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Abstract: In this article, a resilient consensus analysis of fractional-order nonlinear leader and follower
systems with input and distributed delays is assumed. To make controller design more practical, it
is considered that the controller is not implemented as it is, and a disturbance term is incorporated
into the controller part. A multi-agent system’s topology ahead to a weighted graph which may
be directed or undirected is used. The article examines a scenario of leader–follower consensus
through the application of algebraic graph theory and the fractional-order Razumikhin method.
Numerical simulations are also provided to show the effectiveness of the proposed design for the
leader–follower consensus.
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1. Introduction

There are different fields where cooperative control has achieved rising importance for
its vast application, for example satellite formation flying [1], -multi-vehicle cooperative
control [2], etc. Multi-agent system consensus has attained great attention. Great investiga-
tion is made on leader–follower consensus [3–7] and nonleader–follower consensus [8–15].
Some researchers give importance to dynamical standards of integer order [16–18]. There-
fore, fractional derivatives are convenient for describing many complicated phenomena
and processes in comparing with classical derivatives of integer order [19]. By using graph
theory and the Lyapunov function method, Yu et al. suppose a group of fractional-order
leader–follower consensus [20]. Bai et al. investigated a multi-agent system’s consensus
by designing a useful controller [21]. By using the proposed lemma and by constructing
a suitable Lyapunov function, Xu et al. analyse the replica of complicated systems of
fractional-order [22,23].

In a real dynamical system, a delay in time is a common phenomenon which in-
fluences the behavioural system of dynamical standards, and due to it, the system can
become ambiguous.

An investigation of the fractional-order-delayed system’s consensus can be conducted
by an analysis method of frequency-domain, such as in [24,25], considering the system’s
delay in input. Directed multi-agent systems with delays in nonuniform input and com-
munication were studied by Shen et al. [26]. With a delay in heterogeneous input, an
undirected multi-agent system is considered in [27]. In time domain analysis, the most
suitable access was given by the theory of Lyapunov stability for finding adherence and a
complicated dynamical system’s consensus.
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For dealing with the adherence of differential equations of fractional-order, the most
suitable approach was presented by Liu et al. in inequality on Riemann–Liouville deriva-
tives of quadratic function [28]. In many systems of fractional-order, certain stability criteria
are obtained by using a proposed lemma [29,30]. By using Caputo sense, a little progress is
made in systems of fractional-order through stability analysis. Since the fractional-order
operational composition property does not hold, some problems may occur while studying
a Caputo fractional-order delayed system’s consensus. The main reason for using the
Lyapunov direct method is convenience. Xu et al. investigated a fractional-order nonau-
tonomous system’s global asymptotical stability by selecting the convenient Lyapunov
function [31]. It is still a challenging problem involving which Lyapunov function to select
and how to show certain conditions for a fractional-order nonlinear delayed system con-
sensus. Wang et al. compared a fractional-order delayed system’s exponential consensus
with heterogeneous impulsive controllers, where an undirected graph was drawn with
the topology of coupling [32]. Zhu et al. studied systems of fractional-order with delay in
input by finding states of error where the topology of coupling headed a directed graph[33].
Generally, the topology of coupling leads to a weighted graph (directed).

The objective of this paper is to analyze the resilient consensus of a nonlinear multi-
agent system with distributed and input delays. To achieve this goal, the authors employ the
fractional Razumikhin approach and algebraic graph theory to derive algebraic conditions
for leader–follower consensus. This paper also includes examples to demonstrate the
applicability of the presented cases for consensus checking.
The main contributions can be described as follows.

(1) The parameters of controllers and multi-agent systems are co-designed based on the
model of nonlinear MASs. Compared with published results, the obtained fractional-
order controller is resilient to uncertainties.

(2) The majority of the results mentioned in previous related references [24–28] deals
with the assumptions that the nonlinear part f (τ, u(τ)) = 0 as u(τ) = 0. However,
the remainder of the nonlinear term f (τ, u(τ)) in the system dynamics model is not
negligible and cannot be completely canceled. Since f (τ, u(τ)) 6= 0 and u(τ) = 0 in
many cases, it should be well addressed in the design of the controller. Furthermore,
in the abovementioned references, it is assumed that the controllers derived by these
techniques are precise, accurate and exactly implemented, but this is not always
appropriate as it is difficult to have exact dynamics of the system. Therefore, in this
paper, we consider both the effect of uncertainty in the controller and the nonvanish-
ing nonlinearity in multi-agent dynamic systems to enhance the implementation of
the controller.

2. Preliminaries

First, we offer some definitions and some important lemmas which will be subse-
quently used. Consider a directed weighted graph A = (µ, ε), which contains a set of
vertices B = {ς1, ς2, ς3, ..., ςM} and a directed edge’s set ε ⊂ {{ς j, ςk} : ς j, ςk ∈ B}, where
every directed edge εjk is an ordered pair of vertices (ς j, ςk) which shows an edge which
originates at vertices ςk and ends at vertices ς j. ς j is called the tail, and ςk is the head.
Mj = {ςk|(ςk, ς j) : ς j, ςk ∈ ε} shows the neighbor’s set of the vertices ς j. Consider
C = (cjk)M×M as a weighted adjacency matrix, where cjk > 0 for (ς j, ςk) ∈ ε. Otherwise,
cjk = 0. Let A be a digraph.Then, its directed spanning tree is a subgraph of A, where by
following the directed edge, the root vertices can approach every other vertex [34].

Let D = (Ijk)M×M be the Laplacian matrix of graph A{
Ijk = −cjk, j 6= k
Ijj = ∑M

k=1,k 6=j cjk j = k.

It is obvious that ∑M
k=1 Ijk = 0 f or j = 1, 2, ..., M.
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Lemma 1 ([34]). The directed graph A has a directed spanning tree if and only if the eigenvalue of
the Laplacian matrix D is zero, and all other eigenvalue’s real components are non-negative.

Definition 1 ([19]). Let f (τ) be a function. Then, the annotation of Caputo derivative with order
α is

C
τ0

Dα
τ f (τ) =

1
Γ(n− α)

∫ τ

τ0

f n(s)
(τ − s)α−n+1 ds. (1)

0 ≤ n− 1 < α ≤ n, n ∈ Z+.

Definition 2 ([35]). Let f : Rm × R→ Rm be a function. Then, it is QUAD(∆, e) if there exists
a diagonal matrix ∆ ∈ Rm×m and a constant e > 0 satisfy

(x− y)T [ f (τ, x)− f (τ, y)]− (x− y)T∆(x− y) ≤ −e(x− y)T(x− y), f or any x, y ∈ Rm. (2)

Lemma 2 ([36]). Let E, F, G be three matrices. Then, the inequality(
E F

ET G

)
< 0 (3)

is equivalent to these inequalities

E < 0 and G− FTE−1F < 0. (4)

Lemma 3 ([37]). Let x(t) ∈ Rm be a continuously differentiable function, H > 0. The following
relationship holds

1
2

C
τ0

Dα
τ(xτ(τ)Hx(τ) ≤ xT(τ)HC

τ0
Dα

τ x(τ), ∀α ∈ (0, 1). (5)

Consider G = {θ|θ : [−r1, 0] → Rm is continous} denotes the Banach space containing a
supremum norm. Suppose a general fractional nonlinear equation with delay in time

C
τ0

Dα
τu(τ) = f (τ, uτ), τ ≥ τ0 (6)

for 0 < α ≤ 1 and uτ(v) = u(τ + v), v ∈ [−r1, 0], f maps R× (bounded sets of G ) into
bounded sets of Rm which satisfy f (τ, 0) = 0.

Lemma 4 ([38]). Suppose γ1, γ2, γ3 : R → R are continuous increasing functions, γ1(s) and
γ2(s) are positive if s is positive, and γ1(0) = γ2(0) = 0, γ̇2 > 0 if differential function
J : R× Rm → R and continuous increasing function η(s) greater than s for s > 0 exists such that
for θ ∈ G and u ∈ Rm

γ1(||u||) ≤ J(τ, u) ≤ γ2(||u||), (7)

if

J(τ + φ, θ(φ)) ≤ η(J(τ, θ(0))).

C
τ0

Dα
τ J(τ, θ(0)) ≤ −γ3(||θ(0)||), τ ≥ τ0. (8)

Zero solution u = 0 of equation (6) is asymptotically stable for φ ∈ [−v, 0]. u = 0 is globally
stable if γ1(s)→ ∞ as s→ ∞.

Lemma 5 ([39]). If λ1, λ2, ..., λn are the eigenvalues of matrix E ∈ Rnxn and µ1, µ2, ..., µm, are
eigenvalues of matrix F ∈ Rmxm, then λjµk(j = 1, 2, ..., n, k = 1, 2, ..., m) are the eigenvalues of
E⊗ F.
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3. Leader-Following Consensus

Here, with distributed and input delay, resilient-based consensus analysis of a fractional-
order nonlinear multi-agent system is discussed. On the basis of a fractional-order Razu-
mikhin approach, many convenient conditions are shown.

Consider the jth agent is

C
τ0

Dα
τuj(τ) = Fuj(τ) + f (τ, uj(τ)) + G

∫ 0

−r1

uj(τ + φ)dφ + x̂j(τ) + ∆xj(τ). (9)

j = 1, 2, ..., M, where uj(τ) = (uj1(τ), uj2(τ), ..., ujm(τ))
T and F is a constant matrix, and

∆xj(τ) is a disturbance in the controller and ∆xj(τ) = sint, which is assumed to be bounded
here. The leader satisfies

C
τ0

Dα
τu0(τ) = Fu0(τ) + f (τ, u0(τ)) + G

∫ 0

−r1

u0(τ + φ)dφ. (10)

The controller will be designed as follows:

xj(τ) = K
M

∑
k=1

cjk(uk(τ − r2)− uj(τ − r2)) + Kcj0(u0(τ − r2)− uj(τ − r2)) + ∆xj(τ), j = 1, 2, ..., M (11)

where r2 is the input delay, r1 is the distributed delay, and K is the constant matrix
whose eigenvalues are positive. If a directed connection is present from uk(τ) to uj(τ) ,
j = 1, 2, ..., M, k = 0, 1, ..., M. Then, E = (cjk)M×M, and cjk = 0 otherwise.

Definition 3 ([6]). Under the control law (11), leader–follower consensus of the multi-agent
system (9) and (10) is attained if for any j = 1, 2, ..., M.

lim
τ→∞

||uj(τ)− u0(τ)|| = 0. (12)

We need some lemmas and assumptions for obtaining results.
(H1). f is QUAD(∆, e).
(H2). With the leader rooted, the multi-agent system’s corresponding diagraph has a spanning tree.

Lemma 6 ([33]). Consider L = D + A0, A0 = diag(c10, ..., cM0). (H2) holds if and only if all
eigenvalues of matrix L have positive real parts.

Lemma 7. According to Lemma 5, if (H2) is satisfied, then eigenvalues of matrix of L⊗ K have
non-negative real parts.

Lemma 8. If there are a scalar β > 0 and a scalar σ > 0 and a positive definite matrix R > 0
and if (H1) and (H2) hold, then under the control law (11) the leader and follower consensus of
system (9) and (10) can be obtained.

IM ⊗ (F + FT + 2∆− 2eIm + βIm + R +
4∆x(τ)

σ
) +

1
β
(LT ⊗ KT)(L⊗ K) < 0. (13)

IM ⊗ (βIm −
1
r1

R) +
1
β
(IM ⊗ GT)(IM ⊗ G) < 0. (14)

Proof. Putting Equation (11) in Equation (9)

C
τ0

Dα
τuj(τ) = Fuj(τ) + f (τ, uj(τ)) + G

∫ 0

−r1

uj(τ + φ)dφ + K
M

∑
k=1

cjk(uk(τ − r2)− uj(τ − r2))

+Kcj0(u0(τ − r2)− uj(τ − r2)) + ∆xj(τ) + ∆xj(τ)). (15)

Subtracting Equation (10) from Equation (15)
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C
τ0

Dα
τuj(τ)−C

τ0
Dα

τu0(τ) = Fuj(τ) + f (τ, uj(τ)) + G
∫ 0

−r1

uj(τ + φ)dφ + K
M

∑
k=1

cjk(uk(τ − r2)

−uj(τ − r2)) + Kcj0(u0(τ − r2)− uj(τ − r2)) + 2∆xj(τ)− Fu0(τ)

− f (τ, u0(τ))− G
∫ 0

−r1

u0(τ + φ)dφ

C
τ0

Dα
τ [uj(τ)− u0(τ)] = F[uj(τ)− u0(τ)] + f (τ, uj(τ))− f (τ, u0(τ)) + G

∫ 0

−r1

[uj(t + φ)

−u0(τ + φ)]dφ + K
M

∑
k=1

cjk[uk(τ − r2)− u0(τ − r2) + u0(τ − r2)

−uj(τ − r2)]− Kcj0[uj(τ − r2)− u0(τ − r2)] + 2∆xj(τ).

C
τ0

Dα
τ [uj(τ)− u0(τ)] = F[uj(τ)− u0(τ)] + f (τ, uj(τ))− f (τ, u0(τ)) + G

∫ 0

−r1

[uj(t + φ)− u0(τ + φ)]dφ

+K
M

∑
k=1

cjk[uk(τ − r2)− u0(τ − r2)]− K
M

∑
k=1

cjk[uj(τ − r2)− u0(τ − r2)]

−Kcj0[uj(τ − r2)− u0(τ − r2)] + 2∆xj(τ). (16)

Suppose
ωj(τ) = uj(τ)− u0(τ), j = 1, 2, ..., M. (17)

Then, Equation (13) becomes

C
τ0

Dα
τωj(τ) = Fωj(τ) + f (τ, uj(τ))− f (τ, u0(τ)) + G

∫ 0

−r1

ωj(τ + φ)dφ + K
M

∑
k=1

cjk(ωk(τ − r2)

−ωj(τ − r2))− Kcj0ωj(τ − r2) + 2∆xj(τ). (18)

Choose a quadratic Lyapunov function

J(τ) =
M

∑
j=1

ωT
j (τ)ωj(τ). (19)

From Lemma 3 and along the solutions of (18), find the α-order derivative of J(τ).

C
τ0

Dα
τ J(τ) ≤ 2

M

∑
j=1

ωT
j (τ)

c
τ0

Dα
τωj(τ). (20)

Putting Equation (18) in Equation (20).

C
τ0

Dα
τ J(τ) ≤ 2

M

∑
j=1

ωT
j (τ)[Fωj(τ) + f (τ, uj(τ))− f (τ, u0(τ)) + G

∫ 0

−r1

ωj(τ + φ)dφ

+K
M

∑
k=1

cjk(ωk(τ − r2)−ωj(τ − r2))− Kcj0ωj(τ − r2) + 2∆xj(τ)]. (21)

From (H1), we have

ωT
j (τ)[ f (τ, uj(τ))− f (τ, u0(τ))]−ωT

j (τ)∆ωj(τ) ≤ −eωT
j (τ)ωj(τ).

Then,
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ωT
j (τ)[ f (τ, uj(τ))− f (τ, u0(τ))] ≤ ωT

j (τ)∆ωj(τ)− eImωT
j (τ)ωj(τ).

which implies that

ωT
j (τ)[ f (τ, uj(τ))− f (τ, u0(τ)] ≤ ωT

j (τ)(∆− eIm)ωj(τ). (22)

Notice that

Ijk = −cjk, j 6= k and Ijj =
M

∑
k=1,k 6=j

cjk,

We obtain

M

∑
k=1

cjk(ωk(τ)−ωj(τ)) =
M

∑
k=1,k 6=j

cjk(ωk(τ)−ωj(τ)) =
M

∑
k=1,k 6=j

cjkωk(τ)−
M

∑
k=1,k 6=j

cjkωj(τ)

= −
M

∑
k=1,k 6=j

Ijkωk(τ)− Ijjωj(τ).

Then, we obtain
M

∑
k=1

cjk(ωk(τ)−ωj(τ)) = −
M

∑
k=1

Ijkωk(τ). (23)

Now, putting values in Equation (21)

C
τ0

Dα
τ J(τ) ≤ 2ωT

j (τ)
M

∑
j=1

[Fωj(τ) + f (τ, uj(τ))− f (τ, u0(τ)) + G
∫ 0

−r1

ωj(τ + φ)dφ

+K
M

∑
k=1

cjk(ωk(τ − r2)−ωj(τ − r2))− Kcj0ωj(τ − r2) + 2∆xj(τ)]

≤ 2
M

∑
j=1

[ωT
j (τ)Fωj(τ) + ωT

j (τ)( f (τ, uj(τ))− f (τ, u0(τ)))

+2
∫ 0

−r1

M

∑
j=1

ωT
j (τ)Gωj(τ + φ)dφ + 2

M

∑
j=1

ωT
j (τ)K

M

∑
k=1

cjk(ωk(τ − r2)−ωj(τ − r2))

−2
M

∑
j=1

ωT
j (τ)Kcj0ωj(τ − r2) + 2

M

∑
j=1

ωT
j (τ)[2∆xj(τ)]].

By using Equation (22),

C
τ0

Dα
τ J(τ) ≤ 2

M

∑
j=1

[ωT
j (τ)Fωj(τ) + ωT

j (τ)(∆− 2eIm)ωj(τ)]

+2
∫ 0

−r1

M

∑
j=1

ωT
j (τ)Gωj(τ + φ)dφ + 2

M

∑
j=1

ωT
j (τ)K

M

∑
k=1

cjk(ωk(τ − r2)−ωj(τ − r2))

−2
M

∑
j=1

ωT
j (τ)Kcj0ωj(τ − r2) + 4∆x(τ)ωT(τ).
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C
τ0

Dα
τ J(τ) ≤ 2

M

∑
j=1

ωT
j (τ)(F + ∆− eIm)ωj(τ) + 2

∫ 0

−r1

M

∑
j=1

ωT
j (τ)Gωj(τ + φ)dφ

+2
M

∑
j=1

ωT
j (τ)K(−

M

∑
k=1

Ijkωk(τ − r2))− 2
M

∑
j=1

ωT
j (τ)Kcj0ωj(τ − r2)

+∆xj(τ)ωj(τ − r2) + 4∆x(τ)ωT(τ)

≤ 2
M

∑
j=1

ωT
j (τ)(F + ∆− eIm)ωj(τ) + 2

∫ 0

−r1

M

∑
j=1

ωT
j (τ)ωj(τ + φ)dφ

−2
M

∑
j=1

ωT
j (τ)K

M

∑
k=1

Ijkek(τ − r2)− 2
M

∑
j=1

ωT
j (τ)Kcj0ωj(τ − r2) + 4∆xωT(τ).

≤ 2ωT(τ)(IM ⊗ (F + ∆− eIm)ω(τ) + 2
∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−2ωT(τ)(D⊗ K)ω(τ − r2)− 2ωT(τ)(A0 ⊗ K)ω(τ − r2) + 4∆x(τ)ωT(τ)

≤ 2ωT(τ)(IM ⊗ (F + ∆− eIm)ω(τ) + 2
∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−2ωT(τ)(D + A0)⊗ Kω(τ − r2) + 4∆x(τ)ωT(τ).

By using Lemma 6,

C
τ0

Dα
τ J(τ) ≤ 2ωT(τ)(IM ⊗ (F + ∆− eIm)ω(τ) + 2

∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−ωT(τ)(L⊗ K)ω(τ − r2) + 4∆x(τ)ωT(τ)

≤ ωT(τ)(IM ⊗ (2F + 2∆− 2eIm)ω(τ) + 2
∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−2ωT(τ)(L⊗ K)ω(τ − r2) + 4∆x(τ)ωT(τ)

≤ ωT(τ)(IM ⊗ (F + FT + 2∆− 2eIm)ω(τ) + 2
∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−2ωT(τ)(L⊗ K)ω(τ − r2) + 4∆x(τ)ωT(τ).

where
ωT(τ) = (ωT

1 (τ), ..., ωT
M(τ))T .

Whenever

J(τ + v, u(τ + v)) < η J(τ, u(τ)), f or all − r ≤ v < 0

here r = max{r1, r2} ,for any β > 0 and for some η > 1

C
τ0

Dα
τ J(τ) ≤ ωT(τ)(IM ⊗ (F + FT + 2∆− 2eIm)ω(τ) + 2

∫ 0

−r1

ωT(τ)(IM ⊗ G)ω(τ + φ)dφ

−2ωT(τ)(L⊗ K)ω(τ − r2) + 4∆x(τ)ωT(τ) + β[ηωT(τ)(IM ⊗ Im)ω(τ)

−ωT(τ − r2)(IM ⊗ Im)ω(τ − r2)] +
∫ 0

−r1

β[ηωT(τ)(IM ⊗ Im)ω(τ)

−ωT(τ + φ)(IM ⊗ Im)ωω(τ + φ)]dφ.

Which implies that
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C
τ0

Dα
τ J(τ) ≤ ωT(τ)[IM ⊗ (F + FT + 2∆− 2eIm + βη Im + R)]ω(τ)− 2ωT(τ)(L⊗ K)ω(τ − r2)

−βωT(τ − r2)(IM ⊗ Im)ω(τ − r2) +
∫ 0

−r1

[ωT(τ)(IM ⊗ (βη Im −
1
r1

R)ω(τ))) + 2ωT(τ)(IM ⊗ G)

ω(τ + φ)− βωT(τ + φ)(IM ⊗ Im)ω(τ + φ)]dφ +
4∆x(τ)ωT(τ)ω(τ)

ω(τ)
.

C
τ0

Dα
τ J(τ) ≤ χT

r2

(
IM ⊗ (F + FT + 2∆− 2eIm + βη Im + R + 4∆x(τ)

ω(τ)
) −L⊗ K

−LT ⊗ KT −βIM ⊗ Im

)
χr2

+
∫ 0

−r1
χT

φ

IM ⊗ (βη Im − 1
r1

R IM ⊗ G
IM ⊗ GT βIM ⊗ Im

χφdφ. (24)

where χr2 = (ωT(τ), ωT(τ − r2))
T ,χφ = (ωT(τ), ωT(τ + φ))T ,σ = 1

ω(τ)
and φ ∈ [−r1, 0].

Suppose η → +1
C
τ0

Dα
τ J(τ) ≤ χT

r2

(
IM ⊗ (F + FT + 2∆− 2eIm + βIm + R + 4∆x(τ)

σ ) −L⊗ K
−LT ⊗ KT −βIM ⊗ Im

)
χr2 +

∫ 0

−r1
χT

φIM ⊗ (βIm − 1
r1

R) IM ⊗ G
IM ⊗ GT −βIM ⊗ Im

χφdφ.

By using inequalities (13) and (14) and Lemma 2(
IM ⊗ (F + FT + 2∆− 2eIm + βIm + R + 4∆x(τ)

σ ) −L⊗ K
−LT ⊗ KT −βIM ⊗ Im

)
< 0, (25)

and (
Im ⊗ (βIm − 1

r1
R) IM ⊗ G

IM ⊗ GT −βIM ⊗ Im

)
< 0. (26)

Systems (13) and (14) are satisfied in the sense of Lemma 2. It shows that if J(τ + v, u(τ + v))
< η J(τ, u(τ)), then c

τ0
Dα

τ J(τ) < 0, for some v ∈ [−r, 0] and η > 1. Hence, accord-
ing to Lemma 4, the system (15) is asymptotically stable. Under the control law (11), for
systems (9) and (10), leader–follower consensus is obtained.

Corollary 1. If (H1) and (H2) are satisfied, and there are a scalar β > 0, a scalar σ > 0 and a
non-negative definite matrix R > 0, then under control law (11), leader–follower consensus of (9)
and (10) can be obtained.

λmax[IM ⊗ (F + FT + 2∆− 2eIm + βIm + R +
4∆x(τ)

σ
) +

1
β
(LT ⊗ KT)(L⊗ K)] < 0, (27)

and
λmax(βIm −

1
r1

R +
1
β

GTG) < 0. (28)

Lemma 9. By using our criteria, it is more suitable to calculate a multi-agent system’s consensus,
in spite of criteria used in [33]. In this paper, the system which is being considered not only contains
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input and distributed delay, but it leads to a weighted directed graph too. Our criteria can be
used for more general multi-agent systems because criteria used in [33] lead to a directed graph
only. If “ωT(τ)(IM ⊗ R)ω(τ)” is replaced with r1ωT(τ)(IM ⊗ R)ω(τ)′ in the first equation of
Formula (24), then we obtain the following theorem.

Lemma 10. If (H1 ) and (H2) are satisfied and if there are scalars σ and β > 0 and a non-negative
definite matrix R > 0, then under the control law (11), we can obtain leader–follower consensus of
(9) and (10).

IM ⊗ (F + FT + 2∆− 2eIm + βIm + r1R +
4∆x(τ)

σ
) +

1
β
(LT ⊗ KT)(L⊗ K) < 0, (29)

and
IM ⊗ (βIm − R) +

1
β
(IM ⊗ GT)(IM ⊗ G) < 0. (30)

The results that are obtained must be suitable for FOMAS having undirected topology.

Lemma 11 ([34]). A graph A is considered connected if and only if its corresponding Laplacian
matrix D is a non-negative semi-definite matrix in an undirected graph A. The Laplacian matrix D
has a single, nonrepeated eigenvalue of zero, and all other eigenvalues are non-negative.

Lemma 12. The system leads to a directed weighted graph in Lemmas 8 and 11. If the system’s
topology is a connected undirected graph, then only Lemma 1 is replaced, and the proof is continued
in the same way.

4. Numerical Examples

Consider some examples for determining the convenience of results.

Example 1. Under the control law (11), consider nonlinear system (9) and (10) with four followers
and one leader, as shown in Figure 1. Consider the matrices F and G.

F =

−5.3 0 1.1
0 −3.2 0
0 0 −2.5

,

and

G =

0.19 0 0
0.12 0.35 0

0 0 0.17


From Figure 1

E =


0 0 0 0.5

0.2 0 0 0
0 0 0 1.4
0 0 0.6 0



A0 =


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.9



D =


0.5 0 0 −0.5
−0.2 0.2 0 0

0 0 1.4 −1.4
0 0 −0.6 0.6





Fractal Fract. 2023, 7, 322 10 of 16

L =


0.5 0 0 −0.5
−0.2 0.2 0 0

0 0 1.4 −1.4
0 0 −0.6 0.6

+


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.9


which implies that

L =


1 0 0 −0.5
−0.2 0.2 0 0

0 0 1.4 −1.4
0 0 −0.6 0.75


here f (τ, uj(τ)) = cos(uj(τ)), j = 0, 1, ..., 4 , α = 0.6 , r1 = 0.7.

V1

V2

V4

V3

V0

0.6
1.40.2

0.5

0.90.5

Figure 1. Directed spanning tree shown by nonlinear multi-agent system topology.

Consider e = 0.3 by using assumption (H1).

∆ =

0.7 0 0
0 0.7 0
0 0 0.7


Take β = 0.4 , we have according to (14)

IM ⊗ (βIm − 1
r1

R) + 1
β (IM ⊗ GT)(IM ⊗ G).

=IM ⊗ (βIm − 1
r1

R) + IM ⊗ 1
β GTG.

=IM ⊗ (βIm + 1
β GTG− 1

r1
R) < 0. That is,

βr1 Im +
r1

β
GTG− R < 0. (31)

Therefore,

R =

0.72 0 0.08
0 0.56 0

0.08 0 0.64


for satisfying (30) can be chosen.

Similarly, (13) implies

βIM ⊗ (F + FT + 2∆− 2eIm + R +
4∆x(τ)

σ
) + LT L⊗ KTK < 0. (32)
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Here ∆x(τ) = 20 cos(0.2), and σ = 0.1. Hence,

K =

0.2 0 0
0.3 0.5 0
0 0 0.1


for satisfying (31) can be chosen. According to Lemma 8, systems’ (9) and (10) leader–follower
consensuses under the control law (11) are obtained, and in Figures 2–5 the error states ωj(τ)
are discussed.

Example 2. Let nonlinear systems (9) and (10) under control law (11) with a leader and four
followers be as shown in Figure 3. Consider matrices F and G

F =

−3.8 0.4 0.9
0 −4.5 0
1 0.3 −3.7

, G =

0.19 0 0.1
0.16 0.3 0.1

0 0.2 0.1

 (33)

From Figure 6,

E =


0 0.4 0 0
0 0 1.1 0.3
0 1.1 0 0
0 0.3 0 0


and

A0 =


0.2 0 0 0
0 0.7 0 0
0 0 0 0
0 0 0 0



D =


0.4 −0.4 0 0
−0.4 1.8 −1.1 −0.3

0 −1.1 1.1 0
0 −0.3 0 0.3


and

L =


0.4 −0.4 0 0
−0.4 1.8 −1.1 −0.3

0 −1.1 1.1 0
0 −0.3 0 0.3

+


0 0.4 0 0
0 0 1.1 0.3
0 1.1 0 0
0 0.3 0 0


which implies that

L =


0.4 0 0 0
−0.4 1.8 0 0

0 0 1.1 0
0 0 0 0.3


here f (τ, uj(τ)) =

1
4 tanh uj(τ) , j = 0, 1, ..., 4 ,α = 0.5 , r1 = 0.3.

Let e = 0.3, ∆x(τ) = 20 sin(0.3) and

∆ =

0.6 0 0
0 0.6 0
0 0 0.6


Take α = 0.9. For fulfilling the consensus’s conditions

R =

0.48 0 0.04
0.2 0.52 0

0.04 0 0.56
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and

K =

0.3 0 0
0.2 0.5 0
0 0 0.4


can be taken. According to Lemma 8 under control law (11), the leader–follower consensus of
systems (9) and (10) with undirected topology is obtained. In Figures 7–10, the error states ωj(τ)
are explained.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

Figure 2. The graph represents the error state ωj(τ) of a multi-agent system following leader.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3. Leader–follower multi-agent system’s error state ωj(τ).
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

3

Figure 4. The leader–follower multi-agent system error states ωj(τ).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5. The leader–follower multi-agent system error states ωj(τ).

V1

V3

V2

V4

V0

0.31.1

0.4

0.70.2

Figure 6. Undirected connected graph shown by topology of a nonlinear multi-agent system.
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Figure 7. Graph represents error state ωj(τ) of a multi-agent system following leader.

Figure 8. Leader–follower multi-agent system’s error state ωj(τ) .

Figure 9. The leader–follower multi-agent system error states ωj(τ).
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Figure 10. The leader–follower multi-agent system error states ωj(τ).

5. Conclusions

Fractional-order nonlinear leader and follower systems with input and distributed
delay-resilient-based consensus were studied. By using the Razumikhin approach, some
suitable conditions were achieved. The criteria were expressed as linear matrix inequalities,
providing a suitable way to calculate consensus. This multi-agent system leads to a
weighted directed graph, and the results obtained are convenient for an undirected graph.
This shows that our criteria is more convenient for vast leader and follower systems.
Our upcoming research focuses on fractional-order singular multi-agent systems with
delayed consensus.
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