
Citation: Iodice, A.; Di Martino, G.;

Di Simone, A.; Riccio, D.; Ruello, G.

Electromagnetic Scattering from

Fractional Brownian Motion Surfaces

via the Small Slope Approximation.

Fractal Fract. 2023, 7, 387. https://

doi.org/10.3390/fractalfract7050387

Academic Editors: Palle Jorgensen

and Emanuel Guariglia

Received: 31 March 2023

Revised: 4 May 2023

Accepted: 6 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Electromagnetic Scattering from Fractional Brownian Motion
Surfaces via the Small Slope Approximation
Antonio Iodice * , Gerardo Di Martino , Alessio Di Simone , Daniele Riccio and Giuseppe Ruello

Department of Electrical Engineering and Information Technology, University of Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy; gerardo.dimartino@unina.it (G.D.M.); alessio.disimone@unina.it (A.D.S.);
daniele.riccio@unina.it (D.R.); ruello@unina.it (G.R.)
* Correspondence: iodice@unina.it

Abstract: Marine and terrestrial natural surfaces exhibit statistical scale invariance properties that are
well modelled by fractional Brownian motion (fBm), two-dimensional random processes. Accordingly,
for microwave remote sensing applications it is useful to evaluate the normalized radar cross section
(NRCS) of fBm surfaces. This task has been accomplished in the past by using either the Kirchhoff
approximation (KA) or the small perturbation method (SPM). However, KA and SPM have rather
limited ranges of application in terms of surface roughness and incidence angle: a wider range of
application is achieved by the small slope approximation (SSA), more recently developed, but the
latter has not been applied yet to fBm surfaces. In this paper, the first-order SSA (SSA-1) is applied to
the evaluation of scattering from fBm surfaces obtaining an analytical formulation of their NRCS. It is
then shown that the obtained SSA-1 expression reduces to the KA and SPM ones at near-specular
and far-from-specular scattering directions, respectively. Finally, the results of the proposed method
are compared to experimental data available in the literature.

Keywords: electromagnetic scattering; fractal surfaces; fractional Brownian motion; small slope
approximation

1. Introduction

In microwave remote sensing applications, establishing a relationship between the
intensity of the electromagnetic field scattered by a soil or sea surface and the geometric
and electromagnetic parameters characterizing the scattering surface is of paramount im-
portance [1–3]. To this aim, the surface roughness is usually modeled as a two-dimensional
(2D) zero-mean random process, and it is often assumed that the random process is statisti-
cally stationary, so that it is synthetically described in terms of its root mean square (rms)
height σ and correlation length L or sometimes in terms of its rms slope σs [1–3]. However,
experimental data show that, for soil surfaces, measured values of σ and L increase with
the length of the considered height profile [4–6], and it is well known that the measured
rms slope of a sea surface increases with the maximum spatial frequency that is considered
to estimate it [6–8]. Accordingly, σ, L and rms slope are not well suited to characterize the
roughness of natural surfaces. This is related to the fact that soil and sea surfaces exhibit
power-law spectra over a wide range of spatial frequencies and show scale invariance statis-
tical properties over a wide range of scales. Both features can be accounted for by modelling
the roughness of natural surfaces as fractional Brownian motion (fBm), two-dimensional
processes [4,5]. Such fractal processes are not statistically stationary so that the application
of usual methods for the evaluation of scattering from randomly rough surfaces requires
some effort. Actually, while fractals have been widely used in the design of antennas and
metamaterials [9–14], and, more recently, in some cases also of metasurfaces and reflecting
intelligent surfaces (RIS) [15], their use in electromagnetic scattering from rough surfaces is
not so widespread. Currently, some analytical evaluations of scattering from fBm surfaces
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are available, most of which employing the Kirchhoff approximation (KA) [16–19], and a
few others the small perturbation method (SPM) [20], possibly within a two-scale model
(TSM) [8,21]. KA and SPM, which were developed in the middle of last century [22,23],
have rather limited ranges of application in terms of surface roughness and incidence angle.
A wider range of application is achieved by the small slope approximation (SSA) that has
been developed more recently [24,25]. In this paper, we apply the first-order SSA (SSA-1) to
the evaluation of the normalized radar cross section (NRCS) of fBm surfaces and we show
that the obtained SSA-1 NRCS reduces to the KA and SPM ones in their respective ranges
of validity. In order to do that, we also have to reformulate the ranges of validity in terms
of fBm parameters. This leads to defining an effective surface slope variance that depends
on wavelength and on viewing geometry. Finally, we show that the results of the proposed
method compare favorably with experimental data available in the literature.

2. Theory
2.1. fBm Surface

Height deviations, z(x,y), of a rough surface with respect to its mean plane are usu-
ally modelled by a zero-mean Gaussian random process. If the process is statistically
stationary, it is fully characterized by its autocorrelation function σ2C(∆x, ∆y), i.e., the
mean value of z(x + ∆x,y + ∆y)z(x,y), or equivalently, by its power spectral density (PSD,
or simply spectrum). In fact, in this case the spectrum is the Fourier transform of the
autocorrelation function.

A 2D fBm is a random process z(x,y) whose increments z(x + ∆x,y + ∆y) − z(x,y) over
a fixed horizontal distance ρ =

√
∆x2 + ∆y2 are zero-mean Gaussian random variables

with variance
Q f Bm(ρ) = s2ρ2H (1)

where s is a parameter measured in m1−H, numerically coincident with the standard deviation
of increments over 1 m distance, and H is the Hurst coefficient, with 0 < H < 1 [4,5]. Realizations
of a 2D fBm process are fractal surfaces with fractal dimension D = 3 − H.

The fBm process is not statistically stationary, so that its spectrum cannot be expressed
as the Fourier transform of the autocorrelation function. However, it is a stationary-
increment process, so that its spectrum can be related to the function (1), called structure
function. It can be shown that the PSD of an fBm follows a power law [4,5,19]:

S f Bm
(
κx, κy

)
= S0κ−α (2)

where κx and κy are the x and y components of the surface wavenumber vector κ,

κ =
√

κ2
x + κ2

y is its modulus,

α = 2 + 2H, S0 = πH21+2H Γ(1 + H)

Γ(1− H)
s2 (3)

and Γ(·) is the gamma function.
The variance of an fBm process is infinite; however, the measured variance σ2 of the

height of a patch of fBm surface of linear size l is finite and increases with l:

σ2(l) =
1
2

s2l2H (4)

Similarly, the variance of slopes of an fBm process are infinite (actually, realizations
of an fBm process are not differentiable); however, the variance of slopes measured at a
scale ρ (i.e., the variance of slopes of chords joining surface points at a fixed distance ρ) is
finite and increases as ρ decreases:

σ2
s (ρ) = s2/ρ2−2H (5)
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Natural surfaces satisfy (1) in a usually wide but always limited range of scales, from
ρmin to ρmax, with ρmin � ρmax. Therefore, they also satisfy (2) in a usually wide but always
limited range of spatial wavenumbers, from κmin ∼ 1/ρmax to κmax ∼ 1/ρmin. Typical
values of H for natural surfaces range from 0.55 to 0.95, while the order of magnitude of s2

ranges from 10−4 to 10−2 m2−2H [8,18,26–28].

2.2. Small Slope Approximation

The SSA formulation of the field scattered by a rough surface separating air from a
lower, possibly lossy, medium is obtained by expanding the surface fields around a zero
surface slope [24]. SSA-1 consists in neglecting surface field terms of order greater than
one with respect to surface slope, as detailed in [24,25]. Therefore, SSA-1 holds if the slope
variance is small with respect to unity. This is a very weak requirement with respect to SPM,
which additionally requires that the rms height is much smaller than the electromagnetic
wavelength λ, and to KA, which requires that the surface rms radius of curvature is much
larger than λ. In this last case, if in addition the rms height is much larger than λ, the
geometrical optics (GO) solution of KA (KA-GO) is obtained.

According to the SSA-1, the NRCS of a randomly rough surface is expressed as [25]:

σ0
pq(ϑi; ϑs, ϕs) =

1
π

∣∣∣∣2kv
uz

Bpq

∣∣∣∣2 +∞∫
−∞

+∞∫
−∞

e−jk(ux∆x+uy∆y)e−
1
2 k2u2

z Q(∆x,∆y)d∆xd∆y, (6)

where, see Figure 1, ϑi is the incidence angle, ϑs, ϕs are the polar and azimuthal scattering
angles, k = 2π/λ is the electromagnetic wavenumber, v = cos ϑs cos ϑi,

ux = sin ϑi − sin ϑs cos ϕs
uy = − sin ϑs sin ϕs
uz = −(cos ϑi + cos ϑs)

, (7)

and 

Bhh = (ε−1) cos ϕs(
cos ϑs+

√
ε−sin2 ϑs

)(
cos ϑi+

√
ε−sin2 ϑi

)
Bvh = sin ϕs(ε−1)

√
ε−sin2 ϑs(

ε cosϑs+
√

ε−sin2 ϑs

)(
cos ϑi+

√
ε−sin2 ϑi

)
Bhv =

sin ϕs(ε−1)
√

ε−sin2 ϑi(
cos ϑs+

√
ε−sin2 ϑs

)(
ε cosϑi+

√
ε−sin2 ϑi

)
Bvv =

(ε−1)
(√

ε−sin2 ϑs
√

ε−sin2 ϑi cos ϕs−ε sin ϑs sin ϑi

)
(
ε cosϑs+

√
ε−sin2 ϑs

)(
ε cosϑi+

√
ε−sin2 ϑi

)

(8)

are the bistatic Bragg coefficients, with ε being the relative permittivity of the lower medium
and p and q standing for horizontal (h) or vertical (v) polarization. Finally, Q(∆x, ∆y) is the
surface structure function, i.e., the variance of surface increments.
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For “classical” rough surfaces, modelled by stationary random processes, we have

Q(∆x, ∆y) = 2σ2[1− C(∆x, ∆y)], (9)

where C(∆x, ∆y) is the surface normalized autocorrelation function. For the isotropic
Gaussian autocorrelation function, C(∆x, ∆y) = C(ρ) = e−ρ2/L2

, an analytical expression
of (6) in terms of series expansion is available [1,2]. However, it is well known that natural
rough surfaces are not well modelled by the Gaussian autocorrelation function. For other
autocorrelation functions, numerical integration is needed to evaluate (6); in addition,
if, as it is the case for sea surfaces, the surface spectrum is assigned instead of surface
autocorrelation, an additional preliminary numerical integration is needed to obtain the
autocorrelation function from the spectrum. Analytical closed-form expressions of (6)
for classical rough surfaces can be obtained only in two limiting cases [24,25]. The first
one is when the Rayleigh parameter k2σ2u2

z is much smaller than one, so that the second
exponential in (6) can be expanded in Taylor series up to the first order, so obtaining:

σ0
pq(ϑi; ϑs, ϕs) = σ

0(coe)
pq +

4
π

k4v2∣∣Bpq
∣∣2S
(
kux, kuy

)
(10)

where σ
0(coe)
pq is the coherent component of the NRCS, different from zero only in a very

narrow cone around the specular direction ϑs = ϑi, ϕs = 0 (i.e., ux = uy = 0), and
S
(
kux, kuy

)
is the surface PSD evaluated at the Bragg resonant surface wavenumber vector

κB = kux
^
x + kuy

^
y. The expression (10) coincides with the SPM formulation of the NRCS.

The second limiting case is obtained when k2σ2u2
z � 1, so that the second exponential

in (6) is appreciably different from zero only for very small values of ρ. In this case, C(ρ)
can be expanded in Taylor series around ρ = 0 up to the second order, so obtaining:

σ0
pq(ϑi; ϑs, ϕs) =

8
∣∣Bpq

∣∣2v2

u4
zσ2

s
e
−

u2
ρ

2u2
z σ2

s , (11)

where u2
ρ = u2

x + u2
y, so that kuρ = κB is the Bragg resonant wavenumber, and σ2

s = −σ2C′′ (0)
is the surface slope variance, with C′′ (0) < 0 since C(ρ) is maximum at ρ = 0. This expression
coincides with the KA-GO formulation of the NRCS, at least for near-specular directions.

SSA-1 is applicable to an fBm surface if the variance of slopes, as measured at the scale
lengths that most contribute to the scattering, is much smaller than one. We will later verify
that this condition is satisfied for most natural surfaces. The SSA-1 NRCS of an fBm surface
is obtained by using (1), instead of (9), in (6), by performing the usual Cartesian to polar
coordinate transformation and exploiting the integral definition of Bessel functions [29]:

σ0
pq(ϑi; ϑs, ϕs) = 1

π

∣∣∣ 2kv
uz

Bpq

∣∣∣2 +∞∫
−∞

+∞∫
−∞

e−jk(ux∆x+uy∆y)e−
1
2 k2u2

z s2ρ2H
d∆xd∆y

= 1
π

∣∣∣ 2kv
uz

Bpq

∣∣∣2 2π∫
0

+∞∫
0

e−jkuρρ cos (ϕ−ψ)e−
1
2 k2u2

z s2ρ2H
ρdρdϕ

= 1
π

∣∣∣ 2kv
uz

Bpq

∣∣∣22π
∞∫
0

J0
(
kuρρ

)
e−

1
2 k2u2

z s2ρ2H
ρdρ

(12)

with ϕ = arctan(∆y/∆x) and ψ = arctan
(
uy/ux

)
. The integral in (12), in which J0(.) is the

zeroth-order Bessel function, also appears in the KA expression of the NRCS of an fBm sur-
face [18,19] and can be analytically evaluated in a similar way (see Appendix A of [18] and
Appendixes B and C of [19]). Therefore, for small values of the dimensionless parameter

Ω =
1
2 k2u2

zs2(
k2u2

ρ

)H (13)
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the following asymptotic series expansion can be used:

σ0
pq(ϑi; ϑs, ϕs) = 2

∣∣∣∣2kv
uz

Bpq

∣∣∣∣22H
∞

∑
n=1

(−1)n+122nH

(n− 1)!
Γ(1 + nH)

Γ(1− nH)

(
1
2 k2u2

zs2
)n

(
k2u2

ρ

)1+nH (14)

Conversely, for large values of Ω the following asymptotic series expansion can
be used:

σ0
pq(ϑi; ϑs, ϕs) = 2

∣∣∣∣2kv
uz

Bpq

∣∣∣∣2 1
2H

∞

∑
n=0

(−1)n

22n(n!)2 Γ
(

n + 1
H

) k2nu2n
ρ(

1
2 k2u2

zs2
) n+1

H
(15)

For Ω� 1 the terms in (14) with n > 1 are negligible, and the series can be truncated
at the first order, so obtaining:

σ0
pq(ϑi; ϑs, ϕs) ∼= 4k4v2∣∣Bpq

∣∣2H21+2H Γ(1 + H)

Γ(1− H)

s2(
kuρ

)2+2H (16)

By using (2) and (3) in (16) we get

σ0
pq(ϑi; ϑs, ϕs) ∼=

4
π

k4v2∣∣Bpq
∣∣2S f Bm

(
kuρ

)
(17)

which coincides with the SPM formulation of the NRCS of fBm, see [20,21].
Similarly, for Ω� 1 the terms in (15) with n > 1 are negligible, and the series can be

truncated at the first order (i.e., considering only the terms of (15) with n = 0 and n = 1),
so obtaining:

σ0
pq(ϑi; ϑs, ϕs) ∼= 2

∣∣∣ 2kv
uz

Bpq

∣∣∣2 Γ(1/H)

2H ( 1
2 k2s2u2

z)
1/H

(
1− Γ(2/H) k2u2

ρ

4 Γ(1/H) ( 1
2 k2s2u2

z)
1/H

)
∼= 2

∣∣∣ 2kv
uz

Bpq

∣∣∣2 Γ(1/H)

2H ( 1
2 k2s2u2

z)
1/H exp

(
− Γ(2/H) k2u2

ρ

4 Γ(1/H) ( 1
2 k2s2u2

z)
1/H

) (18)

The last approximate equality in (18) is obtained by recalling the Taylor series expan-
sion of the exponential function for small values of the argument, truncated at the first order.

Equation (18) shows some similarity with (11). Actually, in the next section we will
better analyze the formulation in (18) and will show that this similarity is deeper than one
can say at first sight.

3. Discussion

In order to provide a physical interpretation of Equations (14)–(18), and to evaluate their
validity ranges, it is necessary to analyze the parameter Ω, defined in (13). First of all, we want
to evaluate its order of magnitude for natural surfaces. To this aim, we note that Ω is directly
proportional to the slope variance evaluated at the electromagnetic wavelength scale:

Ω ∼ s2k2−2H ∼ s2/λ2−2H = σ2
s (λ) (19)

For natural surfaces (see the values of s2 and H in Section 2.1) up to Ku-band frequen-
cies (λ ∼= 2 cm) this slope variance is much smaller than one. The proportionality constant
u2

z/u2H
ρ is of the order of unity for far-from-specular scattering directions, but it is very

large for near-specular scattering directions, where uρ
∼= 0. Therefore, Ω is small far from

the specular directions, and it increases up to very large values as the scattering direction
approaches the specular one.
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The physical meaning of the parameter Ω is more transparent if we rewrite it as follows:

Ω =
1
2 k2u2

zs2

κ2H
B

=
1
2

k2u2
zs2
(

ΛB
2π

)2H
= k2u2

zσ2
(

ΛB
2π

)
(20)

i.e., Ω is the Rayleigh parameter for fBm surface patches of linear size of the order of the
Bragg resonant wavelength ΛB, which is known to be the scale length mainly involved
in the scattering phenomenon for surfaces with small deviations. Therefore, at far-from-
specular directions the “effective” Rayleigh parameter is small, and the SPM holds. This
is consistent with the fact that for Ω � 1 the SPM expression is obtained, see (17). Note
that (20) allows reformulating the SPM validity limits in terms of fBm parameters H and s2,
since the effective Rayleigh parameter is expressed via these parameters.

It is important to note that the surface slope variance at the Bragg resonant
wavenumber is

σ2
s

(
ΛB
2π

)
= s2/

(
ΛB
2π

)2−2H
= s2κ2−2H

B = s2k2−2Hu2−2H
ρ (21)

which is of the order of no more than the slope variance at the electromagnetic wavelength
scale (since |uρ| is smaller than 2), and it is therefore much smaller than unity for natural
surfaces, so that SSA-1 can be applied.

As the scattering direction approaches the specular one, Ω increases, the SPM does
not hold, an increasing number of terms are needed to evaluate (14), and a decreasing
number of terms are needed to evaluate (15). The scale lengths involved in the scattering
phenomenon are no more necessarily on the order of the Bragg resonant wavelength: at
near-specular directions, i.e., for small values of uρ, this range of scales can be identified

with the values of ρ such that the function f (ρ) = e−
1
2 k2u2

z s2ρ2H
ρ appearing in the integral (12)

is appreciably different from zero. This happens for values of ρ such that 1
2 k2u2

zs2ρ2H ∼ 1,
i.e., for

ρ ∼ ρ0 =
1(

1
2 k2s2u2

z

) 1
2H

(22)

see Figure 2. The surface slope variance at this scale is

σ2
s (ρ0) = s2/ρ2−2H

0 =

(
1
2 k2s2u2

z

) 1
H

1
2 k2u2

z
(23)
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1
2 k2u2

z s2ρ2H
ρ, for H = 0.6 (blue line), H = 0.75 (red line), and

H = 0.9 (green line) showing that it is peaked for ρ ∼ ρ0.

By using (23) in (18), we get the following expression of the NRCS for Ω� 1, i.e., at
near-specular direction:



Fractal Fract. 2023, 7, 387 7 of 11

σ0
pq(ϑi; ϑs, ϕs) =

8
∣∣Bpq

∣∣2v2

a u4
zσ2

se f f
e
−

u2
ρ

2u2
z σ2

se f f (24)

where

σ2
se f f =

Γ(1/H)

Γ(2/H)
σ2

s (ρ0) (25)

is an effective surface slope variance, of the order of the surface slope variance as measured
at the scale lengths involved in the scattering phenomenon, and

a =
Γ2(1/H)

H Γ(2/H)
(26)

is a parameter of the order of unity, see Figure 3. Accordingly, the SSA-1 NRCS for an
fBm surface at near-specular direction coincides (apart from the almost-unitary factor a)
with the classical KA-GO solution of (11), provided that an effective surface slope variance
is used, that changes with frequency, via k, and with the incidence and scattering angles,
via uz.
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(left) and a (right) vs. H, showing that these parameters are of the order
of unity.

We note that for natural surfaces (see the values of s2 and H in Section 2.1), up to
microwave frequencies, the effective slope variance σ2

se f f is much smaller than one, so that
also for near-specular directions SSA-1 can be applied.

We also note that the GO validity limits are formulated in terms of fBm parameters
via the condition Ω� 1.

Finally, the above discussion shows that our approach is fully compatible with the
TSM for power-law-spectrum surfaces [8,21,30,31], with the advantage that our approach
does not require the introduction of a cutoff wavenumber separating small-scale from
large-scale roughness, whose choice has a certain degree of arbitrariness.

4. Numerical Results

In this section we compare the numerical results of SSA-1 for fBm surfaces with the
results of SPM and KA for fBm surfaces, and with some measurements.

We first consider an artificially manufactured aluminum fBm surface, with prescribed
H and s2 parameters reported in the first line of Table 1. The manufacturing of this surface is
described in detail in [32], and a photo of the surface is shown in Figure 4. Measurements of
the backscattering NRCS of this surface, under a controlled environment, were performed
at a frequency of 10 GHz for both VV and HH polarization and at several incidence angles,
as described in [33]. These measurements are reported as dots in the plots of Figure 5, while
SSA-1 results are reported as light-blue lines in the same figure, results of SPM and KA
are also plotted for reference. We can note that, at VV polarization, the proposed SSA-1
results are in good agreement with measurements at all incidence angles, whereas KA is in
good agreement with measurements only at small incidence angles and SPM is in good
agreement with measurements only at large incidence angles.
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Table 1. Parameters of the surfaces considered in the comparisons with measurements.

Surface H s2 ε

Artificial surface [32,33] 0.7 3.6 10−3 m2−2H ~∞
Soil surface [20,34] 0.55 3.0 10−4 m2−2H 15.37–j3.71
Sea surface [1,20] 0.75 3.7 10−3 m2−2H 48.3–j34.9
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polarizations, for the aluminum artificial fBm surface, see the first line of Table 1: measured data
(black dots), SSA-1 (blue solid line), KA (green dashed line), and SPM (red solid line).

It can be also noted that, at HH polarization, SSA-1 and KA results coincide. This is
because in the backscattering direction for HH polarization the Bragg coefficient Bhh ap-
pearing in the SSA-1 formulation coincides with the Fresnel reflection coefficient appearing
in the KA formulation.

We want now to compare fBm SSA-1 results with backscattering measurements per-
formed over natural scattering surfaces. In particular, we first consider a soil surface,
whose measured NRCSs at 1.5 GHz and at several incidence angles, for both VV and HH
polarizations, are reported in [34]. The complex relative dielectric constant of this surface,
as provided in [34], is reported in the second line of Table 1, together with the parameters
H and s2, as determined in [20]. Comparison of measured and fBm SSA-1 backscattering
NRCS values is reported in the plots of Figure 6. A very good agreement is obtained at all
incidence angles, except that at 10 degrees where an underestimation of almost 10 dB is
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obtained. Figure 6 also shows the plots of results obtained by using SPM when applied to
the fBm surface and to classical surfaces with Gaussian and exponential autocorrelation
functions. These plots illustrate that fBm SSA-1 results are very similar to fBm SPM results,
and that they are in much better agreement with data with respect to results obtained by
SPM when applied to classical surfaces.
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Figure 6. Plots of backscattering NRCS vs. incidence angle at 1.5 GHz, VV (left) and HH (right)
polarizations, for a wet soil surface, see the second line of Table 1: measured data (dots), fBm SSA-1
(black line), fBm SPM (green line), Gaussian SPM (blue line), and exponential SPM (red line). Black
and green lines are practically superimposed, except at very small incidence angles. For classical
surface models, surface parameters are kσ = 0.13 and kL = 2.6.

Finally, we consider a sea surface, whose measured NRCSs at 8.9 GHz and at several
incidence angles, for both VV and HH polarizations, are reported in [1]. The complex
relative dielectric constant of this surface, as provided in [1], is reported in the third line of
Table 1, together with the parameters H and s2, as determined in [20].

Comparison of measured and fBm SSA-1 backscattering NRCS values is reported in
the plots of Figure 7. A good agreement is obtained at all incidence angles, including small
ones. Figure 7 also shows the plots of results obtained by using SPM when applied to
the fBm surface and to classical surfaces with Gaussian and exponential autocorrelation
functions. By comparing these plots with the fBm SSA-1 ones, we can verify that fBm SSA-1
results are comparable with fBm SPM results for incidence angles greater than or equal to
10 degrees, whereas they are in much better agreement with respect to fBm SPM results at
perpendicular incidence (i.e., at specular direction). In addition, fBm SSA-1 results are in
much better agreement with data with respect to results obtained by SPM when applied to
classical surfaces with Gaussian and exponential autocorrelation functions.
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surface models, surface parameters are kσ = 0.13 and kL = 2.0.

A few last words are needed on computational efficiency of the proposed method. It
turns out that, with usual surface parameters of natural surfaces (see the values of s2 and
H in Section 2.1), at least one among series (14) and (15) converges after very few terms,
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except that at intermediate incidence angles where a few tens of terms are necessary. In
any case, all plots in Figures 5–7 are obtained in less than one second by using a commonly
available laptop.

5. Conclusions

We have provided the SSA-1 formulation of the NRCS of fBm surfaces and have
shown that it reduces to KA-GO and SPM formulations in their respective ranges of validity.
In doing that, we have identified and fully discussed a key-parameter, i.e., Ω of (13),
influencing the behavior of the obtained formulation. In addition, we have defined an
effective surface slope variance, depending on frequency and viewing geometry. Our
method finds application in the computation of scattering from natural (sea and soil)
surfaces, which are well modeled by fBm surfaces.

The proposed formulation is fully analytical, and it does not require any numerical
integration, so that it is very computationally efficient. In addition, with respect to other
methods to compute scattering from power-law-spectrum surfaces, it has the advantage
of not requiring the arbitrary choice of a cutoff wavenumber separating small-scale from
large-scale roughness.

Presented numerical examples have shown that proposed fBm SSA-1 results are in
good agreement with measurements of scattering both from an artificially manufactured
fBm surface and from natural, soil and sea, surfaces. In particular, at variance with fBm
SPM and fBm KA results, fBm SSA-1 results are in good agreement with measurements at
both near-specular and far-from-specular directions.

The proposed method can be applied to scattering from sea surfaces at wind speeds up
to about 20 m/s: at higher wind speed, unmodelled breaking waves significantly influence
the scattering. This limitation is shared with KA and SPM. In addition, the proposed
method can be applied to scattering from bare or sparsely vegetated soil. However, fBm
surfaces are statistically isotropic, so that possible surface anisotropy cannot be accounted
for by our approach in its current implementation. The extension of the fBm surface
description to statistically non-isotropic surfaces is currently under study.

Finally, it must be recalled that SSA-1, just like SPM and KA, cannot account for
multiple scattering and shadowing effects. This is the price to be paid for computational
efficiency and simplicity of formulation.
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