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Abstract: The recovery of bandlimited signals with high dynamic range is a hot issue in sampling
research. The unlimited sampling theory expands the recordable range of traditional analog-to-digital
converters (ADCs) arbitrarily, and the signal is folded back into a low dynamic range measurement,
avoiding the saturation problem. Since the non-bandlimited signal in the Fourier domain cannot
be directly applied to its existing theory, the non-bandlimited signal in the Fourier domain may
be bandlimited in the fractional Fourier domain. Therefore, this brief report studies the unlimited
sampling problem of high dynamic non-bandlimited signals in the Fourier domain based on the
fractional Fourier transform. Firstly, a mathematical signal model for unlimited sampling is proposed.
Secondly, based on this mathematical model, the annihilation filtering method is used to estimate
the arbitrary folding time. Finally, a novel fractional Fourier domain unlimited sampling theorem
is obtained. The theory proves that, based on the folding characteristics of the self-reset ADC, the
number of samples is not affected by the modulo threshold, and any folding time can be handled.

Keywords: Fourier transform; fractional Fourier transform; unlimited sampling theorem; nonlinear
modulus mapping

1. Introduction

In signal processing, sampling [1–3] is the primary task faced in the process of digitiz-
ing the signal. Since Shannon’s sampling theorem was proposed [4], sampling theory has
been developed for more than 70 years, and its theoretical results [5–8] are so rich that it
has become one of the research hotspots in the field of signal processing. From a practical
standpoint, point-wise samples of the function are obtained using the analog-to-digital
converter (ADC), but the ADC has a limited dynamic range [−λ, λ] [9]. Whenever the
signal exceeds a certain preset threshold λ, the ADC will saturate, and the aliases signal will
be clipped due to clipping, we refer to these ADCs as clipped ADCs or traditional ADCs
(C-ADC) [10,11]. Since most signals in practical applications are not limited by broadband,
the dynamic range is very wide. Therefore, recovering the signal from the tailored version
of the C-ADC is an inaccurate inverse problem. Generally, recovery methods almost alle-
viate the effects of clipping at the expense of oversampling. To solve these problems, so
self-reset ADC (S-ADC) was proposed [12–14]. Each time the input signal reaches the upper
(lower) saturation limit, these S-ADCs will be reset to the other corresponding thresholds,
which allows the S-ADC to reset rather than saturate, resulting in analog sampling. When
the signal reaches the upper (lower) threshold point, it will fold backward (front) by an
integer multiple of 2λ. This phenomenon is equivalent to modulo arithmetic on the input
signal, which is very helpful for processing high dynamic range signals.

Because of the S-ADC’s ability to process high dynamic range signals, Bandari et al.
recently made the first pioneering contribution [15]. He proposed the unlimited sampling
theorem and developed the first provable reflector of the guaranteed algorithm. Similar to
Shannon’s sampling theorem, the unlimited sampling theorem proves that the bandlimited
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signal can be recovered from analog sampling as long as it meets a certain sampling density
criterion and is not affected by the ADC threshold. In this way, the results allow the perfect
recovery of the bandlimited function, whose amplitude exceeds the ADC threshold by
orders of magnitude. The results [15] have led to a lot of follow-up work, and the theoretical
research of unlimited sampling has gradually enriched [16–20]. In this modular sampling
framework, many scholars have studied the sampling and reconstruction of bandlimited
functions and smooth functions under different backgrounds. The paper is shown that
the bandlimited function is uniquely characterized by modular samples under certain
conditions [21]. Ordentlich et al. studied the recovery of quantization modulus samples by
using edge information [22]. Musa et al. gave the modulus sampling theory of the S-ADC
sparse signal [23]. The unlimited sampling method based on wavelet is suitable for general
smooth signals, not limited to bandlimited signals [24]. The paper is mainly applicable to
bandlimited signals in the Fourier domain on unlimited sampling method [25]. Most of the
unlimited sampling frameworks are based on the bandlimited signals, but there are few
articles on non-bandlimited signals. For various applications of the non-bandlimited signal
models, the original results are not directly applicable. Therefore, it is very necessary to
study the unlimited sampling theory of non-bandlimited signals in the Fourier domain.

As a general form of the Fourier transform (FT), the fractional Fourier transform
(FRFT) extends dimensionality of traditional FT-based spectral analysis [6,26,27]. The FRFT
has an additional degree of freedom compared to the FT, which makes it more flexible and
suitable for non-stationary signals. By transforming α from 0 to π

2 , the FRFT will be able
to fully characterize the signal at the transition from time to frequency, overcoming the
limitation of the FT only to perform frequency analysis. Furthermore, unlike conventional
FT, which uses a complex exponential signal as the basis function, the FRFT utilizes a
chirp signal as the basis function, which implies that a signal that is not bandlimited in
the Fourier domain can be bandlimited in the fractional Fourier domain. Therefore, it is
very meaningful to study the sampling theorem under the unlimited sampling framework
based on the FRFT.

The FRFT can expand the signal range applicable to traditional sampling theory.
Since the non-bandlimited signal in the Fourier domain cannot be directly applied to its
existing theory, the non-bandlimited signal in the Fourier domain may be bandlimited in
the fractional Fourier domain. Therefore, we propose a method based on the fractional
Fourier domain bandlimited signal reconstruction theory under the framework of unlimited
sampling to make up for the shortcomings of the Fourier domain reconstruction theory.
To enrich the content of the unlimited sampling framework, we extend the theory of the
unlimited sampling framework in the Fourier domain to the fractional Fourier domain. Our
main work is to perform a modular operation on folds introduced by modular nonlinearity
in the fractional Fourier domain and to estimate the fractional spectrum of instantaneous
folding time to obtain a new sampling theorem in the fractional Fourier domain.

The main contributions of this brief report are summarized as follows. Firstly, the fold-
ing formula of non-linear and modulus mapping in the fractional Fourier domain is
introduced, and a mathematical signal model of unlimited sampling for the FRFT is pro-
posed. Secondly, based on this mathematical model, the fractional spectrum of the arbitrary
folding time is estimated using the annihilation filtering method. Finally, a novel fractional
Fourier domain unlimited sampling theorem is obtained. It is shown that the sampling
theorem is independent of the modulo threshold and that it can be applied to arbitrary
folding times.

This report is organized as follows. In Section 2, we briefly describe the FRFT and
unlimited sampling theorem in the Fourier domain. In Section 3, a mathematical signal
model for unlimited sampling is proposed in the fractional Fourier domain. In Section 4,
a novel unlimited sampling theorem in the fractional Fourier domain is proposed. In
Section 5, relevant applications of the proposed method are provided. We conclude this
report in Section 6.
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2. Preliminaries
2.1. Fractional Fourier Transform

Definition 1. The FRFT of a signal x(t) ∈ L2(R) with an angle α is defined as [27–30]

Xα(u) = Fα[x(t)](u) ,
∫ +∞

−∞
x(t)Kα(u, t)dt, (1)

where Fα is the FRFT operator, u stands for fractional frequency, Kα(u, t) denotes the kernel
function of the FRFT

Kα(u, t) =


Aαei( cot α

2 t2−csc αut+ cot α
2 u2), α 6= kπ

δ(t− u), α = 2kπ

δ(t + u), α = (2k− 1)π

(2)

where Aα ,
√

1−i cot α
2π , the rotation angle of the FRFT is expressed as α =

pπ

2
, and p is the order of

the FRFT. The domain 0 < α <
π

2
are called fractional Fourier domains in [28], and this definition

is also adopted in this report.

The FRFT can be understood as the rotation of the time-frequency plane. The essence
of the FRFT of a signal is to decompose the signal with the chirp signal Kα(u, t) as the
basis function. According to the FRFT of the signal x(t), it can be determined whether it is
bandlimited in the fractional Fourier domain.

The FRFT has linear transform additivity, namely

Fα+β[x(t)](u) = Fα[x(t)](u) · Fβ[x(t)](u) = Xα(u) · Xβ(u). (3)

It can be seen that the inverse transform of the FRFT relative to the α angle is the FRFT with
the parameter −α angle, we have

x(t) = F−α{Xα(u)} =
∫ +∞

−∞
Xα(u)K−α(u, t)du, (4)

when α = −π

2
, the FRFT degenerates to the traditional inverse FT; when α =

π

2
, the FRFT

degenerates to traditional FT, X π
2
(u) =

∫ +∞
−∞ x(t)e−i2πutdt; when α = 0, the FRFT degener-

ates to an identity transformation, X0(u) = x(t); when α = π, the FRFT degenerates to the
inversion of the signal with respect to the time axis, Xπ(u) = x(−t).

Definition 2. A signal x(t) is called Ωα bandlimited signal in the fractional Fourier domain, which
means

Xα(u) = 0, | u |> Ωα, (5)

where Ωα is called the bandwidth of signal x(t) in the fractional Fourier domain. It has been shown
that if a nonzero signal is bandlimited in the αth fractional Fourier domain, it can’t be bandlimited
in the fractional Fourier domain with another angle β, where β 6= ±α + nπ for any integer n [26].

2.2. Unlimited Sampling Theorem in the Fourier domain

Definition 3. The central modulo operation is defined by the mapping [15]

Mλ : g 7−→ 2λ

([[
g

2λ
+

1
2

]]
− 1

2

)
, [[g]]

de f
= g− bgc, (6)

where [[g]] defines the fractional part of input signal g and λ > 0 is the ADC threshold. Note
that Equation (6) is a nonlinear modulus mapping, which converts a smooth function into a
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discontinuous function. It is equivalent to a centered modulo operation since Mλ(g) ≡ g mod 2λ.
By implementing the mapping Equation (6), it is clear that out-of-range amplitudes are folded back
into the dynamic range [−λ, λ].

Let’s review some important conclusions in [16,25].

Lemma 1 ((Modular decomposition property) [16]). Let g ∈ BΩ, where BΩ denotes the space
of σ-bandlimited functions, and Mλ(·) be defined in Equation (6) with λ is a fixed, positive constant.
Then, the bandlimited function g(t) admits a decomposition

g(t) = z(t) + εg(t), (7)

εg(t) = 2λ ∑m∈Z e[m]1Dm(t), e[m] ∈ Z, (8)

where z(t) = Mλ(g(t)), εg(t) is a simple function, and ∪m∈ZDm = R is a partition of the real
line into intervals Dm.

The process of solving discontinuities is very critical. Lemma 1 just proves this problem.
Each bandlimited function, whether continuous or discrete, can be decomposed into the
sum of the modular function and the stepwise residual of the simple function. Observe that
the output function z(t) is the difference between g(t) and a piecewise constant function
εg(t).

Theorem 1 ((Unlimited sampling theorem in the Fourier domain) [25]). Let g ∈ BΩ be a
τ-periodic function. Suppose that we are given Q modulo samples of where y[k] = Mλ(g(kT))
folded at most M times. Then a sufficient condition for recovery of g(t) from y[k] (up to a constant)

is that, T ≤ τ

Q
and Q ≥ 2

(
Ωσ

2π
+ M + 1

)
.

Unlike the traditional FT, which uses a complex exponential signal as the basis function,
the FRFT uses a chirp signal as the basis function. This connotation determines that a non-
bandlimited signal in the Fourier domain may be bandlimited in the fractional Fourier
domain. Therefore, the unlimited sampling study of non-bandlimited signals in the Fourier
domain can be transformed into the theoretical study of bandlimited signals in the fractional
Fourier domain. The next step is to study the unlimited sampling theory of bandlimited
signals in the fractional Fourier domain.

3. Mathematical Model for Unlimited Sampling with FRFT

In this Section, we will study the unlimited sampling theory of bandlimited signals in
the fractional Fourier domain. Here we make the following symbolic regulations: the sets
of real, integer, and complex-valued numbers are denoted by R, Z, and C, respectively.

3.1. Mathematical Signal Model

Based on the periodic signal model in the Fourier domain, this report proposes a
periodic signal model in the fractional Fourier domain, so mathematically x(t) can be
represented as follows.

Let x(t) be a Ωα bandlimited function satisfies x(t) = x(t + σ), ∀t ∈ R. Then x(t) has
a fractional Fourier series (FRFS) expansion

x(t) = ∑
|w|≤R

X̂α(w)Φ−α(w, t), (9)
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where X̂α(w) is FRFS coefficient, and

Φα(w, t) =

√
sin α− i cos α

σ
ei( cot α

2 t2−csc(α)wu0t+ cot α
2 w2u2

0), (10)

where R =

⌈
Ωα

u0

⌉
, u0 =

2π sin α

σ
.

The discrete-time representation x(nTs), n ∈ Z of the signal x(t) can be obtained
by uniformly sampling at intervals of Ts. The discrete-time FRFT of the α angle of the
discrete-time signal x(t) is defined as follows

Xα,s = Fα[x(nTs)](u) ,
+∞

∑
n=−∞

x(nTs)Kα(u, nTs), (11)

where Kα is given by Equation (2), and Ts is the sampling period.
Let sampling function x(t) obtains Q modular samples at the sampling rate T in the

interval t ∈
[
− σ

2 , σ
2
]
, then FRFS coefficients of x(t) in the fractional Fourier domain have a

form

X̂α(w) =

{ ∫ σ
2
− σ

2
x(t)Φα(w, t)dt, w ∈ ER,Q,

0, w ∈ IQ\ER,Q, |w| > Ωα,
(12)

where IQ = {0, 1, · · · , Q− 1} denote the set of Q contiguous integers, and ER,Q is given by

ER,Q = [0, R] ∪ [Q− R, Q− 1], |ER,Q |= 2R + 1. (13)

Remark 1. The well-known Fourier series (FS) is just a special case of the FRFS for α =
π

2
, please

see [25]. In order to solve for X̂α(w) in (12), we must require Q ≥ 2R + 1. Because of QT = σ, so
T ≤ σ

Q
≤ σ

2R + 1
.

The hypothesis of periodic functions in our report only provides a practical method
for recovering signals from the folding measurements below. However, when the signal is
aperiodic, the theoretical reconstruction guarantees that the aperiodic signal can also be
expanded by the discrete-time FRFT, but additional requirements are required for sampling
samples, and this report will not expand in detail.

3.2. Nonlinear Modulus Mapping

This report uses the definition and properties of generalized modular non-linear
mapping in Equation (6); this phenomenon is equivalent to modulo arithmetic on the input
function. According to Lemma 1, it gives the following form

vx(t) = x(t)−Mλ(x(t)) =: ∑m∈Z c[m]1[tm ,tm+1]
(t), (14)

where c[m] ∈ R, 1[ta ,tb ]
is the indicator function on [ta, tb], and tm ∈

[
− σ

2 , σ
2
]

denotes the
folding instants with ta < tb. Obviously, the output function Mλ(x(t)) is the difference
between x(t) and a residual function vx(t). The sampling process to obtain modulo samples
of a function is outlined in Figure 1. The [16] requires that the correlation coefficient of
the residual function vx(t) is an integer multiple of 2λ, while [25] does not need to make
assumptions about its correlation coefficient.

Without loss of the generality, we make the following symbolic regulations:

1. Let f [k] def
= x(kT), h[k] def

= Mλ(x(kT)), v[k] def
= vx(kT), then

f [k] = h[k] + v[k]. (15)
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2. Let ∆N f = ∆N−1(∆ f ) denote the Nth difference operator with ∆ f = f [k + 1]− f [k],

f [k] def
= ∆ f [k], h[k] def

= ∆h[k], and v[k] def
= ∆vx(kT), then

f [k] = h[k] + v[k] = h[k] + ∑m∈M c[m]δ(kT − tm), k ∈ IQ, (16)

where δ denotes the Dirac distribution, c[m] are unknown weights, tm are unknown
fold instant, and the size of the set M depends on the dynamic range of the signal
relative to the threshold λ.

kT

( )x kT

Input signal S-ADC Modulo samples

( )x t

Figure 1. Unlimited sampling architecture for obtaining modulo samples.

Similar to the phase unwrapping theory, we can obtain the following fact from Itoh’s
condition [31]. When the max-norm of the first-order finite difference of the samples is
bounded by 2λ or | f [k + 1]− f [k]| ≤ 2λ, the first-order finite difference operator on the
modular sequence can be reversed operation to restore.

Equation (16) is written as the fractional Fourier domain

Hα[n] =
{

Fα[n]−Vα[n], n ∈ ER,Q−1
− Vα[n], n ∈ IQ−1\ER,Q−1

(17)

where Fα, Hα, and Vα are the FRFT of f , h, and v, respectively. At the same time, the discrete
FRFT form of h[k] is given

Hα[n] = ∑k∈IQ−1
h[k]Kα(n, k)

= ∑k∈IQ−1
Aαh[k] ei( cot α

2 k2−csc(α)u0kn+ cot α
2 u2

0n2),
(18)

where Aα ,
√

1−i cot α
2π and u0 =

2π sin α

Q− 1
. When α =

π

2
, this transform is the discrete FT,

see [25] for details.
If we want to recover f [k], we must solve v[k], then Equation (15) is transformed

into solving Equation (16), and the key to solving Equation (17) is to find the value of the
unknown folding instant {c[m], tm}m∈Z. Using Equations (10) and (16), we can obtain

Vα[n] = ∑k∈IQ−1
∑m∈M c[m]δ(kT − tm)Φα(n, kT)

= ∑m∈M c[m]Aαei
(

cot α
2T2 t2

m−
csc(α)u0n

T tm+ cot α
2 u2

0n2
)

,
(19)

where Aα ,
√

1−i cot α
2π , and M denotes the size of the set depends on the dynamic range of

the signal relative to the threshold λ. When α =
π

2
, this transform is the discrete FT [25].

The estimation of the unknown parameters in Equation (19) is called the spectral estimation
problem [32,33].
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4. Unlimited Sampling Theorem in the Fractional Fourier Domain
4.1. Computing the Folding Instants

If we want to recover v[k], we must find the value of the unknown folding instant
{c[m], tm}m∈Z. Equation (19) is the spectral estimation problem. The commonly used
spectrum estimation methods are annihilation filter (AF) [32,34], ESPRIT [35], MUSIC [36],
etc. Among them, the AF is the most commonly used method in many theoretical analyses
and practical applications. In principle, the signal reconstruction process is to use the
obtained set of moments or fractional Fourier coefficients of the input signal to solve a spec-
trum problem to achieve an accurate estimation of the unknown parameter {c[m], tm}m∈Z.
For convenience, Equation (19) is written as follows

Vα[n] = Aα ei cot α
2 u2

0n2︸ ︷︷ ︸
κ(n)

∑m∈M c[m]ei cot α
2T2 t2

m︸ ︷︷ ︸
χm

· e−i csc(α) u0
T ntm︸ ︷︷ ︸

ςn
m︸ ︷︷ ︸

=(n)


, (20)

where =(n) = ∑m∈M χmςn
m. Since the formula is very complicated, we rewrite the formula

Vα[n] = Aακ(n)=(n). Because the part of κ(n) does not contain unknown parameters, we
separately perform an annihilation filter to get {c[m], tm}, and finally bring in Equation (20),
and get v through inverse FRFT.

First, let’s analyze =(n) in detail below,

=(n) = ∑m∈M χmςn
m. (21)

Equation (21) is a classic spectrum estimation problem, which can be handled by an
annihilation filter. It is known from the [32] that we can accurately estimate the unknown
parameters χm and ςm from 2K continuous non-zero measured values =(n). The following
is divided into two parts to solve separately.

(1) Construct the filter {Γ[ϑ]}ϑ=0,1,··· ,M so that its zero point is the parameter

ςm =

{
e−i csc(α)u0

T tϑ

}ϑ=M−1

ϑ=0
,

then the z transform of the filter can be expressed as

Γ[z] =
M−1

∏
m=0

(1− ςmz−1) =
M

∑
ϑ=0

Γ[ϑ]z−ϑ. (22)

It can be seen that the root of the polynomial is the parameter ςm. Therefore, this report
convolutes it directly, so it has

(Γ ∗ =)[n] =
M

∑
ϑ=0

Γ[ϑ]=[n− ϑ]

=
M

∑
ϑ=0

M−1

∑
m=0

c[m]ei cot α
2T2 t2

m · Γ[ϑ] · e−i csc(α)·(n−ϑ)u0
T tm

=
M−1

∑
m=0

c[m]ei cot α
2T2 t2

m
M

∑
ϑ=0

Γ[ϑ]ei csc(α)·ϑu0
T tm

︸ ︷︷ ︸
Γ[ςm ]

e−i csc(α)·nu0
T tm = 0.

(23)
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We write Equation (23) in the form of matrix-vector to obtain
=[M− 1] =[M− 2] · · · =[0]
=[M] =[M− 1] · · · =[1]

...
...

...
...

=[N − 1] =[N − 2] · · · =[N −M]




Γ[1]
Γ[2]

...
Γ[M]

 = −


=[M]
=[M + 1]

...
=[N]

, (24)

where = =
[
=[0],=[1], · · · ,=[M]

]T , =[M] = 1. The unique solution can be obtained
Γ[ϑ], ϑ = 1, 2, · · · , M, and the instantaneous folding time {tm}m∈Z can be obtained.

(2) To estimate the amplitude parameter χm, extract M continuous values from the
known coefficient =[n], that is to say, m = 0, 1, · · · , M, and write the =(n) = ∑M−1

m=0 χmςn
m

in the form of a matrix-vector

Uχ = =, (25)


1 1 · · · 1
ς0 ς1 · · · ςM−1
...

...
...

...
ςM−1

0 ςM−1
1 · · · ςM−1

M−1




ei cot α
2T2 t2

0

ei cot α
2T2 t2

1

. . .

ei cot α
2T2 t2

M−1

 ·


c[0]
c[1]

...
c[M− 1]



=


=[0]
=[1]

...
=[M− 1]

,

(26)

where U is a vandermonde matrix, it is a matrix whose columns are geometric series.
For any integer a, b = 0, 1, · · · , M− 1 (a 6= b) satisfy Ua 6= Ub, and U is non-singular, at this
time, Equation (25) has a unique solution. It needs to be emphasized here that we generally
use the least squares method to obtain an estimate of the amplitude information.

Through the above two steps, the instantaneous folding time {c[m], tm} can be ob-
tained. we bring {c[m], tm} into Equation (20), and get v through the inverse FRFT.

4.2. Unlimited Sampling Theorem in the Fractional Fourier Domain

Through the above research content, we have found the value of the unknown folding
instant {c[m], tm}m∈Z. If v[k] is known, we can infer v[k] from h[k] and recover f [k] from
h[k]. The unlimited sampling theorem in the fractional Fourier domain is given below.

Theorem 2 (Unlimited sampling theorem in the fractional Fourier domain). Let x(t) be
a Ωα bandlimited function satisfies x(t) = x(t + σ), ∀t ∈ R, and h[k] = Mλ(x(kT)) folded
at most M times. Then a sufficient condition for recovery of x(t) from h[k], is that T ≤ σ

Q
and

Q ≥ 2
(

Ωασ

2π sin α
+ M + 1

)
, where M is known.

Proof of Theorem 2. From the unlimited sampling part of the fractional Fourier domain
in Equations (17) and (20), we can get the

=[M− 1] =[M− 2] · · · =[0]
=[M] =[M− 1] · · · =[1]

...
...

...
...

=[N − 1] =[N − 2] · · · =[N −M]




Γ[1]
Γ[2]

...
Γ[M]

 = −


=[M]
=[M + 1]

...
=[N]

,

that is, Γ[ϑ].
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From
(Γ ∗ =)[n] = 0,

we can get the root of ςm.
Bring Equation (19) into Equation (17), we obtain

Fα[n] = Hα[n] + Vα[n]

= ∑k∈IQ−1
Aαh[k] ei( cot α

2 k2−csc(α)·u0kn+ cot α
2 u2

0n2)

+ ∑m∈M c[m]Aαei
(

cot α
2T2 t2

m−
csc(α)·u0n

T tm+ cot α
2 u2

0n2
)

.

(27)

Using the least square method to estimate c[m], and get vk in Equation (15). we develop
a method that allows for inferring v[k] from h[k].

Based on Theorem 1, we get the sampling density criterion, and the following conclu-
sions can be drawn

|IQ−1\ER,Q−1| = Q− 2R− 2 ≥ 2M, (28)

where M is known.

Due QT = σ, R =

⌈
Ωα

u0

⌉
, u0 =

2π sin α

σ
, we have

T = TFRFT ≤
σ

2(R + M + 1)
=

σ

2(dΩασ/2π sin αe+ M + 1)
. (29)

Proof completed.

Remark 2. After performing M folds, Equation (29) can guarantee the restoration and reconstruc-
tion of folding moment {c[m], tm}M−1

m=0 . Theorem 2 turns out that the unlimited sampling theorem

has nothing to do with the modulus threshold and can handle arbitrary folding time. When α =
π

2
,

see [25].

Remark 3. Indeed, the choice of the optimal angle α of the FRFT must take into account the actual
application: if the modulation frequency is known, the optimal estimate can be obtained under the
angle α determined by the modulation frequency; if the modulation frequency is unknown, it can
be estimated in advance using the instants frequency estimation method, and then the estimated
modulation frequency is used to determine the angle α.

Remark 4. The proposed method only needs to compute the first-order difference and then isolate
the nonlinearity-induced folding in the FRFT domain. The [16] needs to compute the N-order
difference and recover the high-order difference from the model sample. In comparison to [16],
the number of differentiations is much lower in the proposed method.

The unlimited sampling theorem proves that the non-bandlimited signal in the Fourier
domain based on the FRFT can be recovered from analog sampling as long as it meets
Equation (29), whose amplitude exceeds the ADC threshold by orders of magnitude. It is
particularly important that the signal is not affected by the ADC threshold.

5. Potential Application
5.1. Self-Reset ADC

The standard process of digitizing a signal involves bandwidth limiting by an annihila-
tion filter, followed by sampling with an ADC. In practice, the C-ADC has a limited dynamic
range [−λ, λ]; if the input signal exceeds this range, the signal is clipped. The clipping
problem is a serious problem that manifests itself in the form of non-linear artifacts in audio-
visual data and applications involving the sampling of biomedical data. The S-ADCs are
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rapidly developing with advances in ADC design. The theoretical concept of the S-ADCs
has been in the literature since as early as the late 1970s, and physical implementations have
only been in development since the early 2000s. One of the earliest references was by Rhee
and Joo [37], where the authors proposed the S-ADC in the context of CMOS image sensors.
When the upper or lower saturation threshold is reached, it resets to the corresponding
threshold so that subsequent changes are captured even if the saturation limit is exceeded.
The conceptual difference between the C-ADC and S-ADC is shown in Figure 2. The aim
of developing the S-ADC is to enable the dynamic range of natural images in real-world
applications to exceed the range that the C-ADC can handle. This capability is critical not
only for consumer photography, but also for life sciences and bioimaging.
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(a) Input signal and output signal in C−ADC
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Figure 2. Conceptual difference between the C−ADC and S−ADC. (a) Input signal and output signal
in C−ADC; (b) input signal and output signal in S−ADC.

The work presented in this study revolves around the theoretical aspects of unlimited
sampling. Based on the good properties of the FRFT, we propose a novel fractional Fourier
domain sampling theorem that isolates the folds introduced by the modulus nonlinearity
in the fractional Fourier domain, which can deal with the non-idealities and uncertainties
introduced by the hardware while ensuring a low sampling rate. It is shown in theory that,
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based on the folding properties of the S-ADC, we can recover some signals up to multiples
of the ADC threshold λ and can deal with arbitrarily long folding times.

• In the practical application of the S-ADC, the proposed method can satisfy the condi-
tion that λ is unknowable, so it can resist any non-ideality.

• The proposed method only needs to calculate the first-order differential, which is
especially useful for the S-ADC in case of errors.

• The proposed mathematical model in this study has a certain possibility in S-ADC.
The proposed signals in this report are periodic bandlimited signals in the fractional
Fourier domain, and this limitation reflects a practical limitation. Typically, instead of
sampling on an ideal real line, the signal is sampled at finite intervals.

Based on the folding characteristics of the S-ADC hardware, the core of the proposed
method is a mathematical model of the FRFT unlimited sampling signal. The folding
introduced by the modulus nonlinearity can be isolated in the fractional Fourier domain,
leading to frequency estimation problems. An annihilating filter estimation method is
used to deal with arbitrarily close folding instants. In future work, we are committed to
combining theory and practice, and have achieved breakthrough results in both hardware
and algorithms.

5.2. Future Directions

• Based on the mathematical conclusions obtained in this report, we will study a series
of simulation experiments with the proposed theory. Some practical application ADC
examples using the proposed unlimited sampling theorem will also be investigated in
the future.

• In the future, we will study the optimal fractional order angle α selection method in
sampling theory and tell readers how to determine the optimal parameter α of the
FRFT in the reconstruction of the analog signal from its sampled signal.

• The broader signal transformation domain is also a topic worthy of our attention in
the future. Extending our results to a wider domain of transforms, such as linear
canonical transform, linear canonical wavelet transform, and canonical S-transform,
etc., is a very interesting follow-up question.

6. Conclusions

In this report, we study the sampling theorem of bandlimited signals in the fractional
Fourier domain based on the unlimited sampling framework of modulo measurement. Our
main work is to perform modular operations in the fractional Fourier domain with the
folding introduced by modular nonlinearity, and then to deal with the problem of fractional
spectrum estimation. It turns out that the unlimited sampling theorem has nothing to do
with the modulus threshold and can handle arbitrary folding time. In future work, we are
committed to combining theory and practice and have achieved breakthrough results in
both hardware and algorithms.
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