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Abstract: The aim of this paper is to give a characterization of the set of roots of a special family of
polynomials. This family is relevant in reliability theory since it contains the reliability polynomials of
the networks created by series-parallel compositions. We prove that the set of roots is bounded, being
contained in the two disks of the radius equal to the golden ratio, centered at 0 and at 1. We study the
closure of the set of roots and prove that it includes two disks centered at 0 and 1 of a radius slightly
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some limit points is also provided.
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1. Introduction

The location of the roots of polynomials has always been a subject of interest, starting
from the very moment when Gauss introduced the geometric representation of com-
plex numbers as points in the plane. One of the early results in this area was given by
Cauchy, who proved (see [1]) that all of the roots of a polynomial with complex coefficients

f (z) =
n
∑

k=0
akzk lie in the disk

|z| ≤ 1 + max
0≤k≤n

∣∣∣∣ ak
an

∣∣∣∣.
Another important result concerning the roots of a polynomial with positive coefficients

is the Eneström-Kakeya Theorem (see [2,3]), which states that if 0 < a0 ≤ a1 ≤ . . . ≤ an, then

the roots of the polynomial f (z) =
n
∑

k=0
akzk lie in the disk |z| ≤ 1. An equivalent (but more

useful) statement of the theorem (see [4,5]) is that the roots of the polynomial f (z) with
positive coefficients lie in the annulus

min
1≤k≤n

ak−1
ak
≤ |z| ≤ max

1≤k≤n

ak−1
ak

.

Besides the theoretical significance, the study of polynomial zeros has important
applications in various domains such as control theory, signal processing, and network
reliability theory. From a mathematical point of view, a network is an undirected graph with
perfectly reliable nodes, with each edge independently operational with some probability
p ∈ [0, 1]. Introduced by Moore and Shannon in 1956 [6], the two-terminal reliability of a
network is the probability that two specified nodes s and t (called terminals) are connected
by a path made of operational edges, while the all-terminal reliability is the probability
that any two nodes are connected by such a path [7,8]. In both cases, the reliability is a
polynomial function in p.

Since it measures the robustness of a network, the reliability polynomial has become
a very important research topic in recent decades. The combinatorial problem of calcu-
lating the reliability of a network has been proved to belong to the class of #P-complete
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problems [9], which means that the time of calculation exponentially increases with the
size of the network. Therefore, the research in the field has mainly concentrated in two
directions: the first direction aims at finding methods to approximate the reliability polyno-
mial (see, for example [10–15]), while the other one studies the analytic properties of these
polynomials, such as shape (convexity, inflection points) on the one hand [16–19] and roots
(real or complex) on the other [20–23].

The roots of all-terminal reliability polynomials have been intensively studied, using
the Eneström-Kakeya Theorem. In 1992, Brown and Colbourn conjectured that these roots
lie inside the disk |z− 1| ≤ 1 [20]. The conjecture was proved to be false twelve years
later [24], but the roots found outside the disk are still close to the circle |z − 1| = 1.
Although two-terminal reliability polynomials have many features in common with all-
terminal reliability polynomials, their roots seem to behave quite differently. Recently,
Brown and deGagné [21,23] have proved that the closure of the roots of two-terminal
reliability polynomials contains the disks |z| ≤ 1 and |z − 1| ≤ 1 and that real roots
approaching −φ and 1 + φ exist (where φ = 1+

√
5

2 is the golden ratio).
By taking a broader view, we remark that the reliability polynomial is just one of the

polynomials associated with a graph. Another famous graph polynomial is the chromatic
polynomial CG(k) used to describe the number of ways to color the vertices of a graph
G with a given number of colors k so that no two adjacent vertices have the same color.
The chromatic polynomial was introduced by Birkhoff in 1912 [25] in the hope that the
study of the real or complex zeros of CG(z) might lead to an analytic proof of the four-color
conjecture, which states that CG(4) > 0 for any planar graph G. Although this hope has
not been realized, the zeros of CG(z) (called chromatic roots) have become a subject of great
interest for scientists [26–29]. A remarkable theorem proved by Sokal [28] states that the set
of chromatic roots is dense in the complex plane, while Jackson [27] and Thomassen [29]
proved that the closure of the real chromatic roots is the set {0, 1} ∪ [32/27, ∞).

Similar results have been demonstrated for two other (“younger”) polynomials: the
independence polynomials and the domination polynomials. The independence polyno-
mial IG(x) was defined by Gutman and Harary in 1983 [30] as IG(x) = ∑ skxk, where sk
is the number of independent k-sets (an independent set in a graph is a set of pairwise
non-adjacent vertices). Brown et al. [31] proved that real roots of independence polynomi-
als are dense in (−∞, 0], while complex roots are dense in C. The roots of independence
polynomials (called independence roots) continue to be a highly interesting area of research
(see, for instance, [32]).

Introduced by Arocha and Llano [33] just two decades ago, the domination poly-
nomials have quickly become an attractive topic for researchers in the field [34–37]. A
dominating set of a graph G is a set of vertices S such that every vertex that is not in
S is adjacent to a vertex of S. The domination polynomial is defined by the formula
DG(x) = ∑ dkxk, where dk is the number of dominating sets with k elements. The complex
roots of these polynomials (domination roots) were proved to be also dense in the complex
plane [37], while the closure of the real roots is (−∞, 0] [34].

The main contributions of the paper are as follows:

• We introduce the family F of polynomials obtained by composing the elementary
polynomials g(x) = 1− x and ϕn(x) = xn.

• We prove that the set of roots of this infinite family of polynomials is bounded by the
circles |z| = φ and |z− 1| = φ. A direct consequence is that the roots of the reliability
polynomials of series-parallel composition networks are bounded.

• Starting from the result proved by Brown and deGagné [21,23], we show that the
closure of the set of roots of the polynomials in F contains the domain bounded by
the lemniscates with n poles centered at 0 and at 1; hence, it contains two disks of
radius slightly greater than 1, centered at 0 and at 1.

• We find 16 complex limit points of the set of roots apart from −φ and 1 + φ, the two
limit points on the real axis noted in [21].
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The paper is organized in 6 sections (including this introductory section). Section 2
introduces the family F of polynomials and describes their basic properties. In Section 3,
we prove that the roots of these polynomials are bounded by the two circles of radius
φ centered at 0 and at 1. Section 4 is devoted to the closure of the set of roots S , while
Section 5 establishes a number of limit points of the set of roots. The conclusions and some
open problems raised by the paper are presented in Section 6.

2. Preliminaries

An important class of two-terminal networks are those obtained by series-parallel
compositions (see [22,38–40]). The reliability of a network consisting of n identical edges
connected in series, each one independently working with the probability p, is pn, while the
reliability of a network with n edges connected in parallel is 1− (1− p)n. Therefore, it is
quite natural to consider the family of polynomials obtained by composing the polynomials:

ϕn(x) = xn, n = 2, 3, . . . ,

g(x) = 1− x.

The aim of the paper is to provide a characterization of the set of roots of these polynomials.
First of all, we notice that g = g−1 and ϕm ◦ ϕn = ϕmn for any m, n ≥ 2. We also

remark that for any polynomial f and every n ≥ 2, the polynomial ϕn ◦ f has the same
roots as f . Thus, using for composition the notation f g = f ◦ g, we define the family of
polynomials F = F0 ∪ F1, where F0 and F1 are the disjoint sets

F0 = { f = gϕn1 . . . gϕnk : nj ≥ 2, j = 1 . . . k, k ≥ 1},
F1 = { f = gϕn1 . . . gϕnk g : nj ≥ 2, j = 1 . . . k, k ≥ 1}.

Not every polynomial of the family F is the reliability polynomial of some network
created by series-parallel composition. The reliability polynomials of such networks are
the members of F0 with k even, and the members of F1 with k odd (in other words, the
compositions where the polynomial g has an even number of occurrences).

Consider, for instance, the series-parallel network Nm,n consisting of m internally
disjoint paths (each of length n) connecting the two vertices s and t. If each edge is
operational with some probability x ∈ [0, 1], then the reliability polynomial of the network
(the probability that the two terminals s and t are connected by at least one operational
path) is

fm,n(x) = 1− (1− xn)m = gϕmgϕn(x). (1)

Suppose that k such networks are connected in series to form a more complex network,
Nk,m,n. The reliability polynomial of this network is

fk,m,n(x) = (1− (1− xn)m)k = ϕkgϕmgϕn(x), (2)

and its roots are the same as the roots of fm,n(x).
Let S denote the set of all roots of the polynomials in F and, for every k = 1, 2, . . ., we

denote by Lk and Rk, respectively, the following sets of roots:

Lk = {z ∈ C : ∃n1, . . . , nk ≥ 2 s.t. gϕn1 . . . gϕnk (z) = 0}, (3)

Rk = {z ∈ C : ∃n1, . . . , nk ≥ 2 s.t. gϕn1 . . . gϕnk g(z) = 0}. (4)

Obviously, the set S can be written

S = ∪
k≥1

(Lk ∪ Rk) (5)

and the following properties can be readily proved using the Definitions (3) and (4) of the
sets Lk and Rk.
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Proposition 1. For every k ≥ 1, we have:

(i) Rk = 1− Lk (the sets Rk and Lk are symmetric to each other with respect to 1
2 );

(ii) Lk+1 = ∪
n≥2

(gϕn)−1(Lk) = ∪
n≥2

ϕ−1
n (Rk).

(iii) Lk ⊂ Lk+2 and Rk ⊂ Rk+2, k = 1, 2, . . ..

Proof. The first two statements easily follow from the Definitions (3) and (4). We prove (iii):
If z ∈ Lk, then there exists n1, . . . , nk ≥ 2 such that gϕn1 . . . gϕnk (z) = 0. It follows that,

for any m, n ≥ 2, we have gϕngϕmgϕn1 . . . gϕnk (z) = 0; hence, z ∈ Lk+2, and we have just
proved that Lk ⊂ Lk+2. The other inclusion follows by (i).

We notice that the closure of L1 is the unit circle centered at 0,

L1 = C0(1) = {z ∈ C : |z| = 1}

and the closure or R1 = 1− L1 is the unit circle centered at 1:

R1 = C1(1) = {z ∈ C : |z− 1| = 1}.

As for the real roots, we remark that the polynomials of F have no real roots in the
interval (0, 1). As a matter of fact, f (x) ∈ (0, 1) for any x ∈ (0, 1) and f ∈ F , and we can
prove the following result:

Proposition 2. Let f ∈ F , f = gϕn1 . . . gϕnk , where nj ≥ 2 for every j = 1, . . . , k − 1 and
nk ≥ 1.

(i) If k is even then f (0) = 0, f (1) = 1 and f is strictly increasing on [0, 1].
(ii) If k is odd then f (0) = 1, f (1) = 0 and f is strictly decreasing on [0, 1].

Proof. We notice that gϕn(0) = 1, gϕn(1) = 0, and gϕn(x) ∈ (0, 1) for any x ∈ (0, 1) and
n ≥ 2. Since

f ′(x) = (−1)kn1n2 . . . nk ϕn1−1gϕn2 . . . gϕn1(x) · ϕn2−1gϕn3 . . . gϕn1(x) . . . ϕnk−1(x),

we obtain that, for any x ∈ (0, 1), f ′(x) > 0 if k is even and f ′(x) < 0 if k is odd.

Remark 1. Let f ∈ F , f = gϕn1 . . . gϕnk , where nj ≥ 2, j = 1, . . . , k− 1 and nk ≥ 1 if k ≥ 3,
nk ≥ 2 if k = 2. Then, f ′(0) = f ′(1) = 0 and so the points z = 0, z = 1 are attracting fixed
points for f if k is even, or they form an attracting cycle if k is odd (see [41]).

Proposition 3. If f = gϕn1 . . . gϕnk ∈ F0, then its nonzero roots are placed on circles centered
at the origin. If f = gϕn1 . . . gϕnk g ∈ F1, then its roots different from 1 are placed on circles
centered at z = 1. In both cases, each circle contains nk = m equally spaced points (but some circles
may coincide).

Proof. Suppose that f = gϕn1 . . . gϕnk . We denote by f1(x) the polynomial

f1(x) = gϕn1 gϕn2 . . . gϕnk−1 g(x).

Let d1 be the degree of f1(x), d1 = n1n2 . . . nk−1, and let w1, . . . , wd1 ∈ C be the roots
of f1(x). If we denote nk = m, the polynomial f (x) can be written as follows:

f (x) = f1(xm) = ±
d1

∏
j=1

(xm − wj).
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Consequently, the nonzero roots of f (x) are obtained by solving each equation xm = wj

with wj 6= 0, whose solutions are m equally spaced points on the circle of radius m
√∣∣wj

∣∣,
centered at the origin.

If f = gϕn1 . . . gϕnk g, then f (x) = h(1− x), where h ∈ F0. If z1, z2, . . . , zd are the
nonzero roots of h (placed on circles centered at the origin); then, 1− z1, 1− z2, . . . , 1− zd
are the roots of f different from 1 (placed on circles centered at z = 1).

3. Bounds for the Set of Roots S

Lemma 1. Let z, ζ ∈ C such that ζk = z, where k ≥ 2 is an integer. If
∣∣∣z− 1

2

∣∣∣ < 1 +
√

5
2 , then

|ζ| < 1+
√

5
2 .

Proof. We have |ζ| = k
√
|z|. If |z| ≤ 1, then |ζ| ≤ 1 < 1+

√
5

2 . Otherwise, if |z| > 1, then
|ζ| > 1, so we have

|ζ| = k
√
|z| ≤

√
|z| ≤

√∣∣∣∣z− 1
2

∣∣∣∣+ 1
2
<

√
3 +
√

5
2

=
1 +
√

5
2

.

For any w ∈ C and r > 0, we denote by

Dw(r) = {z ∈ C : |z− w| < r},
Dw(r) = {z ∈ C : |z− w| ≤ r}

the open disk (and the closed disk, respectively) of radius r centered at w.

Theorem 1. The set of roots S of the polynomials in F is contained into the open disk

D1/2

(
1 +

√
5

2

)
=

{
z ∈ C :

∣∣∣∣z− 1
2

∣∣∣∣ < 1 +

√
5

2

}
.

Proof. We prove by mathematical induction on k ≥ 1 that the roots of any polynomial of
the form

f (x) = gϕn1 gϕn2 . . . gϕnk (x)

are inside the disk D1/2

(
1 +

√
5

2

)
.

For k = 1, the roots of the polynomial f (x) = gϕn1(x) = 1− xn1 are the complex roots
of unity: n1 equidistant points placed on the circle of radius 1, which is inside the disk
D1/2

(
1 +

√
5

2

)
.

We suppose that the statement is true for k and prove it for k+ 1. Consider the polynomial

f (x) = gϕn1 gϕn2 . . . gϕnk gϕnk+1(x).

By the induction hypothesis, the roots w1, . . . , wn of the polynomial

f1(x) = gϕn1 gϕn2 . . . gϕnk (x)

are inside the disk D1/2

(
1 +

√
5

2

)
. If nk+1 = 1, then

f (x) = f1(1− x),

so the roots of f (x) are 1− w1, . . . , 1− wn, which are also inside the disk D1/2

(
1 +

√
5

2

)
.
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If nk+1 = m > 1, then
f (x) = f1(1− xm),

so the roots of f (x) are the roots of xm = 1−wj, j = 1, . . . , n. Since 1−wj ∈ D1/2

(
1 +

√
5

2

)
,

by Lemma 1 it follows that the roots of f (x) are also inside the disk, and the proof
is complete.

Based on Lemma 1 and Theorem 1, we can find a smaller set containing the set of roots
S (see Figure 1).

Corollary 1. The set of roots S is contained into the union of disks

D0(φ) ∪D1(φ) = {z : |z| < φ} ∪ {z : |z− 1| < φ},

where φ = 1+
√

5
2 is the golden ratio.

b bb

−φ φ+ 11O 1
2

Rez

Imz

Figure 1. Bounds of the set of roots S .

4. The Closure S of the Set of Roots

Consider the sets of roots

L2 = {z ∈ C : ∃m, n ≥ 2 s.t. gϕmgϕn(z) = 0}
R2 = {z ∈ C : ∃m, n ≥ 2 s.t. gϕmgϕng(z) = 0} = 1− L2.

Theorem 2. (see also [21,23]) The closure of L2 contains the unit closed disk centered at 0, while
the closure of R2 contains the unit closed disk centered at 1:

D0(1) ⊂ L2, D1(1) ⊂ R2.

Proof. Let z0 = reit, r ∈ (0, 1), t ∈ [0, 2π] be a point inside the disk D0(1) and ε > 0 be a
small positive number (ε < r and ε < 1− r). We consider the region of the complex plane

Dz0,ε =
{

z = ρeiθ : |ρ− r| < ε
2 , |θ − t| < ε

2

}
.
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As can be easily seen, the supremum of the distance |z − z0| in the region Dz0,ε is
obtained for z = z1,2 =

(
r + ε

2
)
ei(t± ε

2 ) and we have:

|z1,2 − z0| =
∣∣∣reit

(
e±i ε

2 − 1
)
+ ε

2 ei(t± ε
2 )
∣∣∣

≤ r
∣∣cos ε

2 ± i sin ε
2 − 1

∣∣+ ε
2

= 2r sin ε
4 + ε

2 ≤ 2 · ε
4 + ε

2 = ε.

It follows that |z− z0| < ε for any z ∈ Dz0,ε.
We shall prove that there are some natural numbers m, n ≥ 2 such that the polynomial

fm,n(x) = gϕmgϕn(x) = 1− (1− xn)m has at least one root in the region Dz0,ε.
The nonzero roots of fm,n verify the equation

zn = 1− cos 2kπ
m − i sin 2kπ

m (6)

for some k ∈ {1, 2, . . . , m− 1}. Since the roots of (6) are n equally spaced points on the

circle of radius rk
m,n = n

√
2 sin kπ

m , in order to be sure that at least one root lies in the region

Dz0,ε it suffices to take n large enough such that 2π
n < ε and to choose m and k such that the

circle of radius rk
m,n crosses the region, that is,(

r− ε
2
)n

< 2 sin kπ
m <

(
r + ε

2
)n. (7)

We notice that sin kπ
m = sin (m−k)π

m , so we can take k ∈ {1, 2, . . . ,
⌊m

2
⌋
}. Since

2
π x ≤ sin x ≤ x, ∀x ∈

[
0, π

2
]
,

we obtain that the inequalities (7) hold if we can choose n, m, and k such that

1
4
(
r− ε

2
)n

< k
m < 1

2π

(
r + ε

2
)n. (8)

Therefore, we take n sufficiently large such that(
r− ε

2
r + ε

2

)n

< 4
2π ,

and m sufficiently large such that

1
m < 1

2π

(
r + ε

2
)n − 1

4
(
r− ε

2
)n.

It follows that there is at least one k ∈ {1, 2, . . . ,
⌊m

2
⌋
} for which the inequalities (8) hold.

If z0 = eit, then we take the region

Dz0,ε =
{

z = ρeiθ : r− ε
2 < ρ < 1, |θ − t| < ε

2

}
.

and the proof follows the same steps as above.
Since R2 = 1− L2 and D1(1) = 1−D0(1), we have also D1(1) ⊂ R2.

We denote the two closed disks by L1 = D0(1) and R1 = D1(1) and, for every
k = 2, 3, . . . ,

Lk = ∪
n≥2

ϕ−1
n (Rk−1), Rk = 1−Lk. (9)

Corollary 2. For every k = 1, 2, . . ., we have:

Lk ⊂ Lk+1 and Rk ⊂ Rk+1. (10)
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Proof. We prove by mathematical induction on k. For k = 1, we have (by Theorem 2)
L1 ⊂ L2 andR1 ⊂ R2.

If we suppose that Lp ⊂ Lp+1 and Rp ⊂ Rp+1, then ϕ−1
n (Rp) ⊂ ϕ−1

n
(

Rp+1
)
=

ϕ−1
n (Rp+1) for every n ≥ 2. By Proposition 1 and equation (9), we obtain that

Lp+1 ⊂ ∪
n≥2

ϕ−1
n (Rp+1) ⊂ ∪

n≥2
ϕ−1

n (Rp+1) = Lp+2,

and so (10) follows.

Corollary 3. The closure S of the set of roots of the polynomials in F is given by

S = ∪
k≥1

(Lk ∪Rk) = lim
k→∞

(Lk ∪Rk), (11)

as the sets Lk ∪Rk are nested: (L1 ∪R1) ⊂ (L2 ∪R2) ⊂ . . ..

Proof. We can prove by mathematical induction on k that

Lk ⊂ Lk and Rk ⊂ Rk, for any k = 1, 2, . . . . (12)

Obviously, we have L1 ⊂ L1 and R1 ⊂ R1. If we suppose that Lp ⊂ Lp and Rp ⊂ Rp,
then ϕ−1

n
(

Rp
)
⊂ ϕ−1

n
(
Rp
)

for every n ≥ 2. By Proposition 1 and equation (9), we obtain that
Lp+1 ⊂ Lp+1 and Rp+1 ⊂ Rp+1, and so (12) follows. Since the sets Lk andRk are closed, we
obtain by Corollary 2 that (Lk ∪Rk) ⊂ (Lk+1 ∪Rk+1) for every k = 1, 2, . . .; hence,

∪
k≥1

(Lk ∪Rk) = lim
k→∞

(Lk ∪Rk).

We have:
S = ∪

k≥1
(Lk ∪ Rk) ⊂ ∪

k≥1
(Lk ∪Rk),

so
S ⊂ ∪

k≥1
(Lk ∪Rk).

For the other inclusion, we use Corollary 2. Thus, we have

∪
k≥1

(Lk ∪Rk) ⊂ ∪
k≥1

(Lk+1 ∪ Rk+1) ⊂ ∪
k≥1

(Lk ∪ Rk),

hence
∪

k≥1
(Lk ∪Rk) ⊂ ∪

k≥1
(Lk ∪ Rk) = S

and the corollary follows.

For every n = 2, 3, . . . and j = 0, 1, . . . , n− 1, we define the function ψ
j
n : C→ C,

ψ
j
n(z) =

n
√
|z| exp i

arg z
n
·ω j

n,

where
ω

j
n = exp i

2jπ
n

, j = 0, 1, . . . , n− 1

are the roots of order n of the unity. We denote by P j
n = ψ

j
ng(L1) = ψ

j
n(R1) the image of

the disk D1(1) through ψ
j
n and

Pn =
n−1∪
j=0
P j

n = ϕ−1
n (R1) = {|zn − 1| ≤ 1}.



Fractal Fract. 2023, 7, 339 9 of 15

Obviously,
L2 = ∪

n≥2
Pn.

Let Pj
n = ψ

j
n(C1(1)) be the boundary of P j

n and, for every n = 2, 3, . . .,

Pn =
n−1∪
j=0

Pj
n = {|zn − 1| = 1}. (13)

For n = 2, the curve P2 is the lemniscate of Bernoulli (see Figure 2a). For n = 3, we
obtain the Kiepert curve (see Figure 2b). In general, the curve Pn defined by (13) is called
a sinusoidal spiral or a lemniscate with n poles (see [42,43]). These algebraic curves having
the polar equation rn = an cos (nθ) (n ∈ Q) were studied for the first time by Maclaurin
in 1718.

(a) Bernoulli lemniscate (b) Kiepert curve

Figure 2. The curves |zn − 1| = 1 for n = 2 and n = 3.

The equation |zn − 1| = 1 can be written in the equivalent form:∣∣∣z−ω0
n

∣∣∣ · ∣∣∣z−ω1
n

∣∣∣ · . . . ·
∣∣∣z−ωn−1

n

∣∣∣ = 1.

Therefore, if A0(ω
0
n), . . . An−1(ω

n−1
n ) are the vertices of the regular polygon formed

by the complex roots of unity, then Pn is the set of all the points M(z) that satisfy

MA0 ·MA1 · . . . ·MAn−1 = 1.

As can be easily noticed, a lemniscate with n poles is composed of n identical “petals”
obtained by rotating the base pattern P0

n about the origin with angle 2jπ
n , j = 1, 2, . . . , n− 1

(see Figure 3):

Pj
n : z =

n√2 cos nθ · eiθ ·ω j
n, θ ∈

[
− π

2n
,

π

2n

]
, j = 0, 1, . . . , n− 1.
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Figure 3. Lemniscate with seven poles. The red-colored curve is P0
7 .

The “length” of each petal (the distance from the origin to the most distant point) is
equal to n

√
2.

We present Pn and 1−Pn for n = 2, . . . , 7 in Figure 4 (exterior dot circles are centered
at 0 and 1, respectively, and have the radius φ).

Figure 4. Lemniscates with n = 2, 3, 4, 5, 6, 7 poles, centered at 0 and at 1.

Obviously, the “petals” contained in the disks D0(1) (and D1(1)) or those included in
other petals are not of interest. We shall prove that the “interesting petals” are only those
presented in Figure 5. Thus, the next theorem shows that the infinite union L2 ∪R2 can be
written as a finite union.
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Figure 5. The set L2 ∪R2. The blue circles have the radius 1.0945.

Theorem 3. With the notations above, we have:

L2 ∪R2 =
7∪

n=2
(Pn ∪ (1−Pn)). (14)

Proof. To find the largest radius r > 0 such that

D0(r) ⊂
7∪

n=2
(Pn ∪ (1−Pn)),

we calculate the intersections (other than the origin) of the “interesting petals” (due to the
symmetry with respect to x axis, we need to study only the points above it). We present the
results in Table 1.

Table 1. Points of intersection of the “interesting petals”.

z = Pj1
n1 ∩ Pj2

n2
|z|

P1
2 ∩ P3

7 1.1038

P3
7 ∩ P2

5
1.0954

P2
5 ∩ P1

3
1.0945

P1
3 ∩ P2

7
1.1025

P2
7 ∩ P1

4
1.0990

P1
4 ∩ P1

5
1.1001

P1
5 ∩ P1

6
1.0993

It follows that the largest disk contained in
7∪

n=2
(Pn ∪ (1−Pn)) has the radius

r = 1.0945 > 8
√

2, which means that

Pm ∪ (1−Pm) ⊂ D0(r) ∪D1(r) ⊂
7∪

n=2
(Pn ∪ (1−Pn))

for every m ≥ 8 and the theorem is proved.
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Figure 5 presents the set L2 ∪R2 (only the significant petals are drawn). The blue
circles are the circles of radius 1.0945 centered at 0 and at 1.

Since L2 ∪R2 is a finite union of “petals”, it follows that L3 ∪R3 can be also written
as a finite union as

L3 ∪R3 =
7∪

n=2

(
ϕ−1

n (R2) ∪ 1− ϕ−1
n (R2)

)
,

and generally,

Lk+1 ∪Rk+1 =
7∪

n=2

(
ϕ−1

n (Rk) ∪ 1− ϕ−1
n (Rk)

)
.

The sets L3 ∪R3 and L4 ∪R4 are presented in Figure 6: the boundary of L3 ∪R3 is
given by the red curves in Figure 6a, while the the boundary of L4 ∪R4 is formed by the
blue curves in Figure 6b. By comparing the two images in Figure 6, it becomes apparent
that as k increases, the newly acquired domain (Lk+1 ∪Rk+1)r (Lk ∪Rk) becomes pro-
gressively less significant, compared to the time required for calculations, which increases
exponentially (representing the primary technical difficulty). Therefore, we let L4 ∪R4 be
an approximation of S and try to find (in the next section) some limit points.

(a) (b)

Figure 6. (a) The set L3 ∪R3. (b) The set L4 ∪R4.

5. Limit Points

As mentioned above, the difference between Lk ∪Rk and Lk+1 ∪Rk+1 tends to vanish
as k increases. Although we cannot tell the exact expression of the boundary of S , we can
find some limit points (belonging to the boundary of S).

First of all, we shall prove that the two limit points on the real axis are −φ and 1 + φ.
The leftmost limit point is the limit of the sequence {xn} defined by the recurrence

relationship
xn+1 = ψ1

2g(xn) = −
√

1− xn (15)

for every n ≥ 1, and x1 = −1 = ψ1
2g(0).

It can be easily proved that the sequence {xn} is monotonically decreasing and bounded;
hence, it is convergent. Its limit ξ = lim

n→∞
xn is the negative root of the equation

ξ2 + ξ − 1 = 0, (16)

so ξ = − 1+
√

5
2 = −φ. Obviously, the rightmost limit point is 1− ξ = 1 + φ = φ2.
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The limit points in the directions arg z = 2π
3 and arg z = 4π

3 , respectively, are the limits
of the sequences

yn = ψ1
3g ψ1

2gψ1
2g . . . ψ1

2g︸ ︷︷ ︸
n

(0) = ψ1
3g(xn),

zn = ψ2
3g ψ1

2gψ1
2g . . . ψ1

2g︸ ︷︷ ︸
n

(0) = ψ2
3g(xn),

hence, we obtain another four limit points:

lim
n→∞

yn = ψ1
3(1 + φ) = φ

2
3 exp

(
i 2π

3
)

and 1− φ
2
3 exp

(
i 2π

3
)
,

lim
n→∞

zn = ψ2
3(1 + φ) = φ

2
3 exp

(
i 4π

3

)
and 1− φ

2
3 exp

(
i 4π

3

)
.

Similarly, the limit points on the imaginary axis (in the directions arg z = π
2 and

arg z = 3π
2 respectively), together with their symmetrics w.r.t 1

2 are given by:

lim
n→∞

ψ1
4g(xn) = ψ1

4(1 + φ) = i
√

φ, and 1− i
√

φ

lim
n→∞

ψ3
4g(xn) = ψ1

4(1 + φ) = −i
√

φ, and 1 + i
√

φ.

Finally, by considering the directions arg z = 2π
5 , 4π

5 , 6π
5 , 8π

5 , we find another 8 limit points:

lim
n→∞

ψ1
5g(xn) = ψ1

5(1 + φ) = φ
2
5 exp

(
i 2π

5
)

and 1− φ
2
5 exp

(
i 2π

5
)

lim
n→∞

ψ2
5g(xn) = ψ2

5(1 + φ) = φ
2
5 exp

(
i 4π

5

)
and 1− φ

2
5 exp

(
i 4π

5

)
lim

n→∞
ψ3

5g(xn) = ψ3
5(1 + φ) = φ

2
5 exp

(
i 6π

5
)

and 1− φ
2
5 exp

(
i 6π

5
)

lim
n→∞

ψ4
5g(xn) = ψ4

5(1 + φ) = φ
2
5 exp

(
i 8π

5
)

and 1− φ
2
5 exp

(
i 8π

5
)

All of these limit points (together with the set L3 ∪R3) are presented in Figure 7. For
any n ≥ 6 and j = 1, . . . , n− 1, the points ψ

j
n(1 + φ) are not limit points because they are

contained into Ln ∪Rn.

Figure 7. Limit points.
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6. Discussion and Conclusions

The paper studies the set of roots of the family of polynomials obtained by composing
g(x) = 1− x with polynomials of the type ϕn(x) = xn. The reliability polynomials of the
networks created by series-parallel compositions belong to this family. We prove that the
set of roots is bounded by the two circles of radius φ centered at 0 and at 1.

Brown and deGagné have proved in [21] that the closure of two-terminal reliability
roots contains the closed unit disks centered at 0 and at 1. We also study the closure of the
set of roots of the family of polynomials considered and prove that it includes not only these
two disks but also the domain bounded by the lemniscates with n poles, |zn − 1| ≤ 1 and
|(1− z)n − 1| ≤ 1. We proved that the two disks completely covered by these sinusoidal
spirals have a radius slightly greater than 1.

Some interesting open problems arise naturally:

• What is the maximum radius of the two disks contained into the closure of the set
of roots?

• How can one find other limit points, apart from the ones presented in the last section
of the paper?

• The real roots are proved to be in (−φ, 0] ∪ [1, 1 + φ), and the points −φ and 1 + φ are
proved to be limit points. Is the set of real roots dense in [−φ, 0] ∪ [1, 1 + φ]?
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17. Dăuş, L.; Jianu, M. The shape of the reliability polynomial of a hammock network. In Intelligent Methods in Computing, Communi-
cations and Control, Proceedings of the 8th International Conference on Computers Communications and Control (ICCCC 2020), Oradea,
Romania, 11–15 May 2020; Springer: Cham, Switzerland, 2021; pp. 93–105.

18. Graves, C.; Milan, D. Reliability polynomials having arbitrarily many inflection points. Networks 2014, 64, 1–5. [CrossRef]
19. Mol, L. On Connectedness and Graph Polynomials. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2016.
20. Brown, J.I.; Colbourn, C.J. Roots of the reliability polynomial. SIAM J. Discr. Math. 1992, 5, 571–585. [CrossRef]
21. Brown, J.I.; DeGagné, C.D.C. Roots of two-terminal reliability polynomials. Networks 2021, 78, 153–163. [CrossRef]
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