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Abstract: In this paper, we study coupled nonlinear Langevin fractional problems with different
orders of y-Caputo fractional derivatives on arbitrary domains with nonlocal integral boundary
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the tools of the fixed-point theory are applied. An overview of the main results of this study is
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Keywords: Langevin problems; coupled system; integral boundary conditions; fixed-point theorems;
existence; uniqueness; u-Caputo fractional derivatives

MSC: 34A08; 34G20; 26A33

1. Introduction

Fractional differential equations (FDEs) have gained a lot of attention in recent years
due to their numerous applications in engineering, physics, biology, chemistry, and other
fields (see, for instance, [1-6], and the references therein for more information on the
boundary value issues of FDEs and inclusions subject to diverse boundary conditions).
Differential inclusion and differential equations are thought to be particularly helpful
when studying dynamical systems and stochastic processes (see [7-10] for some recent
related results).

The Langevin equation successfully captures Brownian motion when the random
fluctuation force is assumed to be white noise. Otherwise, the extended Langevin equation
represents the particle motion (see, e.g., [11,12]). In fractal media, Langevin’s equation
has become widely used to represent dynamical operations (see [13-18] for more recent
interesting results). In [19], the authors utilized the fractional Langevin equation to recre-
ate Brownian motion. By applying both fluctuation—dissipation theorems and fractional
calculus techniques, they derived analytical expressions for the correlation functions. The
fractional Langevin equation has drawn the attention of numerous researchers due to
its wide-ranging applications in various fields such as physics, chemistry, biology, aero-
dynamics, economics, control theory, biophysics, signal and image processing, fitting of
experimental data, blood flow phenomena, and others. Moreover, it has been studied
under various conditions. Moreover, it has been studied under various conditions (see
e.g., [20-28]). Due to its numerous applications, the coupled system of differential equa-
tions with fractional order is regarded as a crucial and worthwhile topic of study (see
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e.g., [29,30]). It is important to note that the majority of the research on the coupled sys-
tems of FDEs focuses on fixed domains. The mixed-order coupled system offers a more
comprehensive approach and is a valuable addition to the existing literature.

The ability to describe a variety of physical and technical systems, including vis-
coelastic materials, diffusion and transport processes, and electromagnetic phenomena,
necessitates the study of FDEs on arbitrary domains. The domain on which the system is
defined is frequently irregular or has a complicated border rather than a straightforward ge-
ometric shape. In contrast to conventional integer-order differential equations, we are able
to model these systems more precisely and successfully by using fractional differential op-
erators on arbitrary domains. Additionally, the study of FDEs on arbitrary domains results
in the creation of fresh analytical and numerical approaches for resolving these equations,
which have applications in materials science, biology, finance, and control theory.

A new class of coupled FDEs of different orders with nonlocal multi-point boundary
conditions was studied in [31]. Since then, numerous studies have focused on these types of
systems of equations, including [32-34]. In the latter, the authors focused on the study of a
coupled system of FDEs of Caputo type with different derivatives orders, which inspired us
to study coupled systems of Langevin fractional problems with different orders of y-Caputo
fractional derivatives with nonlocal integral boundary conditions of the form:

DV (CDF + ;)i (t) = Ei(t, ¢1(t), 2(t)), telabli=12 (1)
subject to the specific boundary conditions

pi(a) =0,  I%tep(b) =0,

¢
‘D@ (a) = K/a @2(s)ds. (2)

where for i = 1,2, °D"* and ‘D" are u-Caputo fractional derivatives, 0 < 0;, 72 < 1,
1<7m <20,k R

As indicated in the above system, we present this study with a y-Caputo fractional
derivative operator (FDO), which is a generalization of the Riemann-Liouville FDO. Below,
we highlight some of its advantages, which have been discussed in various research papers
and articles in the field of fractional calculus and its applications (see e.g., [1,2,35-37]):

*  Flexibility: The u-Caputo FDO is more flexible than the Riemann-Liouville FDO
because it allows for the use of different kernels (functions that define the fractional
derivative), depending on the application.

*  Smoothing property: The u-Caputo FDO has a smoothing property that can be used
to eliminate noise from a signal or image. This property makes it useful in image pro-
cessing, signal processing, and other applications where noise reduction is important.

*  Nonlocality: The p-Caputo FDO is nonlocal, meaning that the value of the derivative
at a point depends on the values of the function at all other points. This property
allows for the detection of long-range correlations in data, which can be useful for
studying complex systems.

*  Fractional order: The p-Caputo FDO allows for the use of non-integer orders, which
can be used to model phenomena that do not conform to integer-order models. This
property makes it efficient for various applications such as physics, engineering, and
other fields where non-integer orders are needed to accurately model systems.

¢ Numerical methods: The u-Caputo FDO can be efficiently computed using numerical
methods, which makes it useful for computer simulations and other applications
where analytical solutions are not available.

The structure of the rest of this paper is as follows. Section 2 outlines the fundamental
principles of fractional calculus and defines the key terms and symbols. In Section 3, we
present the main finding for fractional differential derivatives. Section 4 discusses the use
of the Leray-Schauder alternative and Krasnoselskii’s theorem to establish the existence
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of a solution. In contrast, in Section 5, we prove that there is a unique solution based on
Banach’s contraction mapping principle. Section 6 includes examples that illustrate the key
points of our study and the last section represents the conclusions.

2. Preliminaries

In this section, we introduce a number of fundamental concepts and relevant lemmas
in fractional calculus. Let J = [a,b]. We define € = C(J,R) as the Banach space of all
continuous functions g : J — R with the norm

gl = sup{lg(t)| =t € I},

and we represent the Banach space of Lebesgue-integrable functions g : J — R by L1(J, R)

with the norm
I8l = /3\g<t>|dt.

Assume that g : J — R is integrable and that y € C™(J, R) is increasing such that p'(t) # 0
for every t included in J.

Definition 1 ([38]). The g-p-Riemann-Liouville integral of a function g is defined as

W50 = iy [ @00~ p(@) g()de, g >0

Definition 2 ([38]). The g-p-Riemann-Liouville fractional derivative of a function g is

) 1 d\™ ..
T _ a (m—q);p

Da+g(t) - <ﬂ/(f) dt) Ia—i— g(t)/
where m = [g] + 1.

Definition 3 ([38]). For a function ¢ € AC™(J,R), the u-fractional derivative of order 4 in
a Caputo sense is given as follows

“Dg(t) = 1 g ),

where gl"l (t) = (y’l(t) %) g(t)yandm =[g|+1,m €.

Lemma 4 ([38]). Let qq,92 > 0. Then:
Lo I () = (@)™ (1) = 1 Bl () — pu(a)) TR
2. DR (p(e) = (@) ™) = i (u(t) - (@)™

Lemma 5 ([38]). Ifg € AC"(J,R)and q € (m—1,m),

. » m=1 o] (g
ICDg(0) =g(0) = £ S (0 — pl@)

Lemma 6. Let hy,hy € C([a,b],R). Then, for a;, x € R;i = 1,2 the linear-type system

CD%’V(CD(T“’V -+ lxi)(pi(t) = hi(t), t e [u,b],O < 0,7 < ,1<v L2,
pi(a) =0,  I%tgi(b) =0,
cDHFpq(a) = Kff @2(s)ds,



Fractal Fract. 2023, 7, 337 4 of 14

has a unique solution, which is

AU'1+1
— 1O+ Y1H _ o1,H 91+o1+r1Lp _ O +ou
p1(t) =1 h(t) —ar 177 @y (t) — All-( 7 2) {1 hy(b) — a1 4’1(17)]

AT 4
+Kr(07t+l) ci(t )/ pa2(s)ds ®3)

and

o+ % AHZ B+ + G +0-
— JO2TY2H _ 2,4 210272, 1 _ 2T02, 1
Pa(t) = 15K (1) = a2l (1) = Ao s K I (b) — a1 gy (1) |.

where

Ar = p(t) — p(a),

I'(h+o0+2) 1"(192+(72+1)

H+o1+1 G+0o 4
Ab Ah

(1 +1)A, — (81 + 1 +1)A
(01 +1)Ay '

Al: /A2:

c1(t) =

Proof. From Lemma [2], we have

Aa,+k 1

@i = 177 by () — a 177 i () + cio + Z Czkr( e L2,n=[yl+1. (4

From ¢;(a) = 0and *D%*¢pq(0) = Kfo @2(s)ds, we find thatcjg = 0,¢11 = Kfo @ (s)ds,
and the last two conditions enable us to directly obtam

¢
cn=—N {Iﬁﬁaﬁ%’”hl(b) - allﬂlﬂrl'yfpl(b)} B W/ P (s)ds
b a
o1 = —Ay [Iﬁz+oz+fyz,uh2(b) — a21ﬂ2+ﬂzfﬂ¢2(b)].

By substituting in Equation (4), we obtain the desired result. O

3. Main Results

Let € = C([a,b],R) denote the Banach space of all continuous functions from [a, b]
to R. Let us introduce the space X = {u(t)|u(t) € C([a,b])} endowed with the norm
[lu(t)|| = sup {|u(t)|,t € [a,b]}. Obviously, (X, || - ||) is a Banach space. The product space

(X x X, ||(u,0)]|) is a Banach space with the norm || (u,v)| = ||u|| + [|v]|.
According to Lemma 6, an operator £ : X x X — X x X is defined as follows:
_ < 5((1’1/ (PZ)(t> > (5)
©(@1,92)(t)
where
A171+1
— [Tk — oLH _t
0(g1, ¢2)(t) =1 hi(t, @1(t), 92(t)) — ar 17y () — All"(a y

Al

¢
[Imwﬁwﬂhl(b, @1(b), p2(b)) — 0(11191+‘71/Hq)1(b>i| +x )Gl( )/a @2(s)ds, (6)

(+1
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and
AP
(91, 92)(t) = I7T72Hha (8, 91 (£), @2 (t)) — a2l o (£) — Azm
(1225272 (b, 91 (b), @2 (b)) — 12 9o (1) . )
We simplify the notations using the following constants:
o Atbfl-i-'yl i A;791+2171+'yl+1 (8)
T +m+1) [(or +2)I (%1 + o1+ 711 +1)
AT Agl-&-Zaﬁ—l
P2 =+ 1) +|A1|F(01+2)1"(191+(71+1)] ®
- A
Q3 = K|€1|1~(Tb+1)(§ —a) (10)
N I YW S (1)
T(2+72+1) T+ DI + o+ 72+ 1)
and
AT AZz-‘rZ(rz
Y2 = [r(@ ) Mg e et 1)} 12

4. Existence Results

Fixed-point theorems have recently played a vital role in proving many interesting
results (see, e.g., [39-41]).

Lemma 7 ([42]). Let W be a closed convex and nonempty subset of a Banach space E. Let §1 and
2 be two operators such that:

1. FX+F2YeW X, YeWw,
2. $1is compact and continuous on W,
3. §2isa contraction mapping on W.

Then, there exists Z € VW such that Z = 12 + §F22.

Theorem 8. Suppose that the following conditions are satisfied:

(C1) [m(t @1, 92)| < w1(t)
(Ca) |ha(t, @1, 92)| < wa(t)

If
m= max{|¢x1|<I>2,<I>3 +|az ¥} <1 (13)

where Oy, P3, and ¥, are defined by (9), (10), and (12). Then, Problems (1) and (2) have at least
one solution for [a, b].

Proof. To prove our results, we set sup;.(, [w1(8)] = [Jroq]] , SUPye( ] o (t)| = ||tz |
and chose

e > [|[roq]|@q + [[w2 ¥y
- 1—-m

(14)
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where @1 and ¥; are defined by (8) and (11). Let B, = {(¢1, ¢2) € X x X : || (91, ¢2)|| < t}.

Now, we represent the four operators as follows:

R A(Tl-‘rl .
01 (@1, 92)(t) = 171 Ry (t) — A1m1‘91+‘“+%'“h1(b),
0’1+1 s A(Tl z
— _y JOUH 1+01,U t
Ba(r, 92)(1) =~ I (1) + A s g () + e () [ gas)ds
R A
P91, 92) (1) = Iy (1) = Mg bage I F 2y ()
0
P2(@2)(t) = —ax IV gyt )+A2m“21§2+@’y¢2(b)-

where ﬁi(’t) = ﬁi(r, ¢1(7), 92(7)),i=1,2,and

_( O1(e1, 92)(t) _( O2(g1, 92)(1)
f1 = ( ©1(91, 92)(t) ) 2 = ( 02(p2)(t) >

Note that 3 = 01 + 0y, p = 1 + g2 and & = & + Ry:

o1+1
5 , 3 , = |[YURE (1) — Aq——t ot (p
01(91, 92)+02(1, 92)| 1) = Mg 1(b)
0'1+1 o AU’]
_ o1 1+o,u e
Zﬁ“n Agl+2¢fl+71 A(Tl
YN b

0

A,
+|A1|r(0,1+2)1€(191+0.1+1):| +H¢2|[ |gl|(m(6_a)]

< g |1 + (@1 ||aq [ D2 + || @2 || DPs.

Al91 +2l7’1

Similarly, we obtain
02

F(U'z -+ 1)
%]
t
T'(n+1)

02+72 B +202+72
Ab

l01(P1, 92) + p2(@2)| =

125720 (1) — Ay %2+ 220, (b))

—aZIUZ’V(pz(t) + Ay Déz[ﬂfrgz’y(pz(b)‘

<|Iro2]]

0 Al92+20'2

b
— +|A
F(02+72+1) | 2|F(02+1)r(192+02+’)/2+1)

A,
+lgalloal | o

<2 |[¥1 + [ @2 || |a2] ¥

b
F(O'z + 1)F(192 + 0y + 1)

(15)

which implies that ||f; + £, < t. This shows that & + £ € B.. For (@1, 92), (¢1, ¢2) €

X x Xand t € [a,b], we have

13291, 92) — B2(91, 92) || < |ar| @2l 91 — @1 ]| + @3]l 92 — 92,
and i} §
p2(92) — p2(92)] < |@2|¥2l 92 — all-



Fractal Fract. 2023, 7, 337 7 of 14

Thus,

* ok * * * *
[R2(@1, @2) — R2(@1, @2) | < mf[@1 — @1l + m|@2 — @2 = m[[(@1 — @1, 92 — 92) |,

which implies that &) is a contraction mapping by (13). The continuity of k;, i = 1,2 implies
that the operator K;is continuous. In addition, £; is uniformly bounded on 5. as

[01(p1, @2)|| < [[o1[[P1, and [[p1(p1, 2) | < o2

Thus,
[R1(@1, @2)[| < [[ro1][@1 + [[roz||¥1.

Next, we prove the compactness of the operator &1. Let t1,t; € [a,b] with t; < tp.
Then, we obtain

01(91, 92)(£2) = D1 (@1, 92) (11)]

o1 +1 op+1
< 1M E () — A b2 [ U (p) — [OETUR (t Aq——1 oty (p
< 1(t2) T, 72) 1(b) 1(t1) + Tl 72 1(b)
O +o1+
< ol | ey (827 = 77T I A T (a7 )
- Ty +71+1) " h T +2)I(h+o+7+1) 2 ho )
and

lo1(p1, 92)(t2) — p1(P1, 92)(t1)]

~ AP ~ . A ~
< 1922 () — A t [O2 ot (p) — 122 (1) 4+ A t [S2retrrg (p
< 2(t) 2T £ 1) 2(b) 2(t) + 2T+ 1) 2(b)
1 . N AZz-HTz-i-Wz
< |lro - A‘TZ T2 _ A2 +|A A2 _ A2 :|
=< 2|[1"((72+72+1)( ta ho ) 1|r(az+1)r(192+02+72+1)( n = An)

Ast] — tp, we have |8; — £ — 0. Hence, & is equicontinuous. By the Arzeld—Ascoli
theorem, £ is compact. [J

Theorem 9. Let hy, hy : [a,b]x — R be continuous functions. Suppose that (13) holds. Addition-
ally, we assume that:

(H1) there exist a non-negative function 31(t), 31(t) € C([a, b],R) and nondecreasing functions

1, P2

1t (@1 92))| < [llaallwr (v) + lla2llg2(v)]

(Hy) there exist a non-negative function s1(t), s2(t) € C([a, b], R) and nondecreasing functions
X1, X2

Ih2(t, (91, 92))] < [lls1llxa (v) + lls2llx2(v)]

Then, the problem in (1) has at least one solution for [a, b].

Proof. Observe that the continuity of the operator £: X x X — X x X follows that of the
functions hy and hy. Next, let (O, C X x X be bounded so we need to prove some steps.

The set £(();) is bounded. We first show that £; is bounded. For any (@1, ¢2) € Q.,
we have

191 (91, @2) I < [lla1[l1(x) + [l32ll2(x)] @1,
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and

[91(p1, 92) < [lls1llx1 () + lls2llx2(x)] ¥,

This proves that £ is uniformly bounded. Similarly, we have

|R2(@1, @2)| < me.

In this step, to show that £ is equicontinuous, we only have to prove that £, is

equicontinuous (in the previous theorem we proved that £; was equicontinuous). Let
f, 11 € [a,b] with £, < t1. Then, we have

|02(p1, 92)(t2) — O2(@1, 2)(t1)]
A0'1+1 ;7'1 g
_ 01,1 _ b yhitoLp _
g (1) + M 0 (0) g B (t) [ ga(s)ds
A0’1+1 (tTl
01,4 _h L hitonp . h
— I () + At I g 8) 4 k() [ ga(o)as
(71+1(Al91+(71 191+(71
< |aq||Aq]

2 O ) (a1 — ea() | — ) o)
[(o1 +2)(%1 + 01 +1) e +xlea(r2) = a(n)l(E - o) T(op+1)

In a similar manner, we can obtain

[92(92) (t2) — p2(@2)(t1)]

172
— | _ Jo2H Ap— 2 Iﬂz—i-vzy
= | — I (tr) + 23 +1)0¢ ¢2(b)
(%)
— [~ [ a(t1) +A2m“2102+‘7m¢2( il
|“2| Ao'z AZZ) A(Tz(Aﬂz-HTz . A;912+(72)
T(U +1)

|ﬂm@+mu%+@+m
In the last step, it is verified that the set IT = {(¢1,¢2) € X x X : (@1, ¢2)
(91, ¢2) } is bounded. Let (@1, ¢2) € IT with (@1, ¢2) = & so we have

@1(t) = 6[01(¢1, 92)(t) + 02(@1, @2)(1)],

and
@2(t) = 0[p1(p1, 92)(t) + 2(@2) ()]

Then,

1]l < [llaallw1(v) + [52llp2(v) | @1 + @1 [l 1| P2 + [| 2| P3,
and

Il < [llstllxa(v) + llsallx2(v)] ¥1 + llg2lllaz[ P2,

As a consequence, this implies that

T (131111 (x) + llaall2(v)] @1 + [[lsalx1 () + lIs2llx2(x)]

1—-m
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By using this result, it can be established that set I1 is bounded as a result of the

Leray—Schauder alternative [43]. As a result, at least one solution exists for Systems (1)
and (2). O

5. Uniqueness Result
Theorem 10. Suppose that: the functions hy, hy : [a,b] x R x R are continuous functions and {1,
05 are positive constants such that for all t € [a,b] and ¢; (7’1‘ € R, we have:

1 (t, @1, 92) — 1 (t, 1, 92) | < a(ll g — @11l + @2 — 9,1,
2t @1, 92) — ha(t, 1, 92) | < Lall g — 4]l + @2 — 9,1,
If
m+ 0P+ 6L <1, (16)
Systems (1) and (2) have unique solutions for [a, ).

Proof. Consider the two assumptions SUP; e[ 4] h1(t,0,0) = N7 and SUP;¢[o,5] hy(t,0,0) =
N5. Choose a number t that satisfies the condition below.

Here, we prove that RB, C B,, where B, = {(u,0) : ||(u,v|| <t} and & is defined by
(5). Based on assumption (£), for (¢1, ¢2) € B:, we have:

|h1(t, @1, @2)| < [h(t, @1, @2) — B (£,0,0)| + |11 (¢,0,0)]
< li(Jo1] + |@2]) + M
< Ol + l@2ll) + N1 < e+ M,

and

|ho(t, 91, 92)| < |ha(t, @1, 92) — ha(t,0,0)] + |h2(t,0,0)]
< O[] + [@2]) + N2
< Ol + [[@2ll) + N2 < bor + Na.

As a result, we obtain

. A(7'1+1 R
B9, 924821, )] = |1 I — Ay 1 1)
op+1 9 (] z
_ o4 £ 1+01,4 t
a7V 1 (1) + Aq oy +2)zx11 ¢1(b) +KF(01 +1)g1(t)/a (pz(s)ds‘
Zl+71 Azﬂrszﬁr% AZI
</ N A _ b
R S TS R (S TR R TS ) +”"’1”"‘1'{r(m+1>
914201 Atfl
+ A : + —r (-
’ l|r(0'1+2)r(l91+0'1+1):| ||(P2|| K|g1’r(0.1+1) (‘: a)]

< (e + NP1 A @1 l|ar |P2 + [ 2| 3.
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and
AR
I'(on+1)

02

A
fzle‘fz’”(pz(t) + Azr(02t+ 1)()(21192-&-(72#4)2([9)‘

+72 Al92+2¢72+’72

__ b + |A2‘ b
r(0'2+’)’2+1) F(¢72+1)1“(192+(72+'yz+1)

0 Al92 +209 :|

125720 g (1) — Ay 1924012k, (b))

lo1(@1, @2) + p2(p2)| =

S(ﬂzt—i—/\&)

b b
+||p2|| |« + A
H 2||| 2|[|((72+1) | 2‘|((72+1)|(I92—|—(72—|—1)

< (bt + N2)¥1 + || 2| |az| o

S0
[8(p1, @2)|| < [1®1 + L1 ]r + [N1DP1 + Np¥q] + vm,
and from (16), we obtain ||R(¢@1, @2)|| <.

Next, for (@1, ¢2), ((;1, (}2), as we have already established that K, is a contraction
mapping, it is similarly easy to find:

[8(91, 92) = R(g1, 92) < [m+ 101 + £2¥1] [ 91 = g1l + 192 — g2l .

Since m 4+ /1®1 + £,¥1 < 1, this indicates that £ is a contraction. Accordingly,
Problems (1) and (2) have unique solutions based on Banach’s contraction mapping princi-
ple. The proof is completed. [

6. Examples
Example 1. The following fractional Langevin equation system can be considered:

8 1 1 _ tsin2t tan~! @1 (t) cost sin @y (#)
DD+ 10)91(t) = gt T @@ € L2
Liemdt o 1 __ 220q(t) (292(1)+3)
DD+ 5)e2(t) = EEDER D T G oy € 12 17)
6
p1(1) =0, I%’t(pl (2) = 05Dy (1) = 1 [5 gy(s)ds,
@2(1) =0, I319,(2) =0

_ 8 _1 _1 _ 7 _ 3 _ 9 _ 1 —
Here, 11 = 5,72 =301 =300 = 15 %h = 3,00 = g.01 = 75,02 =

_ tsin2t tan~ ! @y (t) cos t sin @y ()
Mt @1, 92) = T2 T GE 0T

_ 2Pp) C202(5)4+3)
ha(t91,92) = GETEIROTD T Bl D"

tsin 2t cost 412

Since hl(t/ ?1, 4)2) < (7t+7) + (1022+42)” h2(t/ P1, 4’2) < (15t15) + % The Maple program
can be used to determine the following values:

1
G = g,K = z,and

Q=

Alfl Al91+2171+1
Py =——L—— +|A] L
F((71+1) F(al +2)F(191 + 01 +1)
~3.385137501,
A
_ b _

~0.1692568750,
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and
o5 04209
Y, = Ab + |A2| A
F(a2+1) F(02+1)F(192+(72+1)
~2.201094810.

Thus, m ~ 0.6094758370 < 1. For [1,2], System (17) must have at least one solution
according to Theorem 8.

Example 2. The following fractional Langevin equation system can be considered.

Setrepn2et | 5 __ 5 [Z10) 3 1 P
DD+ g)enlt) = <3t2+9>( (GIERY *) + ot (sl ).t 02,
2 ot 3 ot 1 _ ¢ [
DH(DH + Doalt) = 82 (mifies) + wim <z|<pz<t2>|+%>’ Feloin2) (18)
¢1(0) =0, I%"'t(pl (In2) =0,° Dé'erq)l 0) =3 fo @2(s)ds
@(0)=0, I8 g,(In2) =0.
Here, y1 = 3,72 5o = % 0y = = %

92 =g =g, =81 =gk =g, and
_ pi(t ¢
hl (t/ ?1, 4)2) - (3t2+9) ( 7(|¢ 1(t) ( (|¢2(t)|+l))

__ sint 3¢
ha(t, @1, 92) = (%it)(lqn( (5+t2 (2¢z 3)

Since by (t, 1, 2) < 9( \§01| +192| +3), ha(t, @1, 92) < 3l91] + 55| @2l The Maple
program can be used to determine that m = 0. 5190783766 <1

o1
+

Thus, System (18) must have at least one solution according to Theorem 9.

Example 3. The following fractional Langevin equation system can be considered.

2
‘D7 (CDg'tZ +&)e1(t) = 15 (PlJlrl(Pgl),‘ sin?t+ 3(1+tcostgy), te€0,1],
| 2 3 too.
((WﬁgrS) cos’t+1) +5(1+ igsintgy), t€[0,1],
Cc

CD3 (CDZ’ + ﬁ)q)z(t) % (19)
5 1 $
¢1(0) =0, Ii’tq’l(l) =0Dzt (1) = 5 [ a(s)ds
92(0)=0, I3'gy(1)=0
Hereemi = 72 =301 =302 = 300 = 302 = 300 = fm = of1 = §x = 7, and
1 eitleil 2 (1+tCOSt(p2)

2( s P1, 4)2) 5\ Tp1[+5) cos?t + + ( + 1+t sin q)z)
(t g1, 92) = I, gol,qozn < 3(lor = @1l + 92 = 9l ), ot 91, 92) -
hy(t, (pl, g02)| < %(|<p (pl\ + [p2 — |) The Maple program can be used to obtain:

Since |y

m+ {1 Py + ¥ < 0.8496699665 < 1,
which means (based on Theorem 10) that the given system has only one solution for [0,1].

7. Conclusions

In this work, we investigate coupled nonlinear Langevin fractional problems with
different orders of p-Caputo fractional derivatives on arbitrary domains with nonlocal
integral boundary conditions. We address the original problem by transforming it into
an equivalent fixed-point problem and applying the standard tools of modern functional
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analysis to determine its existence and uniqueness. Our results are not only new in this
setting but also provided some special cases that we obtained by fixing certain parameters
or giving a function-specific definition to the appropriate interval, for example:

(1) =0
‘DY (DY 4 ;) i (t) = Ei(t, p1(t), 92(t)), telabli=12
Subjected to the specific boundary conditions

¢i(a) =0, it g,(b) = 0,

¢
‘D pqi(a) = K/ @2(s)ds.

@) pt)=t
DYDY +ai)gi(t) = Ei(t, ¢1(1), 92(8)),  t€[abli=12
Subjected to the specific boundary conditions

pi(a) =0,  I"Fg;(b) =0,

4
‘D1 (a) = K/a P2(s)ds.

@) pt) =t
‘DY (‘DY 4+ a;) i (t) = Ei(t, 1 (t), @2(t)), telab],i=12.
Subjected to the specific boundary conditions

¢i(a) =0, it g,(b) =0,

4
D1 (a) = x [ pa(s)is.

@ u(t) =logt
DY (DI ) i(t) = Ei(t, o1 (t), 92(1)), teabl,a>0i=12
Subjected to the specific boundary conditions

pi(a) =0,  I’Hei(b) =0,
¢
‘D pq(a) = K/a @2(s)ds.

In future work, we could investigate our results based on other FDs such as the
Abu-Shady-Kaabar FD, Katugampola derivative, or conformable derivative.
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