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Abstract: In this study, we take into account the fractional stochastic Kraenkel–Manna–Merle system
(FSKMMS). The mapping approach may be used to produce various type of stochastic fractional
solutions, such as elliptic, hyperbolic, and trigonometric functions. Solutions to the Kraenkel–Manna–
Merle system equation, which explains the propagation of a magnetic field in a zero-conductivity
ferromagnet, may provide insight into a variety of fascinating scientific phenomena. Moreover, we
construct a variety of 3D and 2D graphics in MATLAB to illustrate the influence of the stochastic
term and the conformable derivative on the exact solutions of the FSKMMS.
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1. Introduction

Due to the strong progress in information technology and the need for massive data
and high-density storage, a considerable amount of research on ferromagnetic materials
has been publicly accessible in recent decades. Tiny ferromagnetic particles may now be
produced due to recent technical advancements. It is crucial to comprehend the character-
istics of microstructures and super microstructures in nanoscale ferrous metals. A mag-
netic moment may be used to conceptually describe the magnetization of a population of
nanoparticles if they are all around the same size. Magnetic moments in ferromagnetic
particles move in opposite directions, allowing them to exchange information with one
another. These interactions perpetually generate solitons. As a result, many different types
of events related to the spread of solitary waves have been studied.

The exact solution of the differential equation must be discovered in order to de-
termine whether the soliton is destroyed after the impact. However, it has long been a
difficult but important task to solve nonlinear partial differential equations. Numerous
powerful methods for finding exact solutions, such as the generalized Kudryashov ap-
proach [1], the (G′/G)-expansion [2,3], the extended simple equation [4], the modified
stretched mapping technique [5], the improved tan(ϕ/2)-expansion [6], the Bernoulli
subequation function [7], the Ricatti equation expansion [8], Lie symmetry [9], the Exp-
function [10], and the sine-Gordon expansion [11,12], have been created by experts in the
fields of science and engineering.

Recently, stochastic partial differential equations (SPDEs) have been employed to
analyze chemical, biological, and physical systems that are affected by random factors.
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The importance of taking random impacts into account when modeling complex sys-
tems has been emphasized. SPDEs are used more and more in information systems,
condensed matter physics, finance, biophysics, mechanical and electrical engineering, mate-
rials sciences, and climate system modeling to create mathematical models of complicated
processes [13,14]. As a result, finding exact solutions to fractional or stochastic differen-
tial equations is crucial. For the purpose of solving these equations, several analytical
and numerical techniques, such as the modified F−expansion method [15], the extended
tanh–coth method [16], the Riccati–Bernoulli sub-ODE [17], the mapping method [18],
the (G′/G)-expansion method [19], etc., have been developed. On the other side, many
branches of physics, including solid-state physics, optical fibers, fluid mechanics, plasma
physics, neural physics, quantum field theory, and mathematical biology [20–23], make
use of fractional differential equations (FDEs). Furthermore, the concept of a fractional
derivative has been used to define a wide range of phenomena in fields as diverse as
nuclear physics, plasma physics, optical fiber communication, photonics, chaotic systems,
wave propagation, electromagnetism, signal processing, ocean waves, fluid dynamics,
and porous media.

In this study, we take into account the fractional stochastic Kraenkel–Manna–Merle
system (FSKMMS): {

Dα
xΦt −ΦDα

xΨ + κDα
xΨ = σDα

xΦBt,
Dα

xΨt −ΦDα
xΦ = σDα

xΨBt,
(1)

where the magnetization, represented by Φ = Φ(x, t), and the external magnetic fields,
represented by Ψ = Ψ(x, t), are related to the ferrite, Dα

x is the conformable derivative
operator for α ∈ (0, 1], κ represents the damping coefficient, σ is the noise intensity, B is the
Brownian motion, and Bt =

∂B
∂t .

If we put σ = 0 and α = 1, then the Kraenkel–Manna–Merle system (KMMS) is obtained:{
Φxt −ΦΨx + κΨx = 0,
Ψxt −ΦΦx = 0,

(2)

which may characterize the zero-conductivity nonlinear propagation of short waves in
saturated ferromagnetic materials. Equation (2) is integrable, and there are Lax pairings
when the damping is ignored (κ = 0). Many authors have created many methods in
order to obtain the solutions of KMMS (2) with κ = 0, such as the auxiliary equation
method [24], the (G′/G)-expansion method [25], the inverse scattering method [26], the bi-
linear method [27], etc. This is the first time that KMMS (2) has involved the presence of
both multiplicative noise and fractional derivatives.

The goal of this work is to establish the exact fractional stochastic solutions of the
FSKMMS (1) with κ = 0 by applying the mapping technique. In explaining crucial physical
phenomena, the solutions presented would be of great use to physicists. Moreover, we
provide many graphical representations using the MATLAB program to investigate the
influence of the fractional derivative on the exact solution of the FSKMMS (1).

The structure of the paper is as follows: In Section 2, we define the conformable
derivative (CD) and Brownian motion (BM) and discuss some of their features. In Section 3,
we find the wave equation for the FSKMMS (1), while the description of the mapping
method is given. In Section 5, the mapping method is used to provide an exact solution to
the FSKMMS (1). In Section 6, we examine how the fractional derivative and noise influence
the obtained solutions of the FSKMMS. Finally, the conclusions of the paper are presented.

2. The CD and BM

Different forms of fractional derivatives have been presented by several mathe-
maticians. The most well-known are the ones proposed by Riesz, Marchaud, Kober,
Riemann–Liouville, Erdelyi, Hadamard, Grunwald–Letnikov, and Caputo [28–31]. Recently,
Khalil et al. [32] developed a novel fractional derivative identified as the conformable
derivative (CD). Over the classical fractional derivatives, the CD offers two benefits. First,
the CD definition is natural, and it fulfills the majority of the features of the classical integral
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derivative, including the mean value theorem, Rolle’s theorem, the chain rule, the power
rule, linearity, the quotient rule, the product rule, and vanishing derivatives for constant
functions. Second, the CD is useful for modeling many physical problems because differen-
tial equations with CD are simpler to solve numerically than those with Riemann–Liouville
or Caputo fractional derivatives.

In the following, we define the conformable fractional derivative and discuss some of
its key characteristics.

Definition 1 ([32]). For α ∈ (0, 1], the CD of u : R+ → R is defined as

Dα
xu(y) = lim

h→0

u(x + hx1−α)− u(x)
h

.

The CD has the following features, if we assume that u, ϕ : R+ → R are differentiable
and α differentiable functions:

1. Dα
x[c1u(y) + c2 ϕ(y)] = c1D

α
xu(y) + c2D

α
x ϕ(y),

2. Dα
x[c1] = 0,

3. Dα
x(u ◦ ϕ)(x) = y1−α ϕ′(x)u(ϕ(x)),

4. Dα
x[xn] = nxn−α,

5. Dα
xu(x) = x1−α du

dx ,

for any real constants c1, c2.
Moreover, the BM B is defined as follows [33]:

Definition 2. The BM {B(τ)}τ≥0 is a stochastic process and fulfills:

1. B(0) = 0,
2. B(t) is continuous for t ≥ 0,
3. B(t2)−B(t1) is independent for t2 > t1,
4. B(t2)−B(t1) has a normal distribution N(0, t2 − t1).

We need the following lemma:

Lemma 1 ([33]). E(eρB(t)) = e
1
2 ρ2t for ρ ≥ 0.

3. The Traveling Wave Equation for the FSKMMS

Considering the zero dumping effect (κ = 0), we utilize the next wave transformation

Φ(x, t) = ϕ(ξ)e(σB(t)−
1
2 σ2t), Ψ(x, t) = ψ(ξ)e(σB(t)−

1
2 σ2t), and ξ =

1
α

ξ1xα + ξ2t, (3)

where ϕ(ξ) and ψ(ξ) are real functions, ξ1 and ξ2 are nonzero constants, and we are able
to obtain the wave equation of the FSKMMS (1). We note that

Dα
xΦ = ξ1 ϕ′e[σB(t)−

1
2 σ2t], Dα

xΦt = [ξ1ξ2 ϕ′′ + σξ1 ϕ′Bt]e[σB(t)−
1
2 σ2t], (4)

and

Dα
xΦt = [ξ1ξ2 ϕ′′ +

1
2

ξ1σ2 ϕ′ + σξ1 ϕ′Bt −
1
2

ξ1σ2 ϕ′]e[σB(t)−
1
2 σ2t]

= [ξ1ξ2 ϕ′′ + σξ1 ϕ′Bt]e[σB(t)−
1
2 σ2t],

Dα
xΨ = ξ1ψ′e[σB(t)−

1
2 σ2t], Dα

xΨt = [ξ1ξ2ψ′′ + σξ1ψ′Bt]e[σB(t)−
1
2 σ2t]. (5)

Inserting Equation (3) into Equation (1) and utilizing (4) and (5), we obtain{
ξ1ξ2 ϕ′′ − ξ1Φψ′e[σB(t)−

1
2 σ2t] = 0,

ξ1ξ2ψ′′ − ξ1 ϕϕ′e[σB(t)−
1
2 σ2t] = 0.

(6)
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Taking the expectation on both sides, we obtain{
ξ2 ϕ′′ − ϕψ′e−

1
2 σ2tEe[σB(t)] = 0,

ξ2ψ′′ − ϕϕ′e−
1
2 σ2tEe[σB(t)] = 0.

(7)

Using Lemma 2, where B(t) is a normal process with E(eσB(t)) = e
1
2 σ2t, Equation (7) becomes{

ξ2 ϕ′′ − ϕψ′ = 0,
ξ2ψ′′ − ϕϕ′ = 0.

(8)

Integrating the second equation in (8), we have

ψ′ =
1

2ξ2
ϕ2 +

c0

ξ2
. (9)

Substituting Equation (9) into the first equation in (8), we obtain

ϕ′′ + `1 ϕ3+`2 ϕ = 0, (10)

where
`1 =

−1
2ξ2

2
and `2 =

−c0

ξ2
2

.

4. Description of the Mapping Method

Here, let us describe the mapping method mentioned in [34]. We suppose that the
solutions to Equation (10) are

ϕ(ξ) =
M

∑
k=0

h̄kGk(ξ), (11)

where h̄i, for i = 1, 2, ... h̄M, are unknown constants, and G is the solution of

G ′ =
√

γ1 + γ3G2 + γ2G4, (12)

where the parameters γ1, γ3, and γ2 are real numbers.
We can observe that Equation (12) has multiple solutions dependent on γ1, γ2, and γ3,

as shown in the following Table 1.

Table 1. All solutions for Equation (12) for different values of γ1, γ2, and γ3 .

Case γ1 γ2 γ3 G(ξ)

1 1 m2 −(1 + m2) sn(ξ)

2 −m2(1−m2) 1 2m2 − 1 ds(ξ)

3 (1−m2) 1 2−m2 cs(ξ)

4 (1−m2) −m2 2m2 − 1 cn(ξ)

5 (m2 − 1) −1 2−m2 dn(ξ)

6 1
4

m2

4
(m2−2)

2
sn(ξ)

1±dn(ξ)

7 m2

4
m2

4
(m2−2)

2
sn(ξ)

1±dn(ξ)

8 −(1−m2)2

4
−1
4

(m2+1)
2 mcn(ξ)± dn(ξ)

9 (m2−1)
4

m2−1
4

(m2+1)
2

dn(ξ)
1±sn(ξ)
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Table 1. Cont.

Case γ1 γ2 γ3 G(ξ)

10 (1−m2)
4

1−m2

4
(1−m2)

2
cn(ξ)

1±sn(ξ)

11 1
4

(1−m2)2

4
(1−m2)2

2
sn(ξ)

dn±cn(ξ)

12 0 1 0 c
ξ

13 0 0 1 ceξ

where sn(ξ) = sn(ξ, m), dn(ξ, m) = dn(ξ, m), and cn(ξ) = cn(ξ, m), for 0 < m < 1,
represent the Jacobi elliptic functions (JEFs). The JEFs become the following hyperbolic
functions when m→ 1:

dn(ξ) → sech(ξ), sn(ξ)→ tanh(ξ), ds→ csch(ξ)

cn(ξ) → sech(ξ), cs(ξ)→ csch(ξ).

The JEFs become the following trigonometric functions when m→ 0:

cn(ξ) → cos(ξ), sn(ξ)→ sin(ξ), dn(ξ)→ 1,

ds → csc(ξ), cs(ξ)→ cot(ξ).

5. Exact Solutions of the FSKMMS

Now, we balance ϕ′′ with ϕ3 in Equation (10) to calculate M as follows

M + 3 = 2M ⇒ M = 1.

We rewrite Equation (12) with M = 1 as

ϕ(ξ) = h̄0 + h̄1G(ξ). (13)

Differentiating Equation (13) twice and using (12), we obtain

ϕ′′ = h̄1γ3G + h̄1γ2G3. (14)

Putting Equations (13) and (14) into Equation (10), we have

(h̄1γ2 + `1h̄3
1)G3 + 3h̄0h̄2

1`1G2 + (h̄1γ3 + 3`1h̄2
0h̄1 + `2h̄1)G + (`1h̄3

0 + `2h̄0) = 0.

Comparing each coefficient of G j with zero for j = 0, 1, 2, 3, we obtain

h̄1γ2 + `1h̄3
1 = 0,

3h̄0h̄2
1`1 = 0,

h̄1γ3 + 3`1h̄2
0h̄1 + `2h̄1 = 0,

and
`1h̄3

0 + `2h̄0 = 0.

When we solve these equations, we obtain

h̄0 = 0, h̄1 = ±
√

2γ2c0

γ3
, ξ2 = ±

√
c0

γ3
.
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Thus, the solution of the wave Equation (10) is:

ϕ(ζ) = ±
√

2γ2c0

γ3
G(ξ). (15)

There are many cases relying on γ2, γ3, and c0, such that γ2 > 0 and c0
γ3

> 0, by using
Table 1 as follows:

Case 1: With γ2 = m2, γ3 = −(m2 + 1), and c0 < 0, G(ζ) = sn(ζ),
Equation (15) becomes

ϕ(ζ) = ±

√
−2m2c0

(m2 + 1)
sn(ζ).

Therefore, the solution of FSKMMS (1) is

Φ(x, t) = ±

√
−2m2c0

(m2 + 1)
sn(ζ)e[σB(t)−

1
2 σ2t], (16)

Ψ(x, t) = [m2

√
−c0

(m2 + 1)

∫
sn2(ζ)dζ − 1

2
ζ(m2 + 1)]e[σB(t)−

1
2 σ2t], (17)

where ζ = ζ1
α xα ±

√
−c0

(m2+1) t. If m→ 1, then Equations (16) and (17) transfer into

Φ(x, t) = ±
√
−c0 tanh(ζ)e[σB(t)−

1
2 σ2t], (18)

Ψ(x, t) = [(

√
−c0

2
− 1)ζ −

√
−c0 tanh(ζ)]e[σB(t)−

1
2 σ2t], (19)

where ζ = ζ1
α xα ±

√
−c0

2 t.
Case 2: If γ2 = 1, γ3 = (2 − m2), and c0 > 0, then G(ζ) = cs(ζ), and

Equation (15) becomes

ϕ(ζ) = ±
√

2c0

2−m2 cs(ζ).

Therefore, the solution of FSKMMS (1) is

Φ(x, t) = ±
√

2c0

2−m2 cs(ζ)e[σB(t)−
1
2 σ2t], (20)

Ψ(x, t) = [
1
2
(2−m2)ξ +

√
c0

2−m2

∫
cs2(ζ)dξ]e[σB(t)−

1
2 σ2t], (21)

where ζ = ζ1
α xα ±

√
c0

2−m2 t.
If m→ 1, then Equations (20) and (21) transfer into

Φ(x, t) = ±
√

2c0csch(ζ)e[σB(t)−
1
2 σ2t], (22)

Ψ(x, t) = [(
√

c0 +
1
2
)ζ −

√
c0 coth(ζ)]e[σB(t)−

1
2 σ2t], (23)

where ζ = ζ1
α xα ±√c0t.



Fractal Fract. 2023, 7, 328 7 of 13

Case 3: If γ2 = 1, γ3 = 2m2 − 1, and either c0 > 0 for m < 1√
2

or c0 < 0 for m > 1√
2
,

then G(ζ) = ds(ζ), and Equation (15) becomes

ϕ(ζ) = ±
√

2c0

2m2 − 1
ds(ζ).

Therefore, the solution of FSKMMS (1) is

Φ(x, t) = ±
√

2c0

2m2 − 1
ds(ζ)e[σB(t)−

1
2 σ2t], (24)

Ψ(x, t) = [
1
2
(2m2 − 1)ξ +

√
c0

2m2 − 1

∫
ds2(ζ)dξ]e[σB(t)−

1
2 σ2t], (25)

where ζ = ζ1
α xα ±

√
c0

2m2−1 t. If m→ 1, then Equations (24) and (25) transfer into

Φ(x, t) = ±
√

2c0csch(ζ)e[σB(t)−
1
2 σ2t], (26)

Ψ(x, t) = [(
1
2
+
√

c0)(ζ)−
√

c0 coth(ζ)]e[σB(t)−
1
2 σ2t], (27)

with ζ = ζ1
α xα ±√c0t for c0 > 0. If m→ 0, then Equations (24) and (25) become

Φ(x, t) = ±
√
−2c0 csc(ζ)e[σB(t)−

1
2 σ2t], (28)

Ψ(x, t) = [(
1
2
+
√
−c0)(ζ) +

√
−c0 cot(ζ)]e[σB(t)−

1
2 σ2t], (29)

where ζ = ζ1
α xα ±

√
−c0t for c0 < 0.

Case 4: With γ2 = m2

4 , γ3 = (m2−2)
2 , and c0 < 0, then G(ζ) = ns(ζ) + ds(ζ), and

Equation (15) becomes

ϕ(ζ) = ±

√
c0m2

m2 − 2
(ns(ζ) + ds(ζ)).

Therefore, the solution of FSKMMS (1) is

Φ(x, t) = ±

√
c0m2

m2 − 2
[ns(ζ) + ds(ζ)]e[σB(t)−

1
2 σ2t], (30)

Ψ(x, t) = [(
(m2 − 2)

4
ζ +

m2

4

√
2c0

m2 − 2

∫
[ns(ζ) + ds(ζ)]2dζ]e[σB(t)−

1
2 σ2t], (31)

where ζ = ζ1
α xα ±

√
2c0

m2−2 t. If m→ 1, then Equations (30) and (31) transfer into

Φ(x, t) = ±
√
−c0[coth(ζ)− csch(ζ)]e[σB(t)−

1
2 σ2t], (32)

Ψ(x, t) = [
1
4
(
√
−2c0 − 1)ζ +

1
4

√
−2c0(csch(ζ) + coth(ζ))]e[σB(t)−

1
2 σ2t], (33)

with ζ = ζ1
α xα ±

√
−2c0t.

Case 5: If γ2 = (1−m2)2

4 , γ3 = (1−m2)2

2 , and c0 > 0, then G(ζ) = sn(ζ)
dn±cn(ζ) , and

Equation (15) becomes

ϕ(ζ) = ±
√

c0
sn(ζ)

dn± cn(ζ)
.



Fractal Fract. 2023, 7, 328 8 of 13

Therefore, the solution of FSKMMS (1) is

Φ(x, t) = ±
√

c0
sn(ζ)

dn± cn(ζ)
e[σB(t)−

1
2 σ2t], (34)

Ψ(x, t) = [
(1−m2)2

4
ζ − (1−m2)

4

√
2c0

∫ sn2(ζ)

(dn + cn(ζ))2 dζ]e[σB(t)−
1
2 σ2t], (35)

where ζ = ζ1
α xα ±

√
2c0

(1−m2)2 t. If m→ 0, then Equations (34) and (35) become

Φ(x, t) = ±
√

c0[csc(ζ)− cot(ζ)]e[σB(t)−
1
2 σ2t], (36)

Ψ(x, t) = [
1
4
(1−

√
2c0)ζ −

1
2

√
2c0(cot(ζ)− csc(ζ))]e[σB(t)−

1
2 σ2t], (37)

with ζ = ζ1
α xα ±

√
2c0t.

6. The Influences of the CD and BM

Next, we address the impact of the CD and BM on the exact solution of FSKMMS
(1). We provide a number of graphs to demonstrate the current state of these solutions.
For the obtained solutions, such as (16), (18), and (19), we simulate these graphs using the
parameters ξ1 = 1, x ∈ [0, 6], and t ∈ [0, 6].

Influences of the CD: The following graphs illustrate how the CD affected the obtained
solutions when σ = 0:

From Figures 1–3, we see that the solution curves do not intersect for any given set of
values of α.

(a) α = 1 (b) α = 0.7

(c) α = 0.5 (d) α = 1, 0.7, 0.5

Figure 1. (a–c) show the 3D profiles of Equation (16) with σ = 0, c0 = 3, and different values of α.
(d) denotes the 2D profile of Equation (16).
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(a) σ = 0, α = 1 (b) σ = 0, α = 0.7

(c) σ = 0, α = 0.5 (d) σ = 0, α = 1, 0.7, 0.5

Figure 2. (a–c) show the 3D profiles of Equation (18) with σ = 0, c0 = −4, and different values of α.
(d) indicates the 2D profile of Equation (18).

(a) σ = 0, α = 1 (b) σ = 0, α = 0.7

(c) σ = 0, α = 0.5 (d) σ = 0, α = 1, 0.7, 0.5

Figure 3. (a–c) show the 3D profiles of Equation (19) with σ = 0, c0 = −4, and different values of α.
(d) indicates the 2D profile of Equation (19).
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Noise Influences: The following graphs illustrate how the noise affected the
obtained solutions:

From Figures 4–6, we may deduce that there are several types of solutions, including
periodic ones, kinked ones, and others, when the noise is disregarded (i.e., at σ = 0).
The surface becomes much flatter after a few minor transits once noise is added and its
intensity is increased. Evidently, BM stabilizes the FSKMMS solutions.

σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 4. The 3D-profiles of solution Φ(x, t) in Equation (16).

σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 5. The 3D-profiles of solution Φ(x, t) in Equation (18) for various values of σ.
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σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 6. The 3D-profiles of solution Ψ(x, t) in Equation (19) for various values of σ.

7. Conclusions

In this study, we examined the fractional Kraenkel–Manna–Merle System (1) in ferro-
magnetic materials. Using the mapping approach, we obtained the exact solutions for the
FSKMMS without taking into account the damping term. Since Equation (1) is essential
for explaining the propagation of a magnetic field in a ferromagnet with zero conductiv-
ity, the solutions it yields are fundamental in understanding a wide range of intriguing
and complex physical phenomena. In addition, the MATLAB program was utilized to
demonstrate how the conformable derivative and Brownian motion affect the analytical
solution to the FSKMMS (1). We deduced that the Brownian motion stabilizes the solutions
of the FSKMMS. In future work, we can consider the FSKMMS with additive noise or with
multiplicative color noise.
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