 10−2

8 5.110 × 10−4 3.488 × 10−4 2.818 × 10−4 2.931 × 10−4 2.610 × 10−4 4.833 × 10−5

12 2.173 × 10−7 1.373 × 10−7 1.016 × 10−7 1.448 × 10−7 1.699 × 10−7 3.235 × 10−8

16 2.618 × 10−11 1.550 × 10−11 1.160 × 10−11 1.732 × 10−11 2.501 × 10−11 5.182 × 10−12

20 1.200 × 10−14 1.299 × 10−14 1.241 × 10−14 1.474 × 10−14 1.302 × 10−14 1.258 × 10−14

Table 3. Errors E0 of Example 2 with solution C1 (µ = 1.4, δ = 0, κ = 5, λ = 2).

N α = β = 0 α = β = −0.5 α = −β = 0.5 (α, β) = (−0.3, 0.8) α = β = 1

4 2.282 × 10−2 2.901 × 10−2 1.322 × 10−2 2.338 × 10−2 1.605 × 10−2

8 9.931 × 10−5 5.828 × 10−5 2.701 × 10−5 3.397 × 10−4 1.821 × 10−4

12 3.315 × 10−8 2.504 × 10−8 1.210 × 10−8 1.889 × 10−7 1.075 × 10−7

16 3.008 × 10−12 2.379 × 10−12 1.493 × 10−12 2.353 × 10−11 1.419 × 10−11

20 1.174 × 10−14 2.498 × 10−15 1.443 × 10−15 1.282 × 10−14 2.776 × 10−14

Table 4. Errors E0 of Example 2 with solution C1 (µ = 1.6, α = β = 0, δ = 0, λ = 1000).

N κ = 1 κ = 2 κ = 3 κ = 5 κ = 8 κ = 10

4 2.131 × 10−6 1.509 × 10−6 1.068 × 10−6 5.353 × 10−7 1.900 × 10−7 9.521 × 10−8

8 3.355 × 10−8 3.035 × 10−8 2.745 × 10−8 2.247 × 10−8 1.663 × 10−8 1.361 × 10−8

12 3.806 × 10−11 3.632 × 10−11 3.467 × 10−11 3.158 × 10−11 2.745 × 10−11 2.500 × 10−11

16 9.076 × 10−15 8.868 × 10−15 8.618 × 10−15 8.188 × 10−15 7.522 × 10−15 7.119 × 10−15

20 2.220 × 10−16 1.110 × 10−16 1.110 × 10−16 5.551 × 10−17 2.082 × 10−17 2.776 × 10−17

The exact solution has low regularity when σ is a non-integer in C2, so we expect
the order of convergence of our method to be finite. We list the errors E0 and the order of
convergence Ord in Tables 5–8. A possible guess of the Ord for the case C2 with δ = 0 is
O(N−2(σ−µ+1)) from the results in Tables 5 and 7. When δ = σ− 1, the super convergence
can be observed; see the results in Tables 6 and 8.
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Table 5. Errors E0 and Ord of Example 2 with solution C2 (σ = 1.4, α = β = 0, δ = 0, κ = 1, λ = 1).

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.9

N E0 Ord E0 Ord E0 Ord E0 Ord

8 3.744 × 10−2 - 4.300 × 10−2 - 4.544 × 10−2 - 2.319 × 10−2 -
16 6.835 × 10−3 2.45 8.416 × 10−3 2.35 1.331 × 10−2 1.77 1.350 × 10−2 0.78
32 1.072 × 10−3 2.67 1.877 × 10−3 2.16 3.968 × 10−3 1.75 7.138 × 10−3 0.92
64 1.607 × 10−4 2.74 4.121 × 10−4 2.19 1.150 × 10−3 1.79 3.632 × 10−3 0.97
128 2.482 × 10−5 2.69 8.961 × 10−5 2.20 3.327 × 10−4 1.79 1.829 × 10−3 0.99
256 3.946 × 10−6 2.65 1.950 × 10−5 2.20 9.585 × 10−5 1.80 9.166 × 10−4 1.00
512 6.369 × 10−7 2.63 4.245 × 10−6 2.20 2.757 × 10−5 1.80 4.588 × 10−4 1.00

Table 6. Errors E0 and Ord of Example 2 with solution C2 (σ = 1.4, α = β = 0, δ = 0.4, κ = 1, λ = 1).

µ = 1.1 µ = 1.3 µ = 1.5 µ = 1.9

N E0 Ord E0 Ord E0 Ord E0 Ord

8 4.526 × 10−5 - 1.453 × 10−5 - 9.694 × 10−6 - 5.743 × 10−6 -
16 5.361 × 10−7 6.40 1.066 × 10−7 7.09 5.753 × 10−8 7.40 3.732 × 10−8 7.27
32 1.061 × 10−8 5.66 7.197 × 10−10 7.21 3.757 × 10−10 7.26 2.171 × 10−10 7.43
64 1.072 × 10−10 6.63 4.430 × 10−12 7.34 2.126 × 10−12 7.47 1.183 × 10−12 7.52
128 7.944 × 10−14 10.40 6.140 × 10−14 6.17 5.207 × 10−14 5.35 4.952 × 10−14 4.58

Table 7. Errors E0 and Ord of Example 2 with solution C2 (µ = 1.4, α = β = 0, δ = 0, κ = 1, λ = 1).

σ = 1.2 σ = 1.6 σ = 1.9 σ = 2.4

N E0 Ord E0 Ord E0 Ord E0 Ord

8 8.700 × 10−2 - 2.008 × 10−2 - 2.608 × 10−3 - 2.659 × 10−3 -
16 2.745 × 10−2 1.66 3.490 × 10−3 2.52 2.875 × 10−4 3.18 1.369 × 10−4 4.28
32 9.543 × 10−3 1.52 6.934 × 10−4 2.33 3.740 × 10−5 2.94 8.736 × 10−6 3.97
64 3.160 × 10−3 1.59 1.317 × 10−4 2.40 4.672 × 10−6 3.00 5.404 × 10−7 4.01
128 1.049 × 10−3 1.59 2.509 × 10−5 2.39 5.866 × 10−7 2.99 3.380 × 10−8 4.00
256 3.468 × 10−4 1.60 4.768 × 10−6 2.40 7.357 × 10−8 3.00 2.120 × 10−9 3.99
512 1.145 × 10−4 1.60 9.050 × 10−7 2.40 9.206 × 10−9 3.00 1.476 × 10−10 3.84

Table 8. Errors E0 and Ord of Example 2 with solution C2 (µ = 1.33, α = β = 0, δ = σ− 1, κ = 2, λ = 1).

σ = 1.2 σ = 1.6 σ = 1.9 σ = 2.4
N E0 Ord E0 Ord E0 Ord E0 Ord

8 1.163 × 10−5 - 1.331 × 10−5 - 1.202 × 10−5 - 1.302 × 10−5 -
16 1.165 × 10−7 6.64 9.526 × 10−8 7.13 6.495 × 10−8 7.53 7.022 × 10−8 7.53
32 1.180 × 10−9 6.63 6.321 × 10−10 7.24 3.020 × 10−10 7.75 4.644 × 10−10 7.24
64 1.122 × 10−11 6.72 3.846 × 10−12 7.36 1.316 × 10−12 7.84 1.643 × 10−11 4.82
128 1.047 × 10−13 6.74 5.762 × 10−14 6.06 5.529 × 10−14 4.57 1.715 × 10−13 6.58

6.2. Fractional Burgers Equation

In the current subsection, we employ the spectral collocation method to solve the
fractional Burgers equation (FBE)

∂tu(x, t) + u(x, t)∂xu(x, t) = ε C
a Dµ,κ

x u(x, t), (36)

subject to homogeneous Dirichlet boundary conditions and initial condition u(x, 0) = u0(x),
where ε > 0 and 1 < µ < 2, (x, t) ∈ (a, b)× (0, 1].
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For time advancing, we employ a semi-implicit time-discretization scheme, namely,
the two-step second-order Crank-Nicolson/leapfrog scheme. Then, the full discretization
scheme reads as

(I− ετD̃)un+1 = (I+ ετD̃)un−1 − 2τ(diag(un)D)un, n ≥ 1,
u1 = (I+ ετD̃)u0 − τ(diag(u0)D)u0,
u0 = u0(x),

(37)

where D is the first-order differentiation matrix and D̃ = ( 2
b−a )

µD̃µ,κ
s,l .

Example 3. Consider (36) with the initial profile as one of the following:

C1. u0(x) = sin(πx), x ∈ [−1, 1].
C2. u0(x) = e−4x2

, x ∈ [−6, 6].

In the example, we always take α = β = 0, τ = 10−3.

We first consider the initial profile with two peaks, i.e., case C1. We show the numerical
solutions of the FBE at time t = 1 in Figure 3 for different values N = 50, 100, 300 by
µ = 1.18, ε = 1 and κ = 0, 1 (κ = 0 for non-tempered and κ = 1 for tempered case). It is
observed that the numerical solution is in good agreement with each other. The surface of
the numerical solution for µ = 1.4, κ = 1, ε = 1 is plotted in Figure 4 with N = 200. The
evolution of the numerical solution is observed. The numerical solutions of the FBE at
time t = 1 are plotted for different values of fractional-order µ = 1.2, 1.3, 1.5, 1.7, 1.9 and
κ = 1, ε = 1 in Figure 5 and for different values of tempered factor κ = 0, 0.5, 1, 1.5, 2 and
µ = 1.55, ε = 1 in Figure 6. We observed that the tempered diffusion becomes slower with
larger κ.

We consider the initial profile with single peak of case C2. We show the surface of
the numerical solution for µ = 1.4, κ = 1, ε = 1 in Figure 7 and the evolution of the
numerical solution. The numerical solutions of the FBE at time t = 1 are plotted in Figure 8
for different values of fractional-order µ = 1.2, 1.3, 1.5, 1.7, 1.9 where κ = 1, ε = 1 and in
Figure 9 for different values of tempered factor κ = 0, 0.5, 1, 1.5, 2 where µ = 1.55, ε = 1 . It
is shown that our method is a powerful tool to simulate the fractional-order diffusion of
the Caputo derivative as well as of the tempered case.
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Figure 3. Numerical solution uN(x, 1) for Example 3 of u0(x) = sin(πx) with µ = 1.18, ε = 1,
α = β = 0, τ = 10−3.
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Figure 4. Numerical solution uN(x, t) for Example 3 of u0(x) = sin(πx) with µ = 1.4, ε = 1,
N = 200, α = β = 0, τ = 10−3.
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Figure 5. Numerical solution uN(x, 1) for Example 3 of u0(x) = sin(πx) with N = 600, ε = 1,
α = β = 0, τ = 10−3.
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Figure 6. Numerical solution uN(x, 1) for Example 3 of u0(x) = sin(πx) with ε = 1, N = 600,
α = β = 0, τ = 10−3.

Figure 7. Numerical solution uN(x, t) for Example 3 of u0(x) = e−4x2
with N = 300, µ = 1.5, ε = 1,

α = β = 0, τ = 10−3.
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Figure 8. Numerical solution uN(x, 1) for Example 3 of u0(x) = e−4x2
with N = 400, κ = 1,

ε = 1, α = β = 0, τ = 10−3.
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Figure 9. Numerical solution uN(x, 1) for Example 3 of u0(x) = e−4x2
with N = 400, µ = 1.55,

ε = 1, α = β = 0, τ = 10−3.

7. Conclusions

Tempered fractional calculus is of importance in the family of fractional calculi with
potential applications. In this paper, we present a spectral collocation method using the
TFJFs as basis functions and obtain an efficient algorithm to solve tempered fractional
differential equations. The key in implementing it is to stably evaluate the collocation



Fractal Fract. 2023, 7, 277 25 of 26

differentiation matrix by utilizing a recurrence relation. The method is the direct collocation
method in strong form and shares spectral accuracy when the solutions of FDEs are smooth
from the approximate properties of the TFJFs. The effectiveness of the derived method is
confirmed by numerical tests for the nonlinear initial problems, the fractional Helmholtz
equation, and the fractional Burgers equation with the tempered Caputo derivative.

The method can be applied to other kinds of tempered fractional linear or nonlinear
differential equations and even for the variable-order case. On the other hand, the method
can be generalized to the multi-domain case, such as that in [34]. We will develop its
further applications in the future. Meanwhile, the symmetries of the FD equations are also
an interesting topic [35] that can be used to construct a structure-preserving high-order
algorithm. We expect to consider it in the future.

The present method is not able to resolve directly the fractional derivative of more
generalized fractal fractional derivatives, such as that in [36]. We will improve our method
to tackle it in the future.
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