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Abstract: The dynamics of cardiac signals can be studied using methods for nonlinear analysis
of heart rate variability (HRV). The methods that are used in the article to investigate the fractal,
multifractal and informational characteristics of the intervals between heartbeats (RR time intervals)
are: Rescaled Range, Detrended Fluctuation Analysis, Multifractal Detrended Fluctuation Analysis,
Poincaré plot, Approximate Entropy and Sample Entropy. Two groups of people were studied:
25 healthy subjects (15 men, 10 women, mean age: 56.3 years) and 25 patients with arrhythmia
(13 men, 12 women, mean age: 58.7 years). The results of the application of the methods for nonlinear
analysis of HRV in the two groups of people studied are shown as mean ± std. The effectiveness
of the methods was evaluated by t-test and the parameter Area Under the Curve (AUC) from the
Receiver Operator Curve (ROC) characteristics. The studied 11 parameters have statistical significance
(p < 0.05); therefore, they can be used to distinguish between healthy and unhealthy subjects. It
was established by applying the ROC analysis that the parameters Hq=2(MFDFA), F(α)(MFDFA)
and SD2(Poincaré plot) have a good diagnostic value; H(R/S), α1(DFA), SD1/SD2(Poincaré plot),
ApEn and SampEn have a very good score; α2(DFA), αall(DFA) and SD1(Poincaré plot) have an
excellent diagnostic score. In conclusion, the methods used for nonlinear analysis of HRV have
been evaluated as effective, and with their help, new perspectives are opened in the diagnosis of
cardiovascular diseases.

Keywords: heart rate variability (HRV); nonlinear methods; hurst exponent; receiver operator curve
(ROC) characteristics; Area Under the Curve (AUC) parameter

1. Introduction

The methods of nonlinear dynamics are one of the promising tools for system analysis,
which have found effective application in physics, chemistry, economics, biology, medicine,
and others [1–6]. The relevance of these methods is determined by the possibility of
analysis, forecasting and dynamic management of the studied processes. It is known that,
for studying the nonlinear properties of cardiac signals, an important place is occupied
by the analysis of the electrocardiogram, which represents the electrical activity of the
heart [7,8]. The slightest deviation from the norm can mean a violation of the heart rhythm
and be evidence of the presence of various diseases. One of the methods for diagnosing
cardiovascular diseases is the analysis of heart rate variability (HRV). At present, the
determination of HRV is recognized as one of the informative non-invasive methods for
quantitative assessment of the autonomic regulation of heart rate. With the analysis of
the HRV, it is possible not only to evaluate the current functional state of the human body,
but also to observe its dynamics. It is believed that the reduction of HRV is due to a
pathological condition of the human organism and there is a possibility of death, while
high levels are registered in healthy young people, athletes [9,10]. Currently, HRV is widely
used in various fields of medicine for the purpose of risk determination and diagnosis,
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especially in patients with cardiovascular diseases. The active study of HRV in recent
years by scientists and doctors has led to the need to standardize terminology, develop
optimal methods for HRV analysis, as well as determine the values of their parameters
in normal and pathological conditions. This line of research has largely been initiated
by the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology, which provides recommendations for the clinical use of HRV and creates
a standard by which to assess the risk of various cardiac diseases such as angina pectoris,
heart attack, life-threatening arrhythmias and others [11]. According to the created standard,
the mathematical methods for the analysis of HRV fall into two main classes: linear and
nonlinear. Quantitative measurements of the studied parameters when using the linear
mathematical methods for analysis in the time and frequency domains have a significant
clinical application, because the normal-pathology boundaries are known, according to
the introduced standard. Nonlinear methods for the analysis and assessment of HRV are
potentially promising tools, but they are currently in limited use because they are not
standardized. The numerous scientific studies conducted in the last decade in the field of
digital cardiac signals such as electrocardiograms and photoplethysmograms show that
these biomedical signals include deterministic, stochastic and chaotic components [12–15].
The first and second components can be recognized by applying the methods of linear
analysis, while the analysis of the chaotic properties of signals causes certain difficulties
related to the need to use methods of the nonlinear dynamics. The nonlinear chaotic
dynamics give the body many functional advantages. Systems that exhibit a certain
amount of chaos are capable of operating in a wide range of conditions and therefore
easily adapt to changes in the environment. Chaotic behavior externally manifests itself
in data variability. The decrease in variability is a manifestation of pathological changes
in the human body. Thus, for example, in a publication [16] it is reported that heart rate
variability decreases compared to the norm for several seconds and sometimes for several
months before the occurrence of a cardiac arrest. Therefore, timely measurement of the
parameters of the chaotic behavior of cardiac signals can facilitate the task of diagnosing the
patient’s condition and reduce the likelihood of serious illness or death. The authors of [17]
declared the reduced HRV and increased probability of death after myocardial infarction.
Their conclusions are based on a studied group of patients who experienced myocardial
infarction and subsequent death.

In recent years, fractal and multifractal methods have been used for the analysis of
cardiac time series [18–22], which take into account the dynamics of the heart rhythm. Their
distinguishing feature is that, together with the global characteristics of the process, they
also allow revealing the peculiarities of their local structure. An important characteristic of
these time series is the fractal dimension D=2-H, where H is the Hurst exponent, which is
one of the key indicators characterizing fractal processes [23]. The values of this parameter
are in the interval (0, 1). When the value of the Hurst exponent is greater than 0.5 and less
than 1.0 (0.5 < H < 1.0), these processes have a stable behavior (maintaining the existing
trend). The higher the value of this parameter and it approaches 1.0, the stronger the
tendency and the process approaches a state of determinism and full predictability. In
the case that H = 0.5, the process consists of random and uncorrelated increments. Such
a process is called “white noise” and is characterized by maximum chaos and minimum
predictability. If the value of the Hurst exponent is 0 < H < 0.5, this process is called
antipersistent, which means that its increase in the past means a decrease in the future and
vice versa. The value of the Hurst exponent of the fractal processes is 0.5 < H < 1.0, and
it can be determined by applying the statistical methods [24]. The fractal processes are
characterized by the following two properties: self-similarity and fractal dimensionality.
A fractal process is self-similar if it can be decomposed into smaller parts, each of which
is similar to the main one. The fractal dimension takes fractional values and lies between
the Euclidean and topological dimensions. The fractal processes are of two main types:
monofractal and multifractal. The monofractal process is described by a single value of the
Hurst parameter/fractal dimension, while the multifractal process is described by a spec-
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trum of values of the Hurst parameter/fractal dimension [25]. The fractal and multifractal
analyses provide new opportunities for studying the nonlinear cardiac signals by applying
the following methods: Detrended Fluctuation Analysis (DFA) and Multifractal Detrended
Fluctuation Analysis (MFDFA). These nonlinear methods are based on the assumption that
the interval series between heartbeats (RR time intervals) possess characteristics related to
fractal geometry, such as self-similarity, scalability, fractal dimension.

Another important characteristic of dynamical systems is entropy, which provides an
estimate of the complexity and predictability of the time series [26,27]. The entropy value
gives information on how far the system is from an ordered, structured state and how close
it is to a completely chaotic, structureless, homogeneous form.

The application of nonlinear graphical methods, such as the Poincaré plot for the
analysis of HRV, provides visual information about the physiological state of patients and
opens up additional opportunities for clinical and research applications [28].

Despite the wide use of HRV in studying the state of the cardiovascular system of
patients by applying linear methods, and in recent years also using nonlinear methods,
there remain a number of unsolved problems related to the correct interpretation of the
results of nonlinear analysis, which requires research in this area to continue. It has been
suggested that nonlinear analysis methods can provide important information about the
physiological state as well as cardiovascular disease risk assessment, but there is a problem
related to determining which nonlinear methods are most informative and what the values
of the studied parameters are in healthy and diseased subjects.

The purpose of the present article is to solve the problems mentioned above in the
study of the fractal, multifractal, visual and informational properties of the intervals
between heartbeats of two groups of people: healthy individuals and patients with arrhyth-
mia. The research was conducted by applying the following nonlinear analysis methods:
Rescaled Range, Detrended Fluctuation Analysis, Multifractal Detrended Fluctuation Anal-
ysis, Poincaré plot, Approximate Entropy and Sample Entropy. The efficiency of the used
nonlinear methods will be evaluated by means of the t-test and the parameter Area Under
the Curve (AUC) from the Receiver Operator Curve (ROC) characteristics. Based on the
obtained results, a diagnostic assessment of the methods used will be done.

2. Materials and Methods

To analyze and evaluate the informational characteristics of the internal organization
of the intervals between heartbeats (RR interval series), it is expedient to use methods of
nonlinear dynamics, which are grouped into the following categories:

• Fractal and multifractal methods: Rescaled Range (R/S), Detrended Fluctuation Anal-
ysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA;

• Visual methods: Poincaré plot;
• Information methods: Approximate Entropy (AppEn) and Sample Entropy (SampEn).

2.1. Fractal and Multifractal Methods
2.1.1. R/S Method

To study self-similar (fractal) processes, statistical methods can be used to determine
the value of the Hurst exponent. R/S is one of the most commonly used statistical methods.
This method was proposed by the English researcher Hurst, who discovered that the data
on the flooding of the Nile River over a long period of time (800 years) were randomly
scattered around a straight line with a slope of H > 1/2, and this was defined as the effect
of Hurst [29]. Although the method was created a long time ago, it is still used today in
the analysis of fractal processes in various fields of science; as proof of this are numerous
publications [24,30–33].

The main steps of the R/S method are:

Step 1: The investigated process is divided into segments of different lengths.
Step 2: For each segment, the parameters are calculated: Range R(n) and standard deviation

S(n) with the following formulas:
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• Range R(n):

R(n) = max(0, W1, . . . , Wn)−min(0, W1, . . . , Wn), (1)

where:
Wj =

(
X1 + X2 + . . . + Wj

)
− jX(n), j = 1, 2, . . . , n. (2)

• Standard deviation S(n):

S(n) =
√

E
(
Xj − µ

)2, µ is the mean of
(
X1, . . . , Xj

)
. (3)

Step 3: The relationship between R(n) and S(n) is determined. A regression model be-
tween Log10(R/S) and Log10(segment size) is created. For fractal processes, the
relationship between these two variables is linear.

Step 4: Using the method of least squares, the slope of the regression line is determined.
Step 5: The value of the Hurst exponent is determined, which is equal to the slope of the

regression line.

H = β (4)

where β is the slope of the regression line.

2.1.2. Detrended Fluctuation Analysis Method

The DFA is a suitable method for studying the fractal properties of cardiac signals (RR
interval series). This method is described in publications [34–39].

The method uses the following parameters:

• α1 to detect short-term correlations;
• α2 to detect long-term correlations;
• αall to detect the self-similarity in the signal. If it has a value of 0.5, it is an indicator of

an uncorrelated process resembling white noise, while if the value of αall is between
0.5 and 1, it is evidence of positive correlations and self-similarity (fractality) in the
process. Conversely, if the process has a value for αall that is between 0 and 0.5, this
is an indication of negative correlations. Using the DFA method, the coefficient of
fluctuations of the process can be determined, which is related to the Hurst exponent.
When the value of the parameter αall is less than or equal to 1, the resulting value of
αall coincides with the value of the Hurst exponent.

The procedure for applying the DFA method consists of the following main steps:

Step 1: For the analyzed time series X(i), i = 1, 2, . . . , N, a fluctuation profile with an
average value x is determined:

Y(i) = ∑i
k=1[x(k)− x]. (5)

Step 2: The resulting time series Y(i) is divided into Ns = int(N/s) non-overlapping seg-
ments containing an equal number of points s. In case the length of the time series N
is not a multiple of s, the division procedure is repeated starting from the opposite
end of the series. This results in 2N segments of length s.

Step 3: The local trend for each segment is calculated using the method of least squares and
the sums for the segments v = 1, N and v = Ns + 1, . . . , 2N are determined:

F2(v, s) =
1
s ∑s

i=1{Y[(v− 1)s + i]− yv(i)}
2 (6)

F2(v, s) =
1
s ∑s

i=1{Y[N− (v−Ns)s + i]− yv(i)}
2. (7)
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Step 4: A summation is performed for all segments, resulting in the following
fluctuation function:

F (s) =
{

1
2Ns

∑2Ns
v=1 F2(v, s)

}1/2
. (8)

Step 5: Steps 2 to 4 are repeated for different values of the parameter s. The fluctuation
function is determined:

F(s) ∼ sα. (9)

According to Equation (9), the linear behavior of the function F(s) indicates the pres-
ence of scaling (self-similarity).

2.1.3. Multifractal Detrended Fluctuation Analysis Method

The MFDFA method is used to analyze the complexity and heterogeneity of the studied
time series based on the scaling behavior. The application of this method in the analysis of
RR intervals aims to extract its fractal/multifractal characteristics that reflect changes in the
behavior of cardiac signals and to identify the pathological conditions of the patient, if any,
in order to make the correct diagnosis.

The implementation of the algorithm is described in publications [28,40–44]. The first
three steps of MFDFA are the same as in the DFA method, and the next three steps are
as follows:

Step 4: The Fq(s) function is determined for the following two cases: q 6= 0; q→ 0.

Fq(s) =
{

1
2Ns

∑2Ns
v=1 [F

2(v, s)]
q/2
} 1/q

for q 6= 0 (10)

F0(s) = exp
{

1
4Ns

∑2Ns
v=1 ln[F2(v, s)]

}
for q → 0 (11)

Step 5: For a fixed value of q, the graphical dependence of log Fq(s) vs. log(s) is plotted. If
the studied time series has a fractal behavior, then Fq(s) changes according to the
power law:

Fq(s) ∼ sh(q). (12)

where h(q) is called the generalized Hurst exponent.
Step 6: For different values of the parameter q, steps 1 to 5 are repeated.

When studying the scalable properties of the time series, it is convenient to move
from the generalized Hurst exponent h(q) to the scalable exponent τ(q) and the multifractal
spectrum f(α) [2,6]:

τ(q) = qh(q)− 1. (13)

F(α) = qα − τ(q), α = τ’(q). (14)

The monofractal processes are characterized by the following properties:

• The fluctuation function Fq(s) is the same for all segments v into which the studied
process is divided;

• The generalized Hurst exponent h(q) = H does not depend on the parameter q and is
a constant quantity;

• They are characterized by a linear increase of the function τ(q);
• They have a narrow multifractal spectrum F(α).

The multifractal processes have the following features:
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• The fluctuation function Fq(s) is different for the different segments v into which the
process is divided;

• The generalized Hurst exponent is not a constant quantity, but depends on the change
of the parameter q;

• The function τ(q) increases nonlinearly;
• The multifractal spectrum F(α) is wide.

2.2. Poincaré Plot

The Poincaré plot is a two-dimensional visualization tool for dynamic cardio intervals
(previous and next RR interval), which form a “cloud” of points [7,28]. This method is used
to demonstrate the self-similarity of the heartbeat. If an ellipse with a longitudinal axis (the
line of identity) and a transverse axis (perpendicular to the line of identity) is constructed
on the graph constructed by the Poincaré method (Figure 1), the following parameters can
be determined:

• SD2 [ms] parameter, which corresponds to the semimajor axis of the ellipse and lies on
a line that is perpendicular to the line of identity. This parameter corresponds to the
long-term variability of the RR intervals;

• SD1 [ms] parameter, which corresponds to the semiminor axis of the ellipse and lies on
the line of identity. This parameter is related to the rapid variations between heartbeats;

• The SD1/SD2 ratio, which shows the relationship between the short- and long-term HRV.

Figure 1. Poincaré plot graph of a healthy subject containing around 100,000 RR time intervals.

The parameters characterizing the Poincaré method are determined by the following
equations [13]:

x = {x1, x2, . . . , xn} = {RR1, RR2, . . . , RRn}, (15)

y = {y1, y2, . . . yn} = {RR2, RR3, . . . , RRn+1}, (16)

SD1 =
√

var(d1), SD2 =
√

var(d2). (17)

where:

• i = 1, 2, . . . , n, n are the number of points in the graph;
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• var(d) is the variance of d;
• d1 =

x−y√
2

; d2 =
x+y√

2
.

One of the features for visual analysis of HRV that is used in the present study is
determined by the shape that the points of the “cloud” form. Figure 2 shows several
patterns that are categorized for different functional states of the study subjects [42]:

• The graph of the healthy subject has one main segment of points to which more points
may be evenly scattered. The main segment is comet-shaped with a narrow lower part
and gradually widening towards the apex (Figure 2A);

• The graph of the diseased subject has the shape of a torpedo (Figure 2B), a fan
(Figure 2C) or a complex shape (consisting of several segments), depending on the
type of disease (Figure 2D).

Figure 2. Visual templates of the Poincaré plot depending on the shape of the points in the segment
for a healthy subject and three unhealthy ones with various diseases. (A) The template of the Poincaré
plot of the healthy subject has the shape of a comet. (B) The template of the Poincaré plot of the first
unhealthy subject (syncope) has the shape of a torpedo. (C) The template of the Poincaré plot of the
second unhealthy subject (arrhythmia) has the shape of a fan. (D) The template of the Poincaré plot
of the third unhealthy subject (heart failure) has a complex shape.

The graph constructed using the Poincaré plot can be analyzed quantitatively by
placing an ellipse on the graph shape and determining the values of the parameters: SD1,
SD2 and SD1/SD2 ratio.

2.3. Approximate Entropy and Sample Entropy

Approximate entropy (ApEn) [26,44–47] serves as a quantitative measure of regularity,
predictability and complexity of nonstationary time series such as RR interval series. This
entropy depends on the following 3 factors:

• Subseries length (m);
• Tolerance (r);
• Data length (N).
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To calculate the entropy for a time series of N points, Vectors (18) and (19) are first
constructed, and then the entropy is calculated with Formula (20).

y(i) = [x(i), . . . , x(i + m− 1)]. (18)

y(j) = [x(j), . . . , x(j + m− 1)]. (19)

ApEn(m, r, N) = φm(r)−φm+1(r). (20)

where:

• Φm(r) = 1
N−m+1 ∑N−m+1

i=1 lnCm
i (r);

• Cm
i (r) = number of y(j);d[y(i), y(j)]≤r

N−m+1 ;
• d is the distance between the vectors.

It is found that the higher the regularity of the signal, the lower the entropy, and for
irregular signals, the entropy is higher.

SampEn is a modification of ApEn used to estimate the complexity of physiological
time series [45]. This entropy is very similar to ApEn with minor computational differences.
To determine SampEn, it is necessary to define φm(r) and φm+1(r).

φm(r) =
1

N−m ∑N−1
i=1 Cm

i (r). (21)

SampEn(m, r, N) = ln
φm(r)

φm+1(r)
. (22)

The probability φm(r) that two sequences match for m points is calculated by deter-
mining the average number of vector pairs for which the distance between them is less
than the parameter r. In a similar way, the variability φm+1(r) is determined.

Characteristic of SampEn is that, unlike ApEn, it does not depend on the length of
the data.

2.4. Data

The data used for the research in this article were recorded with a Dynamic ECG
Systems TLC9803 Holter device at the Medical University of Varna, Bulgaria. A cardiologist
was involved in registering the data and made the relevant diagnoses. The studied RR time
series are of 50 subjects, who are united in the following 2 groups:

• Group 1 (healthy subjects) consisted of 25 subjects, of which 15 were male and 10 were
female. The average age for this group is 56.3 years.

• Group 2 (arrhythmia patients) consisted of 25 patients, of which 13 were men and
12 were women. The average age of the group is 58.7 years.

The group corresponding to patients with arrhythmia included only subjects with
supraventricular extrasystoles. During the study, patients were not taking antiarrhythmic
medications, including beta-selective blockers.

MATLAB (R2013b version) software was created to analyze 24 h recordings consisting
of approximately 100,000 RR intervals.

2.5. Receiver Operating Characteristics Analysis

In the present article, to determine the diagnostic evaluation of the proposed methods
for the nonlinear analysis of the HRV, the t-test and ROC analysis using MedCalc software is
applied [48]. ROC analysis is a classic methodology from the signal theory that is currently
widely used in medical diagnostics. This statistical method is based on the construction
of ROC curves, which do not work with absolute indicators of the correct classification
of results, but with relative indicators such as sensitivity and specificity. Sensitivity is the
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proportion of positive cases that were correctly classified by the model, while specificity is
the proportion of negative cases.

The area under the ROC curve (AUC parameter) is a measure of how well a parameter
can discriminate between two diagnostic groups. The relationship between the quality of
the method used and the AUC value is as follows:

• If the AUC is in the interval 0.9–1.0, the quality of the parameter used is excellent;
• If the AUC is in the interval 0.8–0.9, the quality of the parameter used is very good;
• If the AUC is in the interval 0.7–0.8, the quality of the parameter used is good;
• If the AUC is in the interval 0.5–0.6, the quality of the method used is unsatisfactory.

3. Results and Discussion
3.1. Evaluation of the Fractal and Multifractal Methods for the Analysis of HRV
3.1.1. Evaluation of the R/S Method

The graphs obtained by the R/S method for determining the Hurst exponent are
shown in Figure 3A (healthy subject) and Figure 3B (arrhythmic patient). The slopes of
the charts, colored in light blue, correspond to the Hurst exponent values. The value of
this parameter for a healthy individual is H = 0.956, and for a patient with arrhythmia it
is H = 0.681. The determined values (mean ± std) of the Hurst exponent for the studied
two groups of subjects are shown in Table 1. It was found that, for the two studied groups,
the value of the Hurst parameter was in the interval (0.5, 1.0), which is evidence that
these signals have a fractal behavior. The value of this parameter is lower in patients with
arrhythmia. In a number of scientific studies, it has been found that the Hurst exponent
decreases with fatigue, physical exertion and cardiovascular diseases, and from this, the
HRV also decreases [23,49]. A similar trend was found in the present study, confirming the
adverse impact of cardiovascular arrhythmia on HRV.

Figure 3. R/S statistics plots for the RR time intervals for a healthy subject (A) and for an arrhythmia
patient (B). HRV analysis results of healthy and unhealthy subjects using the R/S method to determine
the Hurst exponent value. The value of this parameter is determined by constructing a linear
regression model between the variables Log10(R/S) and Log10(m). (A) For the healthy subject, the
obtained value of the Hurst exponent is H = 0.956. (B) For the unhealthy subject (arrhythmia), this
parameter value is H = 0.681, and it is lower than the value of the healthy subject.
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Table 1. Comparative analysis between healthy (Group 1) and unhealthy subjects (Group 2).

Parameters Group 1
(Mean ± Std)

Group 2
(Mean ± Std) AUC 95% Confidence Interval p-Value

Fractal and Multifractal Methods
H (R/S) 0.981 ± 0.01 0.701 ± 0.07 0.852 0.721 to 0.937 <0.0001
α1 (DFA) 1.106 ± 0.21 0.723 ± 0.18 0.879 0.754 to 0.955 <0.0001
α2 (DFA) 1.042 ± 0.08 0.805 ± 0.07 0.926 0.814 to 0.981 <0.0001
αall (DFA) 0.973 ± 0.02 0.745 ± 0.03 0.918 0.791 to 0.972 <0.0001

Hq=2 (MFDFA) 0.978 ± 0.04 0.699 ± 0.06 0.789 0.638 to 0.886 <0.0001
F(α) (MFDFA) 0.550 ± 0.18 0.201 ± 0.05 0.798 0.660 to 0.898 <0.0001

Poincaré plot
SD1 [ms] 29.12 ± 10.19 145.46 ± 31.01 0.925 0.814 to 0.980 <0.0001
SD2 [ms] 175.15 ± 41.22 210.70 ± 25.12 0.725 0.580 to 0.842 0.0006
SD1/SD2 0.141 ± 0.11 0.723 ± 0.13 0.863 0.736 to 0.944 <0.0001

Entropy Methods
ApEn 1.592 ± 0.15 1.212 ± 0.19 0.832 0.700 to 0.923 <0.0001

SampEn 1.697 ± 0.21 1.351 ± 0.20 0.876 0.752 to 0.952 <0.0001

The estimation of this parameter was determined by applying the t-test and ROC
analysis. Using the t-test, it was established that the Hurst parameter, determined by the
R/S method, has statistical significance (p < 0.05), which allows to delineate the two studied
groups. The ability of ROC analysis to discriminate diseased from healthy individuals was
determined by examining the area under the ROC curve (AUC), as the numerical values in
Table 1. The diagnostic evaluation of the R/S method based on the determined AUC value
was established as very good.

3.1.2. Evaluation of the DFA Method

To study the RR time intervals using the DFA method, the values of the parameters
α1, α2 and αall are determined. Figure 4A,B shows DFA plots of RR time intervals for a
healthy subject and an arrhythmia patient. The α1 parameter is determined by the slope of
the first part of the graph (colored in green). This parameter is defined for segments of size
4 ≤ s < 16 and corresponds to the short-term variations of the signal. The parameter α2 is
determined by the slope of that part of the graph, which is colored red. This parameter is
defined for segments of size 16 ≤ s < 64 and corresponds to the long-term signal variations.
The parameter αall is determined by the slope of the graph, which is colored in light blue.
The values of the studied parameters (α1, α2 and αall) for both types of signals are shown
in Table 1. The results obtained show the following:

• The values of α1, α2 and αall are higher in healthy people;
• The value of the parameter αall in healthy and diseased subjects varies between 0.5 and

1.0, which is close to the value of the Hurst exponent determined by the R/S method;
• The parameters α1, α2 and αall have statistical significance determined by t-test;

therefore, with this method, the two groups can be distinguished;
• Quantitative AUC evaluation shows that one of the parameters (α1) has a very good

diagnostic score and the other two (α2 and αall) have an excellent score. Quantitative
AUC evaluation shows that one of the parameters (α1) has a very good diagnostic
score, and the other two (α2 and αall) have an excellent score; the graphs for the three
parameters obtained by the ROC analysis are shown in Figure 5.
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Figure 4. HRV analysis results of healthy and unhealthy subjects where the DFA method is used
to determine the exponents: α1, α2 and αall. The cardiac signal is divided into segments, and the
dependence between Log10(Fs) and Log10(s) is determined for each one of them. The linear behaviour
of the function F(s) indicates the presence of self-similarity (fractality) for the studied signals, which
are displayed on the figure. Panel (A) corresponds to the healthy subject, with the values of the
parameters α1, α2 and αall determined by the slopes of the lines (green, red, blue). These slopes are
greater compared to the slopes of the lines for the unhealthy subject (arrhythmia), which are shown
on panel (B).

Figure 5. ROC curves for the parameters of the R/S, DFA and MFDFA methods.
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3.1.3. Evaluation of the MFDFA Method

The estimation of the degree of fractality of the RR time intervals is an important
feature when studying their fluctuations in order to obtain information about the long-term
correlations and, accordingly, to determine and predict the behavior of these intervals.
Based on the analyses, the following conclusions can be drawn:

• The graphs of the Fq(scale) function for different values of the parameter q shown
in Figures 6A and 7A are for a healthy subject and an unhealthy subject (arrhythmia
patient). The graphs for both subjects are straight lines, i.e., the studied RR time series
are scale-invariant and therefore exhibit fractal behavior. The slopes of the Fq vs. q
corresponding to a healthy individual are different, which is evidence of multifractal
behavior of the studied cardiac signal. The graphs for the unhealthy subject are
parallel, i.e., the slope of the oscillation functions is constant, and this observation can
be interpreted as monofractal behavior;

• Figures 6B and 7B show the dependence of the generalized Hurst exponent H(q)
versus q for the RR time intervals of healthy and unhealthy subjects. The range of
values of the Hurst exponent for a healthy subject varies from 0.9 to 0.6 in the case of
different values of the q parameter. Therefore, the RR intervals for healthy subjects
have a multifractal behavior. In the case of an unhealthy subject (arrhythmia patient),
the Hurst exponent is a constant at different values of the q parameters; therefore,
the investigated signal has a monofractal behavior. From the graph in Figure 6B, for
the healthy patient it can be seen that H(q = 2) = 0.7848, and for the diseased patient
(Figure 6B) H(q = 2) = 0.5912. In Table 1 are shown the values of this parameter for
the two studied groups. This parameter has statistical significance (p < 0.05), and the
determined AUC value is 0.789;

• Figures 6C and 7C show the tau(q) curves of healthy and unhealthy subjects. When
the function tau(q) is a convex curve, this is evidence that the studied signal has a
multifractal behavior. In the case where tau(q) is a straight line, this is evidence that
the signal is monofractal. Therefore, the RR time intervals of the healthy subjects
have a multifractal behavior, while the signals of the patients with arrhythmia are
monofractals;

• The graphs on Figures 6D and 7D illustrate the multifractal spectrum of RR intervals
for healthy and unhealthy individuals. The multifractal spectrum of the RR intervals of
the healthy subject (Figure 6D) is ∆α = αmax − αmin = 1.0077 − 0.5224 = 0.4853, while
for the unhealthy subject (Figure 6D) it is ∆α = αmax − αmin =0.6580 − 0.5329 = 0.1251.
The signal of the healthy subject has a broad multifractal spectrum, while the signal of
the unhealthy subject (arrhythmia patient) has a narrow multifractal spectrum that
is about 4 times smaller than that of the healthy subject. The graph in Figure 7D
corresponding to the arrhythmia patient is an example of a monofractal process. In
Table 1 are shown the values of the multifractal spectrum of the two studied groups.
The value of this parameter is higher in healthy individuals, which is due to the higher
HRV. This parameter has statistical significance (p < 0.05), and the determined value
of AUC (Figure 8) is 0.798.

Based on the results obtained for the determined AUC values for the parameters
H(q = 2) and the multifractal spectrum F(α), it follows that MFDFA is a method with a
good diagnostic evaluation and can be used to distinguish sick from healthy individuals.
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Figure 6. HRV analysis results of the healthy subject using the MFDFA method. (A) The scaling
function Fq (dots) and the corresponding regression slopes (lines) for three different values of the
parameter q: −5, 0, 5 are shown; the regression lines are not parallel, which is evidence that the
cardiac signal (RR time series) is multifractal. (B) The plot of the generalized Hurst exponent H(q) vs.
parameter q indicates that the signal is multifractal, because H(q) is dependent on q. (C) The plot of
the multifractal scaling exponent tau(q) exhibits a nonlinear dependence for q > 0, indicating again
that the signal is multifractal. (D) The multifractal spectrum F(alpha) vs. parameter alpha for the
healthy subject is wider compared to the unhealthy subject.

3.2. Evaluation of the Poincaré Plot

The visual analysis of HRV based on the Poincaré diagram provides information about
the health status of the study subjects. The graphs constructed from the Poincaré plot
for a healthy individual and arrhythmia patients are shown in Figure 8A,B. The graph of
a healthy individual has the shape of a comet with a pointed lower part and gradually
widening towards the top. The graph of the arrhythmia patient is fan-shaped.

In healthy individuals, the shape of the ellipse is clearly defined, while in patients with
arrhythmia (or other diseases), the length and width of the ellipse may be approximately
equal, and the ellipse may approach a circle. In Table 1 are shown the results of the studied
parameters SD1, SD2, SD1/SD2 as mean ± std.

To differentiate the two studied groups, the statistical significance (p-value) was
determined by t-test. The obtained results show that the p-value is less than 0.05 for the
studied parameters; therefore, with this method, the two groups can be distinguished.
Figure 9 shows the ROC curves for the studied parameters, and the determined AUC
values are shown in Table 1. Based on the determined AUC values, the results obtained for
the diagnostic evaluation of the parameters are as follows:

• SD1 = 0.925—the parameter has an excellent diagnostic value;
• SD2 = 0.725—the parameter has a good diagnostic value;
• SD1/SD2 = 0.863—the parameter has a very good diagnostic value.
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Figure 7. HRV analysis results of the unhealthy subject (arrhythmia patient) using the MFDFA
method. (A) The scaling function Fq (dots) and the corresponding regression slopes (lines) for the
following values of parameter q: −5, 0, 5 are shown; the regression lines are parallel, which is
evidence that the cardiac signal is monofractal. (B) The plot of the generalized Hurst exponent
H(q) vs. parameter q indicates that the signal is monofractal, because the relationship between H(q)
and q is constant. (C) The plot of the scaling exponent tau(q) exhibits a linear dependence for all q,
indicating that the signal is monofractal. (D) The multifractal spectrum F(alpha) vs. parameter alpha
for the unhealthy subject is narrower compared to the healthy subject.

Figure 8. Poincaré plot graph for healthy and unhealthy subjects. (A) The template of the Poincaré
plot of the healthy subject has the shape of a comet. (B) The template of the Poincaré plot of the
unhealthy subject with arrhythmia has the shape of a fan.
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Figure 9. ROC curves for the parameters of the Poincaré plot.

3.3. Evaluation of the ApEn and SampEn Methods

The ApEn and SampEn methods can be used to study the dynamics of cardiac data
consisting of the intervals between heartbeats. To determine ApEn and SampEn, it is
necessary to set values for the parameters: m(subseries length) and r(tolerance). In our
previous article [50], the following values were found to be appropriate: m = 2, r = 0.2. In
Table 1 are shown the results of the determined values of the two entropies as mean ± std.
The ROC curves for the studied parameters are presented in Figure 10. Based on the
obtained results, the following conclusions can be drawn:

• The values of ApEn and SampEn were higher for the healthy subjects compared to
those of the diseased subjects; therefore, the RR intervals of healthy subjects had
greater complexity;

• For the two studied parameters ApEn and SampEn, the p-value is less than 0.05;
therefore, these parameters have statistical significance, which makes it possible to
distinguish between the two investigated groups;

• From the determined AUC values for ApEn and SampEn, it follows that a very good
diagnostic score is obtained with these two methods.

Figure 10. ROC curves for ApEn and SampEn.
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4. Conclusions

This article presents the results of the application of nonlinear mathematical methods
for the analysis of two groups of people: 25 healthy subjects (15 men, 10 women, mean
age: 56.3 years) and 25 patients with arrhythmia (13 men, 12 women, mean age: 58.7 years).
The obtained results are part of the scientific research carried out under the project “In-
vestigation of the application of new mathematical methods for the analysis of cardiac
data”, financed by the “Scientific Research” Fund, Bulgaria. Currently, most cardiologists
experience difficulties with the use of fractal, multifractal and informational methods for
the analysis of ECG signals and the accurate interpretation of the obtained results. However,
the analysis of the dynamics of RR interval series by the application of these methods with a
view to distinguishing healthy subjects from diseased ones is an important and interesting
topic. The informational properties of these methods and their application in the study of
the fractal, multifractal and informational properties of the intervals between heartbeats
of the studied groups of patients show high efficiency and open perspectives for their
future use in the diagnosis and prediction of cardiovascular diseases. The application of
the Poincaré plot for the analysis of HRV is an effective tool for visualizing the fluctuations
of the RR interval series. From the results, detailed information on the physiological status
of patients can be obtained, which facilitates healthcare professionals in making accurate
diagnoses, especially in cases of large amounts of information when analysing 24, 48 or
72 h Holter data. From the evaluation of the used nonlinear methods for the analysis of
HRV, it follows that they have from good to excellent diagnostic values and can be used to
distinguish healthy subjects from those with arrhythmia.
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