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Abstract: In this paper, we propose a total fractional-order variation model for multiplicative noise
removal and contrast enhancement of real SAR images. Inspired by the high dynamic intensity range
of SAR images, the full content of the SAR images is preserved by normalizing the original data in
this model. Then, we propose a degradation model based on the nonlinear transformation to adjust
the intensity of image pixel values. With MAP estimator, a corresponding fidelity term is introduced
into the model, which is beneficial for contrast enhancement and bias correction in the denoising
process. For the regularization term, a gray level indicator is used as a weighted matrix to make
the model adaptive. We first apply the scalar auxiliary variable algorithm to solve the proposed
model and prove the convergence of the algorithm. By virtue of the discrete Fourier transform
(DFT), the model is solved by an iterative scheme in the frequency domain. Experimental results
show that the proposed model can enhance the contrast of natural and SAR images while removing
multiplicative noise.

Keywords: total fractional-order variation model; SAR images; nonlinear transformation; gray level
indicator

1. Introduction

Digital images are often affected by various external physical conditions during the
processes of storage, transmission, and transformation, resulting in quality degradation,
which not only affects the visualization of images, but also causes difficulties in the sub-
sequent processing and application of the image. Therefore, image denoising has always
been a hot research topic in image processing [1]. Noise in images can be roughly divided
into two categories: additive noise and multiplicative noise. In the past few decades,
research on removing additive noise has been extensive and mature. Unlike additive noise,
multiplicative noise, which commonly appears in SAR images, laser images, ultrasound
images, and positron emission tomography (PET), is signal independent, non-Gaussian,
and spatially dependent [2–5]. One of the most important tasks for this image denoising
problem is that details such as edges and textures should be efficiently kept while restoring
the degraded image. Since this course lacks some prior information, it is a classic ill-posed
problem. In this problem, we are interested in degraded image f : Ω → R arising from
original images u by corruption with (uncorrelated) multiplicative noise η of mean 1, i.e.,

f = uη. (1)

Here, η follows a Gamma distribution and the probability density function (PDF) of
Gamma noise is

pη(x; θ, K) =
1

θKΓ(K)
xK−1e−

x
θ (2)
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where Γ(·) is Gamma function, θ is scale parameter, and K is shape parameter. Furthermore,
the mean of η is Kθ and the variance of η is Kθ2. In general, we assume that the mean of η
is equal to 1, then we obtain Kθ = 1 and its variance of 1

K . The objective of image denoising
is to find the unknown true image u from a degraded image f .

In order to investigate the effect of degradation, we discriminate differences in the
strength of one-dimensional Gamma noise in Figure 1. For optical images, it shows that the
intensity value of the degraded signal usually has a higher intensity range compared to
the original signal. Unlike the imaging acquisition processes of optical images, the pixel
range of SAR images is usually much larger [6]. Specifically, SAR image data are highly
accurate and usually have a bit depth of 16 bits, 24 bits, or higher [7]. However, the existing
multiplicative denoising models often use a truncation function in the denoising process to
fix the pixel values of the image in a certain fixed range, which is obviously not suitable
for the denoising process of SAR images. Traditional linear histogram rescaling is a good
choice for image visualization; however, this simple linear shrinkage can cause significant
information loss due to the long distribution tails and the associated concentration on
low raw values [8]. To overcome these shortcomings, researchers have proposed more
innovative SAR image dynamic range compression algorithms, such as image compression
algorithms based on hierarchical image fusion and image compression algorithms based
on nonlinear transformation [9,10]. These algorithms have solved the problems of linear
dynamic range compression algorithms to a certain extent, but they still have the defects
of detail loss and poor adaptive processing ability [11]. Since existing models usually
use a truncation function to map the intensity values of the recovered images to [0, 255]
during denoising, this will reduce the purity of the edge/texture information in the SAR
images [12,13]. Therefore, the variation of intensity range should also be taken into account
when denoising multiplicative noise.

Figure 1. Original signal and noisy signal (K = 1).

To remove multiplicative noise from SAR images, many multiplicative denoising
models have been proposed, among which the variational models based on total variation
(TV) regularization have achieved impressive results, as the space of total variation exhibits
jump discontinuities [12–15]. In 2008, the AA model was designed to solve the degradation
model f = uη, the process of image reconstruction was formulated into the maximum a
posteriori (MAP) framework [12]. With MAP estimator, the model for restoring images
corrupted with Gamma noise was proposed as

inf
u∈BV(Ω)

E(u) = λ
∫

Ω

(
log u +

f
u

)
+ J(u),

where f is the corrupted image and J(u) stands for the total variation of u. The fidelity
term H(u, f ) =

∫
Ω

(
log u + f

u

)
dx is strictly convex for u ∈ (0, 2 f ). The parameter λ is

used to balance the influence of these two terms. Although the optimization problem is
nonconvex, Aubert and Aujol showed the existence of minimizers of the optimization
problem under certain conditions. For the reason that the AA model is nonconvex, the
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methods mentioned may stick at some local minimizers. To overcome these problems,
Shi and Osher [16] transformed the multiplicative denoising problem into an additive
denoising problem by considering a noisy observation given by log f = log u + log η, then
they turn the denoising model into a convex model by adopting the fidelity term. In [13],

Dong and Zeng added a penalty term
∫

Ω

(√
u
f − 1

)2
dx to the AA model by virtue of the

statistical properties of the multiplicative Gamma noise; the model is as follow:

inf
u∈S(Ω)

∫
Ω

(
log u +

f
u

)
dx + α

∫
Ω

(√
u
f
− 1
)2

dx + λ
∫

Ω
|Du|, (3)

which is global convex when the equilibrium parameters meet certain conditions. However,
the variational models based on total variation (TV) regularization often yield the staircase
effects and the loss of image contrasts [17].

To overcome the weakness of variational models based on the TV model, nonlinear
diffusion equation methods were also widely studied. Two types of nonlinear diffusion
equation methods have been proposed in the literature. The first type introduces the non-
linear diffusion equation of its integer order; for example, the speckle-reducing anisotropic
diffusion (SRAD) models [18,19] were proposed by modifying the diffusion coefficients to
deal with various noise distributions. In 2015, Zhou et al. proposed a nonlinear diffusion
filter denoising framework which was named the DD model [20]. They considered not only
the information of the gradient of the image, but also the information of gray levels of the
image; the diffusion model is shown as follow:

∂u
∂t

= div(a(|∇u|, u)|∇u|)− λH(u, f ), on Ω× (0, T),

〈∇u, n〉 = 0, on ∂Ω× (0, T),
u(x, y, 0) = f (x, y), on Ω,

where the parameter λ balances the fidelity term and the regularization term. In this
model, a particular case was chosen under the framework of the diffusion equation, i.e.,
they took H(u, f ) = 0. The coefficient a(|∇u|, u) = b(u)c(|∇u|) was divided into two
independent parts, where b(u) is a function of the gray level of u and c(|∇u|) is a function
of the gradient |∇u|. Inspired by the DD model, a gray level indicator-based nonlinear
telegraph diffusion model is also presented for image despeckling, which successfully
preserves the image edges during the noise removal process [21]. The mentioned models
often use information such as first-order differential operators or second-order Hessian
matrices to detect image gray value changes at the discrete level using neighboring pixel
points, and thus the obtained results are local in nature. Since the image texture structure
is usually non-local in nature, the image texture structure obtained by existing first- or
second-order denoising models is usually easily blurred.

Unlike the integer-order operator, the fractional-order differential operator is a non-
local operator [22,23] which can achieve texture detection by inductively obtaining the
autocorrelation of an image with different weight coefficients based on the proximity
relationship between individual pixel points of the image. Therefore, the second type
introduces the nonlinear diffusion equations of their fractional-order derivative, which
can be seen as the generalization of the integer-order derivative. In [24], Bai and Feng
introduced a fractional-order anisotropic diffusion model to remove additive noise (BF
model), which is shown as follow:

∂u
∂t

= −Dα∗
x (c(|Dαu|)Dαu)− Dα∗

y (c(|Dαu|)Dαu), (4)

where Dα∗
x is the adjoint of Dα

x and Dα∗
y is the adjoint of Dα

y . This model can be seen as gen-
eralizations of second-order and fourth-order anisotropic diffusion equations, because (4)



Fractal Fract. 2023, 7, 329 4 of 28

turned into the Perona–Malik model when α = 1 and the fourth-order anisotropic diffusion
model when α = 2. With 1 < α < 2, the BF model exhibited higher perceptual quality than
second-order and fourth-order PDEs. The diffusion equations can be seen as the Euler–
Lagrange equations of an increasing energy function of the absolute value of the fractional
derivative, but the energy minimization models are not studied in that way; in other words,
the model lacks some theoretical analysis. In order to analyze properties of the total α-order
variation, Zhang and Chen proposed a fractional-order derivative-based total α-order varia-
tion model which provides the foundation for applications in imaging inverse problems as a
regularization term [25]. Due to the strong denoising capability of the fractional-order diffu-
sion models, fractional-order derivatives are also used in the removal of multiplicative noise.
In [26], a fractional-order nonlinear diffusion model based on adaptive anisotropic frac-
tional diffusion equations (AAFD) was proposed to denoise the texture images corrupted
by multiplicative noise; the model is as follows:

∂u
∂t

= −Dα∗
x

((
|u|
M

)r 1
1+k|Dαu|β Dα

x

)
− Dα∗

y

((
|u|
M

)r 1
1+k|Dαu|β Dα

y

)
,

u(x, y, t) = 0, on ∂Ω× (0, T),
u(x, y, 0) = f (x, y), on Ω,

where 0 < α < 2, 0 < β < 1 and M = sup(x,y)∈Ω u. By adjusting the parameter α, the
fractional-order derivative performs well both in accommodating the texture details and
eliminating the staircase effect.

To the best of our knowledge, most of the aforementioned work does not take into
account the variation in the range of values of SAR images during denoising. In addition,
we always compute a smooth solution in Sobolev spaces [24,26,27]. Thus, smoothing (by
local weighted averaging) is an effective image regularization method that has been used
for denoising [24]. However, SAR images should not be smoothed too much, because the
studies on discriminating between SAR clutter textures are important [28,29]. Therefore,
to better preserve image texture details, the natural space for our computational solution
is BVα(Ω), i.e., the space of functions with bounded variation. When dealing with strong
Gamma noise, a truncation function is used to confirm the intensity values to be in [0, 255].
Regrettably, especially for SAR images, image structure and information would be terribly
damaged with the fixed intensity range. Due to the fact that plenty of models were proposed
to remove the multiplicative noise without considering the real range and information loss
of the restored images, a gray value adjustment is essential in the noise removal process.

In this paper, we aim to remove multiplicative noise from three real SAR datasets in
range [0, 1]. Because noise-free SAR images do not exist, we cannot calculate the PSNR and
MAE. To solve this problem, degraded aerial and texture images are normalized to simulate
real SAR images. Then, we propose a fractional-order variational denoising enhancement
model based on a nonlinear transformation that is effective in both texture enhancement and
noise removal. A lot of models are built on the inverse problem f

max( f ) =
u

max( f )η [12,26,27],
then the denoising result of u ∈ [0, 1] is obtained. However, max( f ) is unknown as the
Gamma noise is random, and u×max( f ) usually exceeds the displayable range of a normal
image. We aim to visualize the denoised result u more effectively. Thus, we proposed a
degradation model based on the nonlinear transformation to adjust the intensity of image
pixel value. The fractional-order variational model proposed in this paper was built on
this new degradation model. Considering the gray scale, visualizing the denoising results
to the range of [0, 255] by u× 255 is a suitable choice. Compared with the restored result
u ×max( f ), a bias correction is also introduced into the proposed denoising model to
overcome the accuracy problem. The existing integer-order operator uses adjacent pixel
points to detect the change in image gray value in the process of numerical discretization,
which is local in nature and is only applicable to dealing with local features, such as
image edges, and cannot effectively deal with non-local texture features. Due to the non-
locality, self-similarity, and long-range dependence property of fractional-order differential
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operators, an adaptive fractional-order regularization term is proposed in this paper to
protect the texture features of images.

Contributions

In this paper, we introduce a new degraded model with a nonlinear transformation.
Following the MAP estimator for multiplicative Gamma noise, a corresponding fidelity
term is obtained. Unlike many denoising models, we focus on information preservation and
detail enhancement for real SAR images or other images with high-intensity dynamic range.
Inspired by this issue, a total fractional-order variation model is proposed to preserve and
enhance the image textures. In this model, we do not use the truncation function to force
the intensity values of restored images between 0 and 255.

(i) A new degraded model is proposed in order to obtain the restored result in a proper
range from the normalized degraded images, then the corresponding fidelity term
is introduced, which is used to enhance the restored images and show more local
details.

(ii) We consider the framework of total fractional-order variation model with adaptive
regularization term for texture image multiplicative noise removal.

(iii) The proposed total fractional-order variation model is nonconvex, so a good initial-
ization will be helpful to obtain a satisfactory result. Thus, we give more flexible
initialization choices by tuning magnitude characteristics and reach a compromise
between sensitivity to noise and detection accuracy.

(iv) The noise removal model is firstly solved by the scalar auxiliary variable approach,
and the obtained experimental results are satisfied.

The rest of the paper is organized as follows. In Section 2, some related models
for multiplicative noise removal are briefly described. In Section 3, the new degraded
model aiming to enhance the detail of restored images is proposed, then we introduce the
fidelity term by using a maximum a posteriori (MAP) estimator. After that, we propose
a total fractional-order variation model with a gray level indicator, and the properties
of solutions to functional minimization are also demonstrated. In Section 4, the scalar
auxiliary variable approach is used to solve the minimization problem. In Section 5, some
numerical experiments are given to illustrate the performance of the proposed algorithm.
In Section 6, concluding remarks are given.

2. Related Methods

In this section, we give a review of the total α-order variation model and the fractional-
order anisotropic diffusion model, which motivate us to develop a new fractional-order
variation model for removing the multiplicative noise from SAR images.

2.1. α-TV Model

To mitigate the weakness of a total variation-based model for image restoration, Zhang
and Chen proposed a total α-order variation model in [25]. Furthermore, they first reviewed
some results of fractional-order derivatives and then analyzed the theoretical properties of
the proposed total α-order variational model rigorously; the model is as follow:

inf
u∈BVα(Ω)

{TVα(u) +
λ

2

∫
Ω
|u− f |2dx},

where Ω = (0, 1)× (0, 1) ⊂ R2 and 1 < α < 2. This model was designed in BVα(Ω) space,
which denotes the space of bounded variation functions. BVα(Ω) space is the subspace of
functions u ∈ L1(Ω), and the space of functions of BVα(Ω) is further defined by

BVα(Ω) := {u ∈ L1(Ω)|TVα(u) < ∞},
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where TVα(u) := supφ∈K
∫

Ω(−u divαφ)dx and K =: {φ ∈ C l
0(Ω,Rn), |φ(x)| ≤ 1, ∀x ∈ Ω}.

The convexity, the solvability, and a solution theory for the total α-order variation model
is also established, which makes it more advantageous to work with than high-order and
nonconvex counterparts (such as a mean curvature-based model).

The α− TV model did well in removing additive noise and preserve image detail
from non-texture images with clear edges. Unlike additive noise, multiplicative noise is
signal independent, non-Gaussian, and spatially dependent, i.e., variance is a function
of signal amplitude. Inspired by the α− TV model, we proposed a total fractional-order
variation model for multiplicative noise removal and contrast enhancement in real SAR
images. According to the properties of multiplicative noise and the task for image detail
enhancement, we try to propose a new degraded model. Following this degraded model, a
new fidelity term is proposed under the framework of MAP estimator.

2.2. FAD Model

In [27], Shan et al. applied the fractional Fick’s law to the framework of the diffusion
model for image processing (two-dimension task). Based on the comprehensive physi-
cal background of the fractional Fick’s law, they proposed a fractional-order anisotropic
diffusion model for multiplicative noise removal in texture-rich images, which is as follows:

∂u
∂t

= −∇ · q(x, y, t), in Ω× (0, T),

u(x, y, t) = 0, on ∂Ω× (0, T),
u(x, y, 0) = f (x, y), on Ω,

where Ω = [a, b]× [c, d] ⊂ R2 and ∇ = (∂x, ∂y). The diffusion flux q(x, y, t) = (qx, qy) is
defined by

qx = −c(u, |Dα
x+u|)Dα

x+u + c(u, |Dα
x−u|)Dα

x−u,

qx = −c(u,
∣∣∣Dα

y+u
∣∣∣)Dα

y+u + c(u,
∣∣∣Dα

y−u
∣∣∣)Dα

y−u,

where 0 < α < 3, Dα
x+, Dα

x−, Dα
y+, Dα

y− are the left and right Riemann–Liouville fractional

derivatives. The diffusion coefficient is defined as c(u, | · |) =
(

Gσu
max(Gσu)

)β
· 1

1+γ|·| , where β

and γ are both positive constants and Gσ is a convolution with a Gaussian kernel.
In this model, the diffusion coefficient involved not only the information of gray

levels of the image, but also the gradient of the image. Let c(u, |∇αu|) = a(u)b(|∇αu|),
then a(u) takes into account the gray level of the noisy image and controls the speed of
diffusion at different regions. b(|∇αu|) is used as a texture detection function and possesses
the similar form of the edge detection function (b(|∇αu|) would be small in the edge) in
the PM model. Compared with the traditional fractional-order diffusion model, the FAD
model performs well both in removing multiplicative noise and keeping texture. However,
the edge detection function would also be small when the image is degraded by strong
multiplicative noise, so both the texture and noise would be preserved. For this reason, we
design the same gray indicator, which takes into account the information of gray levels
of the image under the new degraded model. The gray indicator can also be seen as a
weighting function, and the information of gray levels controls the speed of diffusion at
different regions; the speed is slow at the low gray level, and the speed is fast at the high
gray level.

3. The Proposed Multiplicative Noise Removal Model with Contrast Enhancement

In this section, we introduce a new degradation model. Based on the Bayes rule, we
construct the fidelity term by using a maximum a posteriori (MAP) estimator. Then, an
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adaptive fractional-order regularization term is proposed for the fractional-order operator,
which is nonlocal and useful to preserve the texture details of the image.

3.1. New Degradation Model

Multiplicative noise distorts edge and subtle details of SAR images, and the multiplica-
tive model f = uη is widely accepted as a good descriptor for SAR data. However, SAR
images have large dynamic intensity that is different from a natural image, and the existing
speckle noise filtering approaches fail to preserve the significant information, namely to
capture the edge information from noise, thereby suppressing the edges or enhancing
the noise particle assumed by edges. In order to solve the problem that the dynamic
range of the processed image far exceeds the capabilities of the display device, the image
needs to compress the dynamic range [30,31], and the gray level slice is equivalent to the
spatial domain of bandpass filtering. The grayscale slicing feature can emphasize a set of
grayscale values and reduce all others, or it can emphasize a set of grayscale values without
considering other grayscale values.

In practical application, the intensity of raw SAR data is [0, 1]. Because of the strong
noise, most of the normalized signal is close to the gray value 0, and it leads to construct
reduction. Over the past fifty years, image enhancement methods had been developed,
such as histogram equalization and fuzzy set theory [32–34]. Histogram equalization is a
nonlinear stretching that redistributes pixel values so that each value has approximately
the same number of pixels within a range. The result approximates a flat histogram, then
the contrast increases at the peak and decreases at the tail. However, histogram equal-
ization does not always give satisfactory results since it might cause over-enhancement
for frequent gray levels and loss of contrast for less frequent ones [35]. Fuzzy set theory
is usually applied in image segmentation [36], and multiplicative noise makes the selec-
tion of the affiliation function more difficult. If we deal with SAR images by histogram
equalization, it would enhance the strong noisy signal as well. In addition, lower con-
trast may lead to blurring of the image, so the uncertainty of the image information will
increase accordingly.

To solve the above-mentioned problem, we introduce a nonlinear transformation
function ϕ(·) in this paper. The enhancement operation is performed in order to modify
the image brightness, contrast, or the distribution of the grey levels. Specifically, the
information of the image is retained and the contrast of the pixel values is enhanced by
the nonlinear transformation correction. To this end, the inverse problem of multiplicative
noise can be reconstructed as

ϕ( f̃ ) = uη, (5)

where ϕ(x) : [0, 1] → [0, 1) is continuous, concave down, and strictly increasing. If
ϕ(·) = I(·), the inverse problem becomes the original degraded model (1). f̃ = f

max( f )

is the normalized degraded image and ϕ( f̃ ) is recognized as the enhanced image. The
continuous and concave down properties of the function ϕ(·) preserve the variation in
intensity over different image regions and put an enhancement on the raw data f̃ . If ϕ(x)
is strictly increasing, it means that as one looks at a concave down graph from left to right,
the slopes of the tangent lines will be decreasing. Thus, the assumption of the concave
down function strengthens the raw data, especially when the raw data are small.

As can be seen from Figure 2b, Gamma correction gives a greater degree of enhance-
ment when the pixel values are small. Then, two problems typically arise with Gamma
correction: not enough correction and too much correction. Over-correction (in addition
to making mid-tones too light) shifts colors towards neutral grey, while under-correction
(in addition to making mid-tones too dark) shifts colors towards the display primaries.
Unlike Gamma correction, the nonlinear transform can take into account different regions
of the image by adjusting the values of the parameters c and p to give a suitable image
enhancement result. The higher the values of the parameters, the steeper the transformation
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curve becomes; see Figure 2a. To better illustrate the new degradation model, we show the
original image ‘Cameraman’: the noisy image f̃ with noise level K = 1 and the image ϕ( f̃ )
after the effect of the nonlinear transformation; see Figure 3.

(a) ϕ(x) =
(

ecx−e−cx

ecx+e−cx

) 1
p (b) φ(x) = x

1
p

Figure 2. Plots of two transformation functions.

(a) Clean image (b) f̃ (c) ϕ( f̃ )

(d) Clean image (e) f̃ (f) ϕ( f̃ )

Figure 3. Histograms of the image Cameraman with noise level K = 1.

It can be seen that the nonlinear transformed image shows more image details without
changing the shape of the noisy image distribution. In other words, the nonlinear correction
is a modification of the pixel values without changing the size, geometry, or local structure
of the image.

For the inverse problem, ϕ( f̃ ), u, and η are instances of some random variables F, U,
and V. In the following, if X is a random variable, we denote gX as its density function and
S as the set of the pixels of the image. Moreover, we assume that the samples of the noise
on each pixel s ∈ S are mutually independent and identically distributed with density
function gV .
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Proposition 1. Assume that U and V are independent random variables, with gU and gV as
continuous density functions. Let us set F = UV; we can deduce that

sup
u∈S(Ω)

P(U = u|F = ϕ( f̃ ))

⇐⇒ inf
u∈S(Ω)

∫
Ω

(
log u +

ϕ( f̃ )
u

)
dx + γ1

∫
Ω

φ(u), (6)

where γ1 is a constant and φ(u) is a nonnegative given function. The proof of Proposition 1 is
similar to that in [12].

3.2. The Proposed Model and Its Properties

In our proposed model, the fidelity term is based on MAP estimation of the new
degraded model. To better protect the image information, the regularization term is based
on the L2-norm of TV and fractional-order bounded variation. For the fractional bounded
variation, we also introduce a gray level indicator and use it as the weight of the adaptive
fractional bounded variation.

Specifically, we consider the hybrid total variation regularization defined as

J(u) =
ε

2

∫
Ω
|∇u|2dx +

∫
Ω

β(x)|∇αu|dx.

Ω is a bounded open subset of Rn with Lipschitz boundary and β(x) is a positive
valued continuous function on Rn. In practice, β(x) may be chosen as

β(x) =
(

ϕ( f̃ )
max(ϕ( f̃ ))

)q

,

where x ∈ Ω, and for the sake of simplicity, we denote f̃ (x) by f̃ . ϕ( f̃ ) =
(

ec f̃−e−c f̃

ec f̃ +e−c f̃

) 1
p

where c and q are constants, and 0 ≤ β(x) ≤ 1.
Following the fidelity terms (6) obtained from MAP estimation, we propose the

following multiplicative denoising model:

min
{u∈BVα(Ω)

⋂
L2(Ω)}

E(u) :=
ε

2

∫
Ω
|∇u|2dx +

∫
Ω

β(x)|∇αu|dx + λ
∫

Ω

(
log u +

ϕ( f̃ )
u

)
dx, (7)

where λ is a positive regularization parameter controlling the balance between the two
terms in the objective function. In order to present the character of the proposed fractional
method, we recall the total α-order variation and bounded β-total variation
introduced in [25,37].

We first review the definitions and simple properties of a fractional-order derivative.
Currently, the formula derived from the GL definition is used to calculate fractional deriva-
tives numerically. In this paper, we use the algorithm based on fractional Fourier transform
(FrFT) theory to solve the model in the frequency domain.

Definition 1 (Grünwald–Letnikov derivative). Assume α is a positive real number and 0 ≤
n− 1 ≤ α ≤ n, where n is an integer. v(x) is a function where x ∈ [a, b]; then

GL
a Dα

xv(x) = lim
h→0

h−α
[(x−a)/h]

∑
j=0

(−1)jCα
j v(x− jh)
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is the left-sided Grünwald–Letnikov derivative of v(x), where [θ] is the integer such that θ − 1 <
[θ] ≤ θ, and Cα

j = Γ(α + 1)/[Γ(j + 1)Γ(α− j + 1)] denotes the generalized binomial coefficient.
Similarly, the right-sided Grünwald–Letnikov derivative is defined as

GL
x Dα

b v(x) = lim
h→0

h−α
[(b−x)/h]

∑
j=0

(−1)jCα
j v(x + jh).

Definition 2 (See [37]). We assume u ∈ L1(Ω) to be in β− BV, if u has bounded total variation,
i.e.,

sup
φ∈Φβ

∫
Ω

udivφdx < ∞,

where Φβ =: {φ ∈ C l
0(Ω,Rn), |φ(x)| ≤ β(x), ∀x ∈ Ω}.

If u ∈ L1(Ω) has bounded α-total variation in Ω, there is a Radon vector measure ∇u
on Ω such that ∫

Ω
β(x)|Du| =: sup

φ∈Φβ

∫
Ω

udivφdx.

Definition 3 (bounded β-TVα). The bounded total α-order variation of u is defined by

β-TVα(u) := sup
φ∈Φβ

∫
Ω
(−u divαφ)dx,

where Φβ denotes the space of special test functions Φβ := {φ ∈ C l
0(Ω,Rn), |φ(x)| ≤ β(x), ∀x ∈

Ω}, and |φ| =
√

∑d
i=1 φ2

i . divαφ = ∑d
i=1

∂αφi
∂xα

i
and ∂αφi

∂xα
i

denotes a fractional α-order derivative
Dα
[a,b]φi of φi along the xi direction.

Based on the bounded variation (BV) seminorm, the β-BVα norm is defined by

‖u‖BVα = ‖u‖L1 + β-TVα(u),

and furthermore, the space of functions of BVα on Ω can be defined by

BVα(Ω) := {u ∈ L1(Ω)|β-TVα(Ω) < ∞}.

Remark 1. The space BVα(Ω) is a Banach space.

Proposition 2. The functional β-TVα(u) is convex.

Proposition 3 (Lower semicontinuity). Assuming that Ω is bounded and with a Lipschitz
boundary, uj ∈ BVα(Ω) and uj → u in L1(Ω). Then, there exists a minimum value u, and∫

Ω
β(x)|Dαu| ≤ lim inf

j→∞

∫
Ω

β(x)
∣∣Dαuj

∣∣.
Proposition 4 (A weak∗ topology). BVα(Ω) is a Banach space endowed with the norm ‖u‖BVα =
‖u‖L1 +

∫
Ω|D

αu|. We will not use this topology, which possesses no good compactness properties.
Classically, in BVα(Ω) one works with the BVα − w∗ topology; we have uj → u in L1(Ω), and
for all φ in C0(Ω)N , then

∫
Ω φDαuj →

∫
Ω φDαu.
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Proposition 5 (Compactness). Suppose that the sequence {uK}K∈R is bounded in BVα(Ω).
Then, there exist a subsequence ujk and u in BVα(Ω) such that ujk weakly converges to u in
BVα(Ω).

Theorem 1 (Existence). The functional E(u) : BVα(Ω)→ R has a minimum.

Proof. BVα(Ω) is a Banach space, E(u) is weak sequentially lower semicontinuous on
BVα(Ω), and BVα(Ω) is weak sequentially compact for the result of Proposition 5. With
the Prop. 38.12(d) in [38], we prove that the functional E(u) has a minimum.

Proposition 6. The functional E(u) has a unique minimizer in BVα(Ω) when 0 < u < 2ϕ( f̃ ).

Proof. For g(t) = log t + ϕ( f̃ )
t , we have g′(t) = 1

t −
ϕ( f̃ )

t2 = t−ϕ( f̃ )
t2 and g′′(t) = − 1

t2 +
2ϕ( f̃ )

t3 = 2ϕ( f̃ )−t
t3 . It can be obtained that g(t) is strictly convex if 0 < t < 2ϕ( f̃ ). Furthermore,

since β-TVα(u) is convex, we can deduce that E(u) has a unique minimizer in BVα(Ω).

3.3. Similarity Measure

Since multiplicative noise has unfavorable properties, a new similarity measure is
deduced consisting of a probability density function specially chosen for this type of noise
in [39], and all random variables are supposed to be real-valued, continuous, and defined
on a fixed probability space (Ω, F, g).

Proposition 7. Assuming that the distribution of Ui is unknown and the Gamma noise Vi is dis-
tributed with pη(v; θ, K) = KK

Γ(K)vK−1e−Kv1R>0(v), then we have the similarity measure function

sDDT(ϕ( f̃1), ϕ( f̃2))

=
∫ ∞

0
gF|U

(
ϕ( f̃1)|u

)
gF|U

(
ϕ( f̃2)|u

)
du

=
∫ ∞

0

1
u2 gV1

(
ϕ( f̃1)

u

)
gV2

(
ϕ( f̃2)

u

)
du

= Pϕ( f̃2)V1−ϕ( f̃1)V2
(0),

where sDDT is symmetric and not bounded from above. Specifically, sDDT( f , f ) = 1
f PV1−V2(0) for

all f = f1 = f2.

The proof of Proposition 7 is is similar to that in [39].

Proposition 8. With the definitions of the similarity measure function sDDT and Gamma function,
we have

sDDT(ϕ( f̃1), ϕ( f̃2))

= K
Γ(2K− 1)

Γ(K)2
(ϕ( f̃1)ϕ( f̃2))

K−1

(ϕ( f̃1) + ϕ( f̃2))2K−1

= K
Γ(2K− 1)

Γ(K)2
1

ϕ( f̃1) + ϕ( f̃2)

1

(2 + ϕ( f̃2)

ϕ( f̃1)
+ ϕ( f̃1)

ϕ( f̃2)
)L−1

.
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Proof. With the Gamma noise distribution pη(v; θ, K) = KK

Γ(K)vK−1e−Kv1R>0(v), we
obtain that

sDDT(ϕ( f̃1), ϕ( f̃2))

=
∫ ∞

0

1
u2 gV1

(
ϕ( f̃1)

u

)
gV2

(
ϕ( f̃2)

u

)
du

=
L2L

Γ(L)2 (ϕ( f̃1)ϕ( f̃2))
L−1 ·

∫ ∞

0

1
u2L exp

(
−L

ϕ( f̃1) + ϕ( f̃2)

u

)
du.

By the definition of the Gamma function [40], note the following equality:∫ ∞

0

A
xn exp

(
−B

x

)
dx = AB1−nΓ(n− 1).

Hence, we finally obtain

sDDT(ϕ( f̃1), ϕ( f̃2))

= K
Γ(2K− 1)

Γ(K)2
(ϕ( f̃1)ϕ( f̃2))

K−1

(ϕ( f̃1) + ϕ( f̃2))2K−1

= K
Γ(2K− 1)

Γ(K)2
1

ϕ( f̃1) + ϕ( f̃2)

1(
2 + ϕ( f̃2)

ϕ( f̃1)
+ ϕ( f̃1)

ϕ( f̃2)

)L−1 .

For the similarity measure function sDDT(ϕ( f̃1), ϕ( f̃2)), one may expect for a fixed
ϕ( f̃1) that this function would reach its maximum value if ϕ( f̃1) = ϕ( f̃2). However, for
L > 1 and a known ϕ( f̃1), the similarity measure function reaches its maximum value for
ϕ( f̃2) =

L−1
L ϕ( f̃1). We assume that ϕ( f̃2) ≈ u, then measure the similarity of u and ϕ( f̃1).

If L→ ∞, ϕ( f̃1) is a known noise-free image with enhancement, and u ≈ ϕ( f̃1). This means
that the role of the proposed model changes from two tasks, denoising and enhancement, to
enhancement of the image only. If L is small, we find that sDDT(ϕ( f̃1), ϕ( f̃2)) =

1
ϕ( f̃1)+ϕ( f̃2)

for the special case L = 1. Then, ϕ( f̃2) should be small, and denoising needs to be made the
top priority. In this case, u and ϕ( f̃1) should not be too close to each other, and the weight
of the regularization term in the model should be increased by adjusting the parameter.

3.4. Bias Correction

In [13], Dong and Zeng found that the AA model produces an image pixel value
offset after a theoretical analysis, so a bias correction for the AA-based model is necessary.
In addition, they add a new quadratic term to the AA model and reduce the influences
from the bias by keeping the restored image in the same scale as the degraded image f by
preserving the mean, i.e., mΩ(u∗) = mΩ( f ) with u∗ as a solution. However, this strategy is
not effective enough to deal with the high dynamic intensity range of SAR images, which
makes noise removal and local detail enhancement difficult. In this section, we find that
the new degraded model (8) is useful for reducing the influences from the bias through
theoretical analysis similar to that in [41].

Proposition 9. Suppose that ϕ( f̃ ) = u∗η, and infΩ u∗ > 0. Let u∗ be a solution of (6); then we
have the solution u∗ satisfying ∫

u∈S(Ω)

1
ϕ( f̃ )

dx ≥
∫

u∈S(Ω)

1
u∗

dx.
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Proof. We define a function as follows:

e(t) :=
∫

Ω

(
log(u∗ + t) +

ϕ( f̃ )
u∗ + t

)
dx + λ

∫
Ω
|D(u + t)|,

where t ∈ (infΩ u∗,+∞). Since t = 0 is a local minimizer of e(t), we have e′(t) = 0, which
leads to ∫

Ω

[
1

u∗
− ϕ( f̃ )

(u∗)2

]
dx = 0.

Then we have ∫
Ω

1
u∗

dx =
∫

Ω

ϕ( f̃ )
(u∗)2 dx.

According to Ḧolder’s inequality and the nonnegativity of u∗ and ϕ( f̃ ), we obtain

∫
Ω

ϕ( f̃ )
(u∗)2 dx ·

∫
Ω

1
ϕ( f̃ )

dx ≥
(∫

Ω

1
u∗

dx
)2

.

Combining both, we then have∫
Ω

1
ϕ( f̃ )

dx ≥
∫

Ω

1
u∗

dx. (8)

Due to the new degraded model (5), f̃ is normalized to deal with the high dynamic
range problem, and ϕ( f̃ ) is adjustable with the parameter c and p. If c1 > c2 and p1 > p2,
then ϕ1( f̃ ) > ϕ2( f̃ ). Thus, the nonlinear transformation function ϕ( f̃ ) makes it possible
to give a proper bias correction on (8). With the new degraded model (5), we can not
only enhance the local contrast of the restoring images but also give a satisfactory bias
correction by selecting the best parameters c and p. Because better peak signal-to-noise
ratio (PSNR) results can usually be obtained with a small bias, complete elimination of bias
is not necessary.

4. SAV Algorithm for Solving the Proposed Variational Model

There are a number of numerical algorithms available for solving the variational
model (7), such as the Split–Bregman algorithm [42], primal-dual algorithm in [43–45],
and alternating direction method [46,47] which are widely used to solve L1 regularization.
However, these optimization algorithms are mainly used to deal with linear models, and
their convergence is also based on the corresponding linear models. In order to solve the
nonlinear model, Shen et al. [48] extended the IEQ to the scalar auxiliary variable (SAV),
resulting in more robust schemes with less restrictions on the energy functionals. In this
paper, we solve problem (7) by adopting the SAV approach.

The SAV approach is used to solve the minimization problem for a free energy func-
tional E(u). The problem can be modeled by partial differential equations having the form
of gradient flows in L2, which can be written as

∂u
∂t

= −µ, (9)

where µ = ∂E
∂u denotes the variational derivative.
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The typical free energy functional E(u) usually contains a quadratic term, which can
be written as

E(u) =
∫

Ω

[ ε

2
|∇u|2 + F(u)

]
dx + C0, (10)

where F(u) is a nonlinear term. In order to employ the SAV approach, E(u) should
be bounded from below [49], i.e., there always exists a positive constant C0 such that
E(u) + C0 > 0. Therefore, we modify E by adding a positive constant C0 to E without
altering the gradient flow.

Consider the proposed free energy functional E1(u) =
∫

Ω F(u)dx + C0, where

F(u) =
∫

Ω
β(x)|∇αu|dx + λ

∫
Ω

(
log u +

ϕ( f̃ )
u

)
dx. (11)

Then, the corresponding gradient flow in L2 is as follows:

∂u
∂t

= −µ,

µ = ∂E/∂u = −ε∆u + F′(u).

By introducing a scalar auxiliary variable r =
√

E1(u), the problem (9) can be equiva-
lently rewritten as 

∂u
∂t = −µ,
µ = −ε∆u + r√

E1(u)
F′(u),

dr
dt =

1
2
√

E1(u)

∫
Ω F′(u)utdx.

(12)

Then, a first-order SAV scheme with explicit treatment for problem (12) is as follows:

un+1 − un

δt
= −µn+1, (13)

µ = −ε∆un+1 +
r̄n+1√
E1(un)

F′(un), (14)

r̄n+1 − rn

δt
=

1
2
√

E1(un)

∫
Ω

F′(un)
un+1 − un

δt
dx. (15)

We used the same strategy as in [49], updating the variable rn+1 via rn+1 =
√

E1(un).
Next, we will analyze the stability property of the scheme in the following theorem.

Theorem 2. The scheme (13)–(15) is unconditionally stable in the sense that the following discrete
energy law holds

ε2

2 ‖∇un+1‖2
0 + |rn+1|2 −

[
ε2

2 ‖∇un‖2
0 + |rn|

]
δt

≤ −‖µ‖2
0,

where rn =
√

E1(un).

In addition to the unconditional stability, the scheme (13)–(15) can be efficiently
implemented. Firstly, we eliminate µn+1 and r̄n+1 from (13)–(15) to obtain

un+1 − un

δt
= ε∆un+1 − F′(un)√

E1(un)

[
rn +

∫
Ω

F′1(u
n)

2
√

E1(un)
(un+1 − un)dx

]
.
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Let

bn =
F′(un)√
E1(un)

,

then the above equation can be written as

(I − δtε∆)un+1 +
δt

2
bn(bn, un+1) = un − δtrnbn +

δt

2
(bn, un)bn = gn. (16)

To determine (bn, un + 1) from the above equation, we multiply (16) with (I − εδt∆)−1

and denote A = I − εδt∆. Taking the inner product with bn, we then obtain

(bn, un+1) +
δt

2
γn(bn, un+1) = (bn, A−1gn),

where γn = (bn, A−1bn). Since −∆ is a positive operator, we then have A = I − εδt∆ ≥ 0
and γn = (bn, A−1bn) ≥ 0. With the equation above, we deduce that

(bn, un+1) =
(bn, A−1gn)

1 + δtγn/2
. (17)

(i) Calculation of bn and gn: solving the elliptic problem (16), we can also obtain γn =

(bn, A−1bn).
(ii) Evaluation of (bn, un+1) using (17).
(iii) With (bn, un+1) known, we can Calculate un+1 from (16) as

un+1 = − δt

2
A−1bn(bn, un+1) + A−1gn.

The adaptive time step technique allows us to reduce the computation time compared
to keeping the time step constant [50,51]. In order to reduce the computation time, we adopt
the same adaptive time stepping strategy for our provably stable scheme. This adaptive
time step strategy is applied in Algorithm 1. The local error of a numerical method with
order p is modeled as tol = ek = C(τk)p+1, where τ denotes the time step size, C is a
constant, and tol is a reference tolerance. Here, we set tol ≤ 0.7. Then, we use to update the
time step size

F(ek, τk) = ρ

(
tol
ek

) 1
2
τk,

where ρ is a default coefficient, and we chose ρ = 0.8. In addition, the minimum and
maximum time steps are set as τmin = 10−4 and τmax = 10−1.

Algorithm 1 SAV algorithm to solve the proposed model.

Input: f , λ, p, q, c, r, α, τ.

Initialize: f̃ = f
max( f ) , u0

i,j =
ϕr( f̃ )

max ϕr( f̃ )
, ϕ( f̃ ).

Calculation: compute un+1 by the first-order SAV scheme with τn.

Update: en+1 = ‖E(un)−E(un+1)‖
‖E(un+1)‖ .

if en+1 > tol then
recalculate time step τn = max{τmin, min{F(en+1, τn)}} and go to step 3;

else
update τn+1 = max{τmin, min{F(en+1, τn)}}. Stop or set n = n + 1 and go to step 3;

end if
return I = u

max(u) × 255.
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Computation of the Algorithm in the Frequency Domain

Fractional-order derivatives in the frequency domain are easy to calculate numerically
due to the fast discrete Fourier transform. Therefore, we use the Fourier transform to define
the fractional-order derivative in this paper. The SAV algorithm is based on 2D DFT to
solve the proposed model. It is one important aspect of the algorithm that it considers
the input image as a periodic image, which is equivalent to imposing a period boundary
condition on the proposed model. However, discontinuities across the image borders are
unavoidable in practice. In this paper, we use a similar algorithm as in [52] by extending
the image symmetrically about its borders in order to reduce the discontinuities across the
image borders.

Using the two-dimensional (2D) discrete Fourier transform, for any function g(x, y) ∈
L2(R2), we obtain

ĝ(ω1, ω2) =
∫
R2

g(x, y)exp(−j(ω1x + ω2y))dxdy

and the fractional order derivatives are

Dα
x g(x, y) =

1
2π

∫
R2

exp(j(ω1x + ω2y))(jω1)
α ĝ(ω1, ω2)dω1dω2,

Dα
x g(x, y) =

1
2π

∫
R2

exp(j(ω1x + ω2y))(jω2)
α ĝ(ω1, ω2)dω1dω2,

where (x, y) ∈ R2.
In the actual numerical implementation, we use the 2D discrete Fourier transform to

calculate the fractional-order derivative. It is an important aspect of the algorithm that it
treats the input image as a periodic image. We sample the original continuous image by the
N × N uniform grid and obtain u(x, y) = u(x∆x, y∆y) for {x, y ∈ 0, 1, . . . , N − 1}, where
the grid size ∆x = ∆y = 1.

The 2D discrete Fourier transform of u(x, y) is

û(ω1, ω2) =
1
m

m−1

∑
x,y=0

u(x, y)exp(−j2π(ω1x + ω2y)/m),

where ω1 ∈ {0, 1, . . . , N − 1} and ω2 ∈ {0, 1, . . . , N − 1} are the frequencies which corre-
spond to x and y.

With the translation property of the 2D DFT

u(x− x0, y− y0)↔ exp(−j2π(ω1x0 + ω2y0)/m)û(ω1, ω2),

the first-order partial difference in the frequency domain can be obtained as

u(x, y)− u(x− 1, y)↔ (1− exp(−j2πω1/m))αû(ω1, ω2).

Thus, the fractional-order partial difference in the frequency domain is defined as

Dα
xu↔ (1− exp(−j2πω1/m))αû(ω1, ω2).

Then, we use the central difference scheme in [24] to compute the fractional-order
difference, which can be defined as

D̃α
xu = F−1((1− exp(−j2πω1/m))α × exp(jπω1/m))F (u),

D̃α
y u = F−1((1− exp(−j2πω2/m))α × exp(jπω2/m))F (u),
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where the notation F denotes the 2D DFT operator and the notation F−1 denotes the 2D
inverse discrete Fourier transform (IDFT) operator. To simplify, let K be a purely diagonal
operator defined by

K = diag((1− exp(−j2πω2/m))α × exp(jπω2/m)).

Then, we obtain

D̃α
x = F−1 ◦ K ◦ F

and

D̃α∗
x = (F−1 ◦ K ◦ F )∗ = F−1 ◦ K∗ ◦ F ,

where D̃α∗
x is the adjoint of D̃α

x and (F−1)∗ = F . Similarly, D̃α∗
y can also be obtained. Since

K∗ is the complex conjugation of K, we have

D̃α∗
x = F−1(conj((1− exp(−j2πω1/m))α × exp(jπω1/m)))F (u),

D̃α∗
y = F−1(conj((1− exp(−j2πω1/m))α × exp(jπω2/m)))F (u),

where conj(·) is the complex conjugation.
According to the problem (11), we compute F′(un) by

F′(un) = β(x)D̃α∗
x

(
D̃α

xun√
|∇αun|2 + ε1

)
+ β(x)D̃α∗

y

(
D̃α

y un√
|∇αun|2 + ε1

)
+ λ

(
u− ϕ( f̃ )

u2

)
, (18)

where ε1 is a sufficiently small positive parameter.

5. Numerical Experiments

In this section, we demonstrated the practical performance of the proposed model
solved by the SAV algorithm. To illustrate the performance of our method, the results are
compared with those of the AA model [12], the SO model [13], the DD model [20], the
MuLoG + BM3D model [53], FAD model [27], and AAFD model [26]. We test the models
on four high-resolution images, as shown in Figure 4.

(a) Parrot (b) D42 (c) Boston (d) Cameraman

Figure 4. Test images.

Each image is corrupted by multiplicative noise with K = 1, K = 4, and K = 10. For
the original image u0, the quality of the restored images is measured in terms of peak
signal-to-noise ratio (PSNR),

PSNR = 10 log10
MN|max u0 −min u0.|

‖u− u0‖2
L2

,
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and mean absolute deviation error MAE,

MAE =
‖u− u0‖L1

MN
,

where |max u0 −min u0| gives the gray-scale range of the original image, and M and N
are the size of the image. Because the structural similarity measure (SSIM) is sensitive
to structural content and measures the similarity between an original image u0 and its
denoised result u, it is also used in this paper.

Since SAR images are captured at different times, in different weather, and by different
amounts of scattering, the captured images always have more noise in them, which is
known as speckle and multiplicative noise in nature. Due to the corruption of multiplicative
speckle noise, SAR images are always dark and have poor contrast. Figure 5 shows the
visualization of real SAR data in [0, 1], and the corresponding colorbar is also depicted. To
illustrate the denoising and enhancement capabilities of the models mentioned above, we
test the models on the three real SAR images.

(a) SAR-1 (b) SAR-2 (c) SAR-3

(d) SAR-1 (e) SAR-2 (f) SAR-3

Figure 5. Test images.

Numerical Implementations

We compare our method and competing approaches on four high-resolution images,
as shown in Figure 4.

The parameters and stopping criterion of all algorithms are tweaked mutually to
achieve the maximum PSNR or the best MAE and SSIM, and the choices of the parameters
are tabulated in Table 1. For the MuLoG + BM3D algorithm, the free parameters are set
as suggested in the reference paper [53]. These images have the range [1, 255] (we set
f = max( f , 1)); we first consider the restoration of ‘Parrot’, which is degraded by different
noise levels of K = 1, 4, 10 and whose degraded images are normalized into the range [0, 1].
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For a fair comparison, we present the PSNR, MAE, SSIM, and CPU Times values of
the restoration results in Tables 2 and 3. These tables show that the proposed model solved
by the SAV algorithm achieves higher PSNR and SSIM values. Furthermore, the numerical
experiments of multiplicative noise removal and contrast enhancement for the test images
are depicted in Figures 6–9. In the case of strong noise (K = 1), the denoised results of the
AA algorithm, the SO algorithm, and the DD algorithm show that much more noise still
remains. The restored images of the AAFD algorithm and FAD algorithm show that they
can remove multiplicative noise more effectively than the other TV-based algorithms do.
However, the AAFD algorithm and FAD algorithm have some difficulties in bringing back
some isolated points in the range of the image and keeping image details simultaneously.
In Figures 6–9, the restored images obtained by the MuLoG + BM3D algorithm tend to
be over-smoothed, which makes the texture details disappear. Moreover, when the noisy
image is normalized, the overall image is dark, the artificial effect is caused by stacking the
image blocks [54], and the value of PSNR is not satisfactory. For these reasons, the MuLoG +
BM3D algorithm may not be suitable for removing noise and enhancing the contrast of real
SAR images.

Table 1. The parameter values for numerical experiments.

Parrot

Algorithm K = 1

AA(λ) 5.40
SO(λ, α) 0.24, 2.00
DD(α, β) 2.06, 0.05
FAD(α, k, q) 1.40, 0.05, 3.90
AAFD(α, β, r, k) 0.50, 0.80, 1, 0.30× 10−2

Ours(λ, α, c, p, q) 3.50× 10−2, 1.00, 2.10, 0.88, 0.25

Algorithm K = 4

AA(λ) 7.10
SO(λ, α) 1.05, 1.69
DD(α, β) 3.00, 0.4
FAD(α, k, q) 0.90, 0.05, 2.50
AAFD(α, β, r, k) 0.60, 0.80, 1.3, 0.3× 10−2

Ours(λ, α, c, p, q) 0.20, 1.05, 1.50, 0.95, 0.35

Algorithm K = 10

AA(λ) 13.00
SO(λ, α) 2.30, 1.58
DD(α, β) 2.50, 0.10
FAD(α, k, q) 1.40, 0.05, 3.90
AAFD(α, β, r, k) 0.50, 0.80, 1.00, 0.3× 10−2

Ours(λ, α, c, p, q) 0.34, 1.00, 1.50, 0.99, 0.45

In contrast, our model solved by the SAV algorithm can both preserve the texture and
enhance the contrast successfully. To give a visual impression of the comparison between
these different models, we also depict the respective results of these images, where we show
only a fraction of the restored images, as shown in Figures 7 and 9. Since the difference
between the restored image and the original clean image helps to judge the ability to
remove noise, we chose close-ups of the head region of Parrot and the texture region of
D42. Comparing the textures surrounding the eye and the background of the Parrot, we
can clearly see that our model suppresses noise successfully while preserving significantly
more details. The zoomed version of the image D42 also implies that our model has the
advantage of keeping the features, especially when recovering the images corrupted by
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strong noises. In addition, it is easy to find that our proposed model can efficiently keep
edges and preserve details. In this section, we also test the four images for noise density
with K = 4, 10, then the same conclusion about restoration capability can be obtained from
Table 2. This still shows that our proposed model can achieve good restoration results at
different noise levels.

(a) Original image (b) Noisy image (c) AA (d) SO (e) DD

(f) Mu + BM3D (g) AAFD (h) FAD (i) Ours

Figure 6. (b) Noisy: L = 1. (c–i) Denoised results.

(a) Original image (b) Noisy image (c) AA (d) SO (e) DD

(f) Mu + BM3D (g) AAFD (h) FAD (i) Ours

Figure 7. The zoomed version of the Parrot image and its corresponding denoised results.
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(a) Original image (b) Noisy image (c) AA (d) SO (e) DD

(f) Mu + BM3D (g) AAFD (h) FAD (i) Ours

Figure 8. (b) Noisy: L = 1. (c–i) Denoised results.

(a) Original image (b) Noisy image (c) AA (d) SO (e) DD

(f) Mu + BM3D (g) AAFD (h) FAD (i) Ours

Figure 9. The zoomed version of the D4 image and its corresponding denoised results.

Since the model we solved with the SAV algorithm performs well in image denoising
and contrast enhancement with strong multiplicative noise levels, we tried to use this
model to solve the problem of denoising and image information enhancement of SAR
images. Unlike optical images, SAR images have a large dynamic range of intensity
and rich texture information. The local information is too important to be smoothed,
which highlights the significance of simultaneously removing multiplicative noise and
enhancing the texture contrast of the restored image within the appropriate pixel range.
In Figures 10–12, we give the restoration results for SAR images and find that the DD model
and the FAD model perform slightly better than the other models. However, the local
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details of the restoration results obtained by the DD model are blurred, and the restoration
results obtained by the FAD model have residual speckle noise, while our model solved
by the SAV algorithm retains more topographic information and gives more satisfying
edges. The histogram of each restoration image shows the distribution of pixel values; our
method also performs best both visually and quantitatively. In Table 2, we list the SSIM
(structural similarity index) values and the CPU times. In contrast to the results for the
AA, SO, DD, MuLoG + BM3D, AAFD, and FAD models, our method solved by the SAV
algorithm provides satisfactory results with high SSIM (structural similarity index) values.
In Figure 13, the plots of energy are monotonically decreasing; our model solved by the
SAV algorithm converges to a minimum value.

(a) SAR-1 (b) AA (c) SO (d) DD

(e) SAR-1 (f) AA (g) SO (h) DD

(i) Mu + BM3D (j) AAFD (k) FAD (l) Ours

(m) Mu + BM3D (n) AAFD (o) FAD (p) Ours

Figure 10. Denoised results and the corresponding histograms.
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(a) SAR-2 (b) AA (c) SO (d) DD

(e) SAR-2 (f) AA (g) SO (h) DD

(i) Mu + BM3D (j) AAFD (k) FAD (l) Ours

(m) Mu + BM3D (n) AAFD (o) FAD (p) Ours

Figure 11. Denoised results and the corresponding histograms.

(a) SAR-3 (b) AA (c) SO (d) DD

Figure 12. Cont.
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(e) Mu + BM3D (f) AAFD (g) FAD (h) Ours

Figure 12. Denoised results.

(a) Parrot (K = 1) (b) Parrot (K = 4) (c) Parrot (K = 10)

Figure 13. Plots of energy.

Table 2. Comparisons of PSNR and MAE by using different denoising models.

Noise K = 1 K = 4 K = 10

Image Figure (a): Parrot
Models PSNR MAE PSNR MAE PSNR MAE
AA 17.08 24.20 19.10 20.07 22.93 11.46
SO 19.84 16.79 23.70 10.20 25.77 8.29
DD 19.36 18.21 21.41 14.92 23.34 11.47
Mu + BM3D 10.83 62.03 15.69 34.70 18.51 24.79
AAFD 19.07 20.53 21.43 14.99 22.61 14.06
FAD 19.36 19.61 21.97 13.83 24.00 11.04
Ours 20.43 15.18 23.72 11.02 25.68 8.74
Image Figure (b): Cameraman
Models PSNR MAE PSNR MAE PSNR MAE
AA 17.91 22.89 20.66 17.10 24.40 9.24
SO 19.89 19.30 23.63 10.81 25.31 8.85
DD 19.98 17.65 22.01 14.22 24.23 10.62
Mu + BM3D 16.46 31.78 23.71 10.43 24.87 8.17
AAFD 19.82 18.88 22.08 14.61 23.54 12.08
FAD 19.88 18.98 21.97 14.55 24.56 10.46
Ours 21.46 13.37 23.83 10.40 25.76 8.29
Image Figure (c): Boston
Models PSNR MAE PSNR MAE PSNR MAE
AA 14.40 38.42 15.21 34.85 15.97 31.77
SO 15.21 35.27 17.91 24.95 19.32 20.38
DD 15.61 32.22 17.52 25.54 19.45 20.10
Mu + BM3D 14.17 37.80 15.80 30.53 16.41 28.48
AAFD 15.87 31.52 17.96 25.16 19.84 19.75
FAD 15.71 32.62 17.74 24.98 19.70 19.54
Ours 15.87 31.50 18.17 23.81 20.33 18.24
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Table 2. Cont.

Noise K = 1 K = 4 K = 10

Image Figure (d): D4
Models PSNR MAE PSNR MAE PSNR MAE
AA 12.36 46.48 13.64 41.44 16.27 29.33
SO 14.78 37.25 18.41 22.68 20.37 17.37
DD 14.86 33.38 17.22 24.81 19.55 18.47
Mu + BM3D 8.85 68.79 15.06 31.96 16.19 27.82
AAFD 15.32 33.10 17.54 26.36 20.16 17.88
FAD 15.25 32.73 17.44 24.64 19.75 18.13
Ours 15.71 28.63 18.44 21.38 20.54 16.78

Table 3. Comparisons of SSIM and CPU Times by using different denoising models.

Noise K = 1 K = 4 K = 10

Image Figure (a): Parrot
Models SSIM Time(s) SSIM Time(s) SSIM Time(s)
AA 0.49 14.69 0.63 47.96 0.74 53.65
SO 0.59 11.61 0.73 8.20 0.79 15.78
DD 0.54 2.21 0.60 3.00 0.70 1.56
Mu + BM3D 0.49 5.69 0.69 5.25 0.77 1.15
AAFD 0.45 3.03 0.59 3.24 0.73 3.73
FAD 0.46 45.80 0.60 35.50 0.67 45.53
Ours 0.66 164.82 0.72 256.14 0.79 185.95
Image Figure (b): Cameraman
Models SSIM Time(s) SSIM Time(s) SSIM Time(s)
AA 0.53 77.49 0.64 25.27 0.74 15.69
SO 0.58 3.36 0.68 6.60 0.74 13.07
DD 0.55 2.16 0.59 0.69 0.61 0.47
Mu + BM3D 0.66 5.99 0.75 5.29 0.77 5.30
AAFD 0.42 3.42 0.49 5.41 0.57 2.38
FAD 0.42 35.79 0.50 25.24 0.64 20.03
Ours 0.62 123.14 0.67 223.82 0.77 183.61
Image Figure (c): Boston
Models SSIM Time(s) SSIM Time(s) SSIM Time(s)
AA 0.13 14.22 0.22 14.76 0.32 20.30
SO 0.36 9.25 0.52 14.06 0.65 26.03
DD 0.30 0.95 0.55 1.39 0.71 1.10
Mu + BM3D 0.27 5.98 0.32 5.22 0.35 4.88
AAFD 0.35 6.60 0.59 5.68 0.72 5.07
FAD 0.30 44.18 0.59 25.30 0.71 20.13
Ours 0.33 319.41 0.60 222.40 0.74 310.08
Image Figure (d): D4
Models SSIM Time(s) SSIM Time(s) SSIM Time(s)
AA 0.15 14.66 0.23 14.07 0.47 18.81
SO 0.43 30.75 0.51 21.82 0.69 33.40
DD 0.38 0.94 0.56 1.03 0.67 1.25
Mu + BM3D 0.10 44.74 0.38 45.71 0.42 56.01
AAFD 0.43 4.87 0.66 9.94 0.79 6.75
FAD 0.43 31.70 0.64 55.87 0.75 27.88
Ours 0.42 281.07 0.67 199.18 0.80 256.68
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6. Conclusions

In this paper, we study the restoration and enhancement of texture information of
SAR images under multiplicative noise corruption. To address the problems that SAR
images have a larger range of pixel values and that traditional denoising methods are
prone to step effects and degradation of image contrast, we propose a fractional-order
variation model based on the nonlinear transformation. Specifically, a degradation model is
proposed by using a nonlinear transformation to adjust the intensity of image pixel values,
and the fidelity term of the variational model is constructed by maximum a posteriori
(MAP) estimation. The fidelity term obtained is useful for reducing the influences from
the bias through theoretical analysis. To overcome the staircase effect often produced by
existing denoising algorithms, we introduce a gray level indicator in the regularization
term. In addition, considering the characteristics of SAR images with large pixel values and
no uniform range, the normalization method is introduced to fix the images in the specified
range to avoid the problem of missing SAR image information caused by the truncation
function. Under certain conditions, we prove the existence of a minimizer and we show
the capability of our model on some numerical examples.

Author Contributions: Conceptualization, Y.Z. and Y.L.; methodology, all authors; software, Y.Z.
and Y.L.; validation, Y.Z., Y.L., and Z.G.; formal analysis, Y.Z. and Y.L.; investigation, Y.Z. and Y.L.;
resources, Y.Z. and Z.G.; data curation, Y.Z. and Y.L.; writing—original draft preparation, Y.Z. and
Y.L.; writing—review and editing, Y.Z., B.W. and D.Z.; visualization, Y.Z. and Z.G.; supervision, Y.Z.
and Y.L.; project administration, Z.G. and D.Z.; funding acquisition, D.Z., Z.G. and Y.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(12271130, 11971131, U21B2075, 12171123, 11871133), Natural Science Foundation of Heilongjiang
Province (ZD2022A001), Basic and Applied Basic Research Foundation of Guangdong Province
(2020B1515310006), Funding Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Z21157),
and Fundamental Research Funds for the Central Universities (2022FRFK060014, 2022FRFK060020,
2022FRFK060031, HIT.NSRIF202202), China Society of Industrial and Applied Mathematics Young
Women Applied Mathematics Support Research Project.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Baraha, S.; Sahoo, A.; Modalavalasa, S. A systematic review on recent developments in nonlocal and variational methods for SAR

image despeckling. Signal Process. 2022, 196, 108521. [CrossRef]
2. Bailey, D.; Townsend, D.; Valk, P.; Maisey, M. Positron Emission Tomography: Basic Sciences; Springer: London, UK, 2005.
3. Bamler, R. Principles of synthetic aperyure rader. Surv. Geophys. 2000, 21, 147–157. [CrossRef]
4. Schmitt, J.; Xiang, S.; Yung, K. Speckle in optical coherence tomography. J. Biomed. Opt. 1999, 4, 95–105. [CrossRef]
5. Wagner, R. Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 1983, 30, 156–163. [CrossRef]
6. Han, J.; Nam, W.; Lee, S. SAR image denoising in high dynamic range with speckle and thermal noise refinement modeling. In

Proceedings of the 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Madrid,
Spain, 29 November–2 December 2022; pp. 1–8.

7. Benz, U.; Strodl, K.; Moreira, A. A comparison of several algorithms for SAR raw data compression. IEEE Trans. Geosci. Remote
Sens. 1995, 33, 1266–1276. [CrossRef]

8. Dellepiane, S.; Angiati, E. A new method for cross-normalization and multitemporal visualization of SAR images for the detection
of flooded areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2765–2779. [CrossRef]

9. Boschetti, A.; Adami, N.; Leonardi, R.; Okuda, M. High dynamic range image tone mapping based on local histogram equalization.
In Proceedings of the 2010 IEEE International Conference on Multimedia and Expo, Singapore, 19–23 July 2010; pp. 1130–1135.

10. Ahn, H.; Keum, B.; Kim, D.; Lee, H. Adaptive local tone mapping based on retinex for high dynamic range images. In Proceedings
of the 2013 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–14 January 2013; pp. 153–156.

11. Easton, J.; Roger, L. Digital Image Processing I; Prentice Hall Press: Hoboken, NJ, USA, 2010.
12. Aubert, G.; Aujol, J. A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 2008, 68, 925–946. [CrossRef]
13. Dong, Y.; Zeng, T. A convex variational model for restoring blurred images with multiplicative noise. Siam J. Imaging Sci. 2013, 6,

1598–1625. [CrossRef]

http://doi.org/10.1016/j.sigpro.2022.108521
http://dx.doi.org/10.1023/A:1006790026612
http://dx.doi.org/10.1117/1.429925
http://dx.doi.org/10.1109/T-SU.1983.31404
http://dx.doi.org/10.1109/36.469491
http://dx.doi.org/10.1109/TGRS.2011.2174999
http://dx.doi.org/10.1137/060671814
http://dx.doi.org/10.1137/120870621


Fractal Fract. 2023, 7, 329 27 of 28

14. Zhang, J.; Chen, K.; Yu, B. An iterative Lagrange multiplier method for constrained total-variation-based image denoising. SIAM
J. Numer. Anal. 2012, 50, 983–1003. [CrossRef]

15. Wei, W.; Yao, M.; Michael, K. Color image multiplicative noise and blur removal by saturation-value total variation. Appl. Math.
Model. 2021, 90, 240–264.

16. Shi, J.; Osher, S. A nonlinear inverse scale space method for a convex multiplicative noise model. Siam J. Imaging Sci. 2008, 1,
294–321. [CrossRef]

17. Lysaker, M.; Lundervold, A.; Tai, X. Noise removal using fourth-order partial differential equation with applications to medical
magnetic resonance images in space and time. IEEE Trans. Image Process. 2003, 12, 1579–1590. [CrossRef] [PubMed]

18. Krissian, K.; Westin, C.-F.; Kikinis, R.; Vosburgh, K.G. Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process.
2007, 16, 1412–1424. [CrossRef] [PubMed]

19. Yu, Y.; Acton, S. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270.
20. Zhou, Z.; Guo, Z.; Dong, G.; Sun, J.; Zhang, D.; Wu, B. A doubly degenerate diffusion model based on the gray level indicator for

multiplicative noise removal. IEEE Trans. Image Process. 2014, 24, 249–260. [CrossRef]
21. Majee, S.; Ray, R.; Majee, A. A gray level indicator-based regularized telegraph diffusion model: Application to image despeckling.

Siam J. Imaging Sci. 2020, 13, 844–870. [CrossRef]
22. Li, C.; He, C. Fractional-order diffusion coupled with integer-order diffusion for multiplicative noise removal. Comput. Math.

Appl. 2023, 136, 34–43. [CrossRef]
23. Bai, X.; Zhang, D.; Shi, S.; Yao, W.; Guo, Z.; Sun, J. A fractional-order telegraph diffusion model for restoring texture images with

multiplicative noise. Fractal Fract. 2023, 7, 64. [CrossRef]
24. Bai, J.; Feng, X. Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 2007, 16, 2492–2502.

[CrossRef] [PubMed]
25. Zhang, J.; Chen, K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions

and its numerical solution. Siam J. Imaging Sci. 2015, 8, 2487–2518. [CrossRef]
26. Yao, W.; Guo, Z.; Sun, J.; Wu, B. Gao, H. Multiplicative noise removal for texture images based on adaptive anisotropic fractional

diffusion equations. Siam J. Imaging Sci. 2019, 12, 839–873. [CrossRef]
27. Shan, X.; Sun, J.; Guo, Z.; Yao, W.; Zhou, Z. Fractional-order diffusion model for multiplicative noise removal in texture-rich

images and its fast explicit diffusion solving. BIT Numer. Math. 2022, 62, 1319–1354. [CrossRef]
28. Zhang, J.; Chen, J.; Yu, H.; Yang, D.; Xu, X.; Xing, M. Learning an SAR image despeckling model via weighted sparse representation.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7148–7158. [CrossRef]
29. Chagas, E.; Frery, A.; Rosso, O.; Ramos, H. Analysis and classification of SAR textures using information theory. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2020, 14, 663–675. [CrossRef]
30. Fattal, R.; Lischinski, D.; Werman, M. Gradient domain high dynamic range compression. In Proceedings of the 29th Annual

Conference on Computer Graphics and Interactive Techniques, San Antonio, TX, USA, 23–26 July 2002; pp. 249–256.
31. Gu, B.; Li, W.; Wong, J.; Zhu, M.; Wang, M. Gradient field multi-exposure images fusion for high dynamic range image

visualization. J. Vis. Commun. Image Represent. 2012, 23, 604–610. [CrossRef]
32. Sundaram, M.; Ramar, K.; Arumugam, N.; Prabin, G. Histogram based contrast enhancement for mammogram images. In

Proceedings of the International Conference on Signal Processing, Communication, Computing and Networking Technologies,
Tamil Nadu, India, 21–22 July 2011; pp. 842–846.

33. Abdullah-Al-Wadud, M.; Kabir, M.; Dewan, M.; Chae, O. A dynamic histogram equalization for image contrast enhancement.
IEEE Trans. Consum. Electron. 2007, 53, 593–600. [CrossRef]

34. Zimmermann, H. Fuzzy Set Theory—And Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
35. Kim, M.; Chung, M. Recursively separated and weighted histogram equalization for brightness preservation and contrast

enhancement. IEEE Trans. Consum. Electron. 2008, 54, 1389–1397. [CrossRef]
36. Tobias, O.; Seara, R. Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans. Image Process 2002, 11, 1457–1465.

[CrossRef]
37. Chen, Y.; Rao, M. Minimization problems and associated flows related to weighted p energy and total variation. SIAM J. Math.

Anal. 2003, 34, 1084–1104. [CrossRef]
38. Zeidler, E. Nonlinear Functional Analysis and Its Applications: III: Variational Methods and Optimization; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2013.
39. Teuber, T.; Lang, A. A new similarity measure for nonlocal filtering in the presence of multiplicative noise. Comput. Stat. Data

Anal. 2012, 56, 3821–3842. [CrossRef]
40. Deledalle, C.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE

Trans. Image Process. 2009, 18, 2661–2672. [CrossRef] [PubMed]
41. Chambolle, A.; Lions, P. Image recovery via total variation minimization and related problems. Numer. Math. 1997, 76, 167–188.

[CrossRef]
42. Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 232–243. [CrossRef]
43. Chan, T.; Golub, G.; Mulet, P. A nonlinear primal-dual method for total variation-based image restoration. Siam J. Sci. Comput.

1999, 20, 1964–1977. [CrossRef]
44. Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004, 20, 89–97.

http://dx.doi.org/10.1137/110829209
http://dx.doi.org/10.1137/070689954
http://dx.doi.org/10.1109/TIP.2003.819229
http://www.ncbi.nlm.nih.gov/pubmed/18244712
http://dx.doi.org/10.1109/TIP.2007.891803
http://www.ncbi.nlm.nih.gov/pubmed/17491469
http://dx.doi.org/10.1109/TIP.2014.2376185
http://dx.doi.org/10.1137/19M1283033
http://dx.doi.org/10.1016/j.camwa.2023.01.036
http://dx.doi.org/10.3390/fractalfract7010064
http://dx.doi.org/10.1109/TIP.2007.904971
http://www.ncbi.nlm.nih.gov/pubmed/17926931
http://dx.doi.org/10.1137/14097121X
http://dx.doi.org/10.1137/18M1187192
http://dx.doi.org/10.1007/s10543-022-00913-3
http://dx.doi.org/10.1109/JSTARS.2021.3097119
http://dx.doi.org/10.1109/JSTARS.2020.3031918
http://dx.doi.org/10.1016/j.jvcir.2012.02.009
http://dx.doi.org/10.1109/TCE.2007.381734
http://dx.doi.org/10.1109/TCE.2008.4637632
http://dx.doi.org/10.1109/TIP.2002.806231
http://dx.doi.org/10.1137/S0036141002404577
http://dx.doi.org/10.1016/j.csda.2012.05.009
http://dx.doi.org/10.1109/TIP.2009.2029593
http://www.ncbi.nlm.nih.gov/pubmed/19666338
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1137/080725891
http://dx.doi.org/10.1137/S1064827596299767


Fractal Fract. 2023, 7, 329 28 of 28

45. Zhu, M.; Chan, T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA Cam Rep. 2008,
34, 8–34.

46. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]

47. Figueiredo, M.; Bioucas-Dias, J. Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image
Process. 2010, 19, 3133–3145. [CrossRef]

48. Shen, J.; Xu, J.; Yang, J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 2019, 61, 474–506.
[CrossRef]

49. Hou, D.; Azaiez, M.; Xu, C. A variant of scalar auxiliary variable approaches for gradient flows. J. Comput. Phys. 2019, 395,
307–332. [CrossRef]

50. Gomez, H.; Calo, V.; Bazilevs, Y.; Hughes, T. Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl.
Mech. Eng. 2008, 197, 49–50. [CrossRef]

51. Einkemmer, L. An adaptive step size controller for iterative implicit methods. Appl. Numer. Math. 2018, 132, 182–204. [CrossRef]
52. Do, M.; Vetterli, M. The finite ridgelet transform for image representation. IEEE Trans. Image Process. 2003, 12, 16–28. [CrossRef]

[PubMed]
53. Deledalle, C.; Denis, L.; Tabti, S.; Tupin, F. MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?

IEEE Trans. Image Process. 2017, 26, 4389–4403. [CrossRef] [PubMed]
54. Liu, J.; Osher, S. Block matching local SVD operator based sparsity and TV regularization for image denoising. J. Sci. Comput.

2019, 78, 607–624. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TIP.2010.2053941
http://dx.doi.org/10.1137/17M1150153
http://dx.doi.org/10.1016/j.jcp.2019.05.037
http://dx.doi.org/10.1016/j.cma.2008.05.003
http://dx.doi.org/10.1016/j.apnum.2018.06.002
http://dx.doi.org/10.1109/TIP.2002.806252
http://www.ncbi.nlm.nih.gov/pubmed/18237876
http://dx.doi.org/10.1109/TIP.2017.2713946
http://www.ncbi.nlm.nih.gov/pubmed/28613174
http://dx.doi.org/10.1007/s10915-018-0785-8

	Introduction
	Related Methods
	-TV Model
	FAD Model

	The Proposed Multiplicative Noise Removal Model with Contrast Enhancement
	New Degradation Model
	The Proposed Model and Its Properties
	Similarity Measure
	Bias Correction

	SAV Algorithm for Solving the Proposed Variational Model
	Numerical Experiments
	Conclusions
	References

