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Abstract: In the paper, the authors find a sufficient and necessary condition for the power-exponential
function

(
1 + 1

x
)αx to be a Bernstein function, derive closed-form formulas for the nth deriva-

tives of the power-exponential functions
(
1 + 1

x
)αx and (1 + x)α/x, and present a closed-form

formula of the partial Bell polynomials Bn,k(H0(x),H1(x), . . . ,Hn−k(x)) for n ≥ k ≥ 0, where
Hk(x) =

∫ ∞
0

eu −1−u
eu uk−1 e−xu d u for k ≥ 0 are completely monotonic on (0, ∞).
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1. Motivations

Let I ⊆ R be a finite or infinite interval. Recall from [1] (Chapter XIII) and [2]
(Chapter IV) that a real-valued function f (x) defined on I ⊆ R is said to be completely
monotonic on I if and only if (−1)k f (k)(x) ≥ 0 is valid for all k ≥ 0 and x ∈ I. The interval
I ⊆ R is called the completely monotonic interval of f (x). A non-negative-valued function
f (x) on an interval I is called (see the paper [3]) (Chapter 3) a Bernstein function if its first
derivative f ′(x) is completely monotonic on I.

In the paper [4], the authors reviewed, discussed, and presented closed-form formulas
for the nth derivative of the power-exponential function xx for x > 0. One of the main
results in the paper [4] is Theorem 1, in which the formula

(xx)(n) = n!xx−n
n

∑
k=0

xk
k

∑
j=0

[
n−k

∑
q=0

s(q + j, j)
(q + j)!

(
j

n− k− q

)]
(ln x)k−j

(k− j)!
, n ≥ 0

was established, where s(n, k) denotes the Stirling numbers of the first kind, which can be
analytically generated [5] (p. 20, (1.30)) by

[ln(1 + x)]k

k!
=

∞

∑
n=k

s(n, k)
xn

n!
, |x| < 1;

see also the monographs [6,7]. For more information on the nth derivative of the function
xax, please refer to [8] (pp. 139–140, Example), [9] (p. 8), and the papers [10–12].
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In this paper, for alternatively demonstrating that, if and only if 0 < α ≤ α∗ ∈ (2, 3),
the function

hα(x) =
(

1 +
1
x

)αx

, α ∈ R, x > 0 (1)

is a Bernstein function on (0, ∞), see the papers [13–16], we will compute the nth derivative
of the power-exponential function hα(x) using several approaches.

Why do we consider the power-exponential function hα(x) and determine the largest
number α∗ ∈ (2, 3) such that hα(x) is a Bernstein function on (0, ∞) for 0 < α ≤ α∗? What
applications of this necessary and sufficient condition has? Ones can find explicit answers
to these two questions in the papers [13–15,17,18] and closely related references therein.

Another reason why we will consider the function hα(x) is that writing out the general
formula for the nth derivatives of power-exponential functions, such as xαx,

(
1 + 1

x
)αx, and

(1 + x)α/x is, although elementary, also difficult.

2. Preliminaries

In [19] (p. 412, Definition 11.2) and [8] (p. 134, Theorem A), the partial Bell polyno-
mials Bn,k(x1, x2, . . . , xn−k+1) in the variables x1, x2, . . . , xn−k+1 of degree k are defined for
n ≥ k ≥ 0 by

Bn,k(x1, x2, . . . , xn−k+1) = ∑
kj≥0 for 1≤j≤n−k+1,

∑n−k+1
j=1 jkj=n,

∑n−k+1
j=1 kj=k

n!

∏n−k+1
j=1 k j!

n−k+1

∏
j=1

( xj

j!

)kj

. (2)

In particular, the special values B0,0(x1) = 1 and Bn,0(x1, x2, . . . , xn+1) = 0 for n ≥ 1 are
useful. The famous Faà di Bruno formula can be described in terms of the partial Bell
polynomials Bn,k by

dn

dxn f ◦ g(x) =
n

∑
k=0

f (k)(g(x))Bn,k
(

g′(x), g′′(x), . . . , g(n−k+1)(x)
)
. (3)

The partial Bell polynomials Bn,k satisfy the identities

Bn,k
(
αβx1, αβ2x2, . . . , αβn−k+1xn−k+1

)
= αkβnBn,k(x1, x2, . . . , xn−k+1), (4)

Bn,k
(

x1, x2, . . . , xn−k+1
)
=

k

∑
`=0

(
n
`

)
x`1Bn−`,k−`

(
0, x2, . . . , xn−k+1

)
, (5)

and

Bn,k(x1 + y1, x2 + y2, . . . , xn−k+1 + yn−k+1)

= ∑
r+s=k

∑
`+m=n

(
n
`

)
B`,r(x1, x2, . . . , x`−r+1)Bm,s(y1, y2, . . . , ym−s+1). (6)

These three identities can be found in [19] (pp. 412, 420) and [8] (pp. 135–137).
In [20] (Theorem 1.1), the closed-form formula

Bn,k(0, 1!, 2!, . . . , (n− k)!) = (−1)n−k
(

n
k

) k

∑
m=0

(−1)m ( k
m)

(n−m
n−k )

s(n−m, k−m) (7)

for n ≥ k ≥ 0 was presented. Since

Bn,k

(
x2

2
,

x3

3
, . . . ,

xn−k+2
n− k + 2

)
=

n!
(n + k)!

Bn+k,k(0, x2, . . . , xn+1) (8)
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for n ≥ k ≥ 0, Formula (7) is equivalent to

Bn,k

(
1!
2

,
2!
3

, . . . ,
(n− k + 1)!

n− k + 2

)
= (−1)n−k 1

k!

k

∑
m=0

(−1)m ( k
m)

(n+m
m )

s(n + m, m) (9)

for n ≥ k ≥ 0. Formula (8) can be found in [8] (p. 136), while Formula (9) can be found
in [20] (Theorem 1.1).

In [4] (Lemma 1), it was established that

Bn,k(0, 0!, 1!, 2!, . . . , (n− k− 2)!, (n− k− 1)!)

= (−1)n−kn!
k

∑
j=0

(−1)j

(k− j)!

n−k

∑
`=0

s(`+ j, j)
(`+ j)!

(
j

n− k− `

)
(10)

for n ≥ k ≥ 0. In [8] (p. 135, Theorem B) and [20] (Theorem 1.1), we can find the identity

Bn,k(1!, 2!, . . . , (n− k + 1)!) =
(

n− 1
k− 1

)
n!
k!

= L(n, k) (11)

for n ≥ k ≥ 0, where L(n, k) is called the Lah numbers in combinatorial number theory
(see [6,21] (pp. 43–44)).

A family of polynomials Pn(x) of degree n ≥ 0 is said to be of binomial type if it
satisfies the binomial identity

Pn(x + y) =
n

∑
k=0

(
n
k

)
Pk(x)Pn−k(y).

Let

pn(α) =
n

∑
k=0

Bn,k(x1, x2, . . . , xn−k+1)α
k, n ≥ 0.

Then the family of polynomials pn(α) of degree n ≥ 0 is of binomial type, that is,

pn(α + β) =
n

∑
k=0

(
n
k

)
pk(α)pn−k(β), n ≥ 0, (12)

and
p′n(0) = xn, n ≥ 1.

These results can be found in [22,23] (p. 83).

3. A Sufficient and Necessary Condition

In this section, we discuss the nth derivative of the power-exponential function hα(x)
and present a sufficient and necessary condition for hα(x) to be a Bernstein function on the
infinite interval (0, ∞).

Theorem 1. For α ∈ R and x > 0, the nth derivative of the power-exponential function
hα(x) =

(
1 + 1

x
)αx can be computed using

h(n)α (x) = (−1)nhα(x)
n

∑
k=0

(−1)kαkBn,k(H0(x),H1(x), . . . ,Hn−k(x)), (13)

where n ≥ 0 is an integer and the functions

Hk(x) =
∫ ∞

0

eu−1− u
eu uk−1 e−xu d u, k ≥ 0 (14)
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are completely monotonic on (0, ∞).

Proof. Let Hα(x) = ln hα(x). Then direct computation gives

H′α(x) = α

[
ln
(

1 +
1
x

)
− 1

1 + x

]
= αH0(x)

and

H(k+1)
α (x) = (−1)kα

[
(k− 1)!

xk − (k− 1)!
(1 + x)k −

k!
(1 + x)k+1

]
= (−1)kαHk(x)

for k ≥ 1, where we used the integral representation

ln
b
a
=
∫ ∞

0

e−au− e−bu

u
d u

in [24] (p. 230, 5.1.32) and the formula

Γ(z) = wz
∫ ∞

0
uz−1 e−wu d u, <(z),<(w) > 0 (15)

in [24] (p. 255, Entry 6.1.1).
By virtue of the Faà di Bruno Formula (3) and the identity (4), we arrive at

h(n)α (x) =
dn eHα(x)

d xn =
n

∑
k=0

eHα(x) Bn,k
(

H′α(x), H′′α (x), . . . , H(n−k+1)
α (x)

)
= (−1)nhα(x)

n

∑
k=0

(−1)kαkBn,k(H0(x),H1(x), . . . ,Hn−k(x))

for n ≥ 0. From the integral representation (14), we can easily see that all the functions
Hk(x) for k ≥ 0 are completely monotonic on (0, ∞). In conclusion, we acquire the
Formula (13). The proof of Theorem 1 is complete.

Remark 1. It is clear that

H′k(x) = −
∫ ∞

0

eu−1− u
eu uk e−xu d u = −Hk+1(x), k ≥ 0.

Since the functions Hk(x) for k ≥ 0 are completely monotonic on (0, ∞), the product of finitely
many completely monotonic functions is a completely monotonic function on the intersection of
their completely monotonic intervals, considering definition (2), we conclude that the functions

Bn,k(H0(x),H1(x), . . . ,Hn−k(x)) > 0, n ≥ k ≥ 1

are completely monotonic on (0, ∞).

Theorem 2. For α, β ∈ R and x > 0, the derivatives of the power-exponential function
hα(x) =

(
1 + 1

x
)αx satisfy the identity

h(n)α+β(x) =
n

∑
k=0

(
n
k

)
h(k)α (x)h(n−k)

β (x), n ≥ 0. (16)

In other words, the nth derivative h(n)α (x) for n ≥ 0 is of binomial type.
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Proof. Based on Formula (13) in Theorem 1, let

pn(α) = (−1)n h(n)α (x)
hα(x)

=
n

∑
k=0

Bn,k
(
−H0(x),−H1(x), . . . ,−Hn−k(x)

)
αk

for n ≥ 0. Making use of Equation (12), we obtain

(−1)n
h(n)α+β(x)

hα+β(x)
=

n

∑
k=0

(
n
k

)
(−1)k h(k)α (x)

hα(x)
(−1)n−k

h(n−k)
β (x)

hβ(x)
, n ≥ 0,

which can be simplified as (16).

Theorem 3. There exists a positive constant α∗ such that, if and only if 0 < α ≤ α∗, the power-
exponential function hα(x) =

(
1 + 1

x
)αx is a Bernstein function on (0, ∞).

Proof. It is easy to see that hα(x) for α ∈ R is positive on (0, ∞). Hence, to prove that hα(x)
is a Bernstein function on (0, ∞), it is sufficient to show

(−1)n[h′α(x)](n) = (−1)nh(n+1)
α (x)

= −hα(x)
n+1

∑
k=1

(−1)kαkBn+1,k(H0(x),H1(x), . . . ,Hn−k+1(x))

> 0

for n ≥ 0. Therefore, it is sufficient to demonstrate

α
n

∑
k=0

(−1)kαkBn+1,k+1(H0(x),H1(x), . . . ,Hn−k(x)) > 0 (17)

on (0, ∞) for all n ≥ 0 and a part of α ∈ R.
Descartes’ rule of signs [25] (p. 22) states that:

1. If the nonzero terms of a single-variable polynomial with real coefficients are ordered
by descending variable exponent, then the number of positive zeros of the polyno-
mial is either equal to the number of sign changes between consecutive (nonzero)
coefficients or is less than it by an even number. A zero of multiplicity k is counted as
k zeros.

2. The number of negative zeros is the number of sign changes after multiplying the
coefficients of odd-power terms by −1, or fewer than it by an even number.

Applying this rule to the polynomials

Pn,x(α) =
n

∑
k=0

(−1)kαkBn+1,k+1(H0(x),H1(x), . . . ,Hn−k(x)) (18)

of the variable α for n ≥ 0 and x > 0 reveals that,

1. when n = 0, the polynomial P0,x(α) = B1,1(H0(x)) = H0(x) > 0 has no any zero;
2. when n ≥ 1, the polynomial Pn,x(α) has no any negative zero;
3. when n ≥ 1, the polynomial Pn,x(α) has at most n positive zeros or has positive zeros

of an even number less than n, or has no positive zero.

For convenience, we denote the set of all positive zeros of the polynomial Pn,x(α) for
n ≥ 0 by Zn(x) in x ∈ (0, ∞). It is clear that Z0(x) = ∅ in x ∈ (0, ∞). Since

P1,x(α) = B2,1(H0(x),H1(x))− αB2,2(H0(x)) = H1(x)− αH2
0(x)
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has a positive zero H1(x)
H2

0(x)
, the set Z1(x) =

{H1(x)
H2

0(x)

}
in x ∈ (0, ∞). Since

Pn,x(0) = Bn+1,1(H0(x),H1(x), . . . ,Hn(x)) = Hn(x) > 0, n ≥ 0, (19)

if for some positive integer n the set Zn(x) = ∅ in x ∈ (0, ∞), then the polynomial Pn,x(α)
is positive for all x, α ∈ (0, ∞), and then (−1)n[h′α(x)](n) > 0 is valid for all x, α ∈ (0, ∞); if
for some positive integer n the set Zn(x) 6= ∅ in x ∈ (0, ∞), then the polynomial Pn,x(α)
is positive for those numbers α, which are located on the open interval between 0 and the
smallest element in Zn(x) in x ∈ (0, ∞), and then (−1)n[h′α(x)](n) > 0 is valid in x ∈ (0, ∞)
for those numbers α which locate on the open interval between 0 and the smallest element
in Zn(x) in x ∈ (0, ∞).

Denote

Z(x) =
∞⋃

n=0
Zn(x), x ∈ (0, ∞).

Then the union set Z(x) in x ∈ (0, ∞) has at least one element. Accordingly, the number

α∗ = inf
x∈(0,∞)

Z(x)

is defined and significant. From the complete monotonicity of the function Hn(x) on
(0, ∞) and the positivity of Pn,x(0) in (19), we conclude that the number α∗ is positive.
Consequently, if and only if α ∈ (0, α∗), the inequalities (−1)n[h′α(x)](n) > 0 are valid in
x ∈ (0, ∞) for all integers n ≥ 0, and the power-exponential function hα(x) is a Bernstein
function on (0, ∞).

Remark 2. When n = 1, the inequality (17) is equivalent to

B2,1(H0(x),H1(x))− αB2,2(H0(x)) > 0, x ∈ (0, ∞),

which can be rewritten as

0 < α <
B2,1(H0(x),H1(x))

B2,2(H0(x))
=
H1(x)
H2

0(x)
=

1

x
[
1 + (x + 1) ln x

1+x
]2 , G1(x) (20)

for x ∈ (0, ∞). Using the software WOLFRAM MATHEMATICA 12, we can plot the graph of the
function G1(x) for x ∈

(
0, 1

2
)
. The graph is shown in Figure 1. This implies that α∗ < 3.7 . . .

0.1 0.2 0.3 0.4 0.5

4.0

4.5

5.0

5.5

Figure 1. The graph of the function G1(x) for x ∈
(
0, 1

2
)
.
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Remark 3. When n = 2, the inequality (17) can be rearranged as

B3,1(H0(x),H1(x),H2(x))− αB3,2(H0(x),H1(x)) + α2B3,3(H0(x)) > 0,

whose discriminant is

[B3,2(H0(x),H1(x))]2 − 4B3,1(H0(x),H1(x),H2(x))B3,3(H0(x))

= H2
0(x)

[
9H2

1(x)− 4H0(x)H2(x)
]

= H2
0(x)

4
(
3x2 + 4x + 1

)
ln x− 4

(
3x2 + 4x + 1

)
ln(x + 1) + 12x + 13

x2(x + 1)4

, H2
0(x)

G2(x)
x2(x + 1)4 , x ∈ (0, ∞).

The graph of G2(x), plotted using the software WOLFRAM MATHEMATICA 12, on the interval(
0, 1

2
)

is shown in Figure 2. This means the function G2(x) has a zero x0 ∈ (0.06, 0.1). When
x ∈ (0, x0), the polynomial P2,x(α) has no positive zero, that is, the positivity P2,x(α) > 0 is valid
for all α > 0 and for x ∈ (0, x0); when x ∈ (x0, ∞), the polynomial P2,x(α) of the variable α has
two positive zeros

3H1(x)∓
√

9H2
1(x)− 4H0(x)H2(x)

2H2
0(x)

.

Consequently, we take

Z2(x) =
{3H1(x)∓

√
9H2

1(x)− 4H0(x)H2(x)

2H2
0(x)

, x ≥ x0

}
in x ∈ (0, ∞). The graph of the function

G3(x) =
3H1(x)−

√
9H2

1(x)− 4H0(x)H2(x)

2H2
0(x)

,

plotted using the software WOLFRAM MATHEMATICA 12, on the interval
(
x0, 1

2
)

is shown in
Figure 3. This implies that α∗ < 3.1 . . .

0.1 0.2 0.3 0.4 0.5

-3

-2

-1

1

2

Figure 2. The graph of the function G2(x) for x ∈
(
0, 1

2
)
.
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0.1 0.2 0.3 0.4 0.5

3.2

3.4

3.6

3.8

4.0

Figure 3. The graph of the function G3(x) for x ∈
(

x0, 1
2
)
.

Remark 4. When n = 3, the inequality (17) can be concretely written as

P3,x(α) = −
(

ln
1 + x

x
− 1

1 + x

)4

α3 +
6

x(x + 1)2

(
ln

1 + x
x
− 1

1 + x

)2

α2

−
4
(
3x2 + 4x + 1

)
ln 1+x

x − 12x− 1
x2(x + 1)4 α +

2
(
6x2 + 4x + 1

)
x3(x + 1)4 > 0

for x > 0. This implies that the polynomial P3,x(α) of the variable α has at least one positive zero;
that is, the set Z3(x) in x ∈ (0, ∞) is not empty.

Remark 5. For given n ≥ 1, if Zn(x) in x ∈ (0, ∞) is not empty, then all the positive zeros of the
polynomial Pn,x(α) are bounded using

Un(x) = min

{
max

{
1,

n−1

∑
k=0

Bn+1,k+1(H0(x),H1(x), . . . ,Hn−k(x))
Bn+1,n+1(H0(x))

}
,

1 + max
{

Bn+1,n(H0(x),H1(x))
Bn+1,n+1(H0(x))

,
Bn+1,n−1(H0(x),H1(x),H2(x))

Bn+1,n+1(H0(x))
, . . . ,

Bn+1,k+1(H0(x),H1(x), . . . ,Hn−k(x))
Bn+1,n+1(H0(x))

, . . . ,
Bn+1,1(H0(x),H1(x), . . . ,Hn(x))

Bn+1,n+1(H0(x))

}}
.

In particular,

U1(x) = min
{

max
{

1,
B2,1(H0(x),H1(x))

B2,2(H0(x))

}
, 1 + max

{
B2,1(H0(x),H1(x))

B2,2(H0(x))

}}
= min

{
max

{
1,
H1(x)
H2

0(x)

}
, 1 +

H1(x)
H2

0(x)

}
= max

{
1,
H1(x)
H2

0(x)

}
=
H1(x)
H2

0(x)

for x ∈ (0, ∞), which coincides with the result in (20).

Remark 6. In [16], it was established numerically that α∗ = 2.2 . . . See also the paper [14].

4. A Closed-Form Formula of the nth Derivative of
(
1 + 1

x
)αx

In this section, we present an alternative formula for the nth derivative of the power-
exponential function hα(x) =

(
1 + 1

x
)αx.
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Theorem 4. For n ≥ 0, the nth derivative of the function hα(x) =
(
1 + 1

x
)αx for α ∈ R can be

computed using

h(n)α (x)
hα(x)

=
n!

(1 + x)n

n

∑
k=0

〈−α〉n−k
(n− k)!

k

∑
j=0

(
1 +

1
x

)j

×
{

j

∑
`=0

(−1)`α`x`
`

∑
p=0

[
j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

j− `− q

)]
(ln x)`−p

(`− p)!

}

×
{

k−j

∑
`=0

α`(1 + x)`
`

∑
p=0

[
k−j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

k− j− `− q

)]
[ln(1 + x)]`−p

(`− p)!

}
,

(21)

where s(q + p, p) denotes the Stirling numbers of the first kind and

〈z〉n =
n−1

∏
k=0

(z− k) =

{
z(z− 1) · · · (z− n + 1), n ≥ 1
1, n = 0

stands for the falling factorial of the number z ∈ C.

Proof. The function hα(x) in (1) can be rewritten as

hα(x) = (1 + x)α(1+x)x−αx(1 + x)−α, α ∈ R, x 6= 0.

In [4] (Theorem 3), it was obtained that

[
(1 + x)α(1+x)](n) = n!(1 + x)α(1+x)−n

×
n

∑
k=0

αk(1 + x)k
k

∑
j=0

[
n−k

∑
q=0

s(q + j, j)
(q + j)!

(
j

n− k− q

)]
[ln(1 + x)]k−j

(k− j)!
. (22)

Replacing 1 + x with x in (22) yields

(
xαx)(n) = n!xαx−n

n

∑
k=0

αkxk
k

∑
j=0

[
n−k

∑
q=0

s(q + j, j)
(q + j)!

(
j

n− k− q

)]
(ln x)k−j

(k− j)!
. (23)

See also [8] (pp. 139–140, Example), [9] (p. 8), and the papers [10–12]. Therefore, making
use of Formulas (22) and (23), we obtain

(
x−αx)(j)

=
j!

xαx+j

j

∑
`=0

(−1)`α`x`
`

∑
p=0

[
j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

j− `− q

)]
(ln x)`−p

(`− p)!

and

[
(1 + x)α(1+x)](k−j)

= (k− j)!(1 + x)α(1+x)−(k−j)
k−j

∑
`=0

α`(1 + x)`

×
`

∑
p=0

[
k−j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

k− j− `− q

)]
[ln(1 + x)]`−p

(`− p)!
.

Consequently, we arrive at

h(n)α (x) =
n

∑
k=0

(
n
k

)[
x−αx(1 + x)α(1+x)](k)[(1 + x)−α](n−k)

=
n

∑
k=0

(
n
k

)
〈−α〉n−k

(1 + x)α+(n−k)

k

∑
j=0

(
k
j

)
(x−αx)(j)[(1 + x)α(1+x)](k−j)
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=
n

∑
k=0

(
n
k

)
〈−α〉n−k

(1 + x)α+(n−k)

k

∑
j=0

(
k
j

)
j!

xαx+j (k− j)!(1 + x)α(1+x)−(k−j)

×
{

j

∑
`=0

(−1)`α`x`
`

∑
p=0

[
j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

j− `− q

)]
(ln x)`−p

(`− p)!

}

×
k−j

∑
`=0

α`(1 + x)`
`

∑
p=0

[
k−j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

k− j− `− q

)]
[ln(1 + x)]`−p

(`− p)!

= hα(x)
n!

(1 + x)n

n

∑
k=0

〈−α〉n−k
(n− k)!

k

∑
j=0

(
1 +

1
x

)j

×
{

j

∑
`=0

(−1)`α`x`
`

∑
p=0

[
j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

j− `− q

)]
(ln x)`−p

(`− p)!

}

×
k−j

∑
`=0

α`(1 + x)`
`

∑
p=0

[
k−j−`

∑
q=0

s(q + p, p)
(q + p)!

(
p

k− j− `− q

)]
[ln(1 + x)]`−p

(`− p)!
.

The proof of Theorem 4 is, thus, complete.

Remark 7. Since
(1 + x)αx = (1 + x)α(1+x)(1 + x)−α

and
xα(1+x) = xαxxα,

by virtue of Leibnitz’s rule for differentiation and with the help of (22) and (23), we can easily
compute the nth derivatives of the power-exponential functions (1 + x)αx and xα(1+x) using

[(1 + x)αx](n) = n!(1 + x)αx−n
n

∑
k=0

〈−α〉n−k
(n− k)!

k

∑
`=0

α`(1 + x)`

×
`

∑
j=0

[
k−`
∑
q=0

s(q + j, j)
(q + j)!

(
j

k− `− q

)]
[ln(1 + x)]`−j

(`− j)!
(24)

and

[
xα(1+x)](n) = n!xα(1+x)−n

n

∑
k=0

〈α〉n−k
(n− k)!

k

∑
`=0

α`x`

×
`

∑
j=0

[
k−`
∑
q=0

s(q + j, j)
(q + j)!

(
j

k− `− q

)]
(ln x)`−j

(`− j)!
(25)

respectively.

Remark 8. In theory, comparing coefficients of αk in (21) with corresponding ones in (13) for
0 ≤ k ≤ n, we can derive a closed-form formula of partial Bell polynomials

Bn,k(H0(x),H1(x), . . . ,Hn−k(x))

for n ≥ k ≥ 0. In practice, it seems to be complicated to carry out this idea.

Remark 9. Making use of the formula

1
k!

(
∞

∑
m=1

am
vm

m!

)k

=
∞

∑
n=k

Bn,k(a1, a2, . . . , an−k+1)
vn

n!
, k ≥ 0



Fractal Fract. 2023, 7, 397 11 of 15

listed in [8] (p. 133) yields

Bn+k,k(a1, a2, . . . , an+1) =

(
n + k

k

)
lim
v→0

dn

d vn

[
∞

∑
m=0

am+1
vm

(m + 1)!

]k

.

Taking

(a1, a2, a3, a4, . . . , an, . . . ) = (H0(x),H1(x),H2(x),H3(x), . . . ,Hn−1(x), . . . )

results in

Bn+k,k(H0(x),H1(x), . . . ,Hn(x)) =
(

n + k
k

)
lim
v→0

dn

d vn

[
∞

∑
m=0
Hm(x)

vm

(m + 1)!

]k

=

(
n + k

k

)
lim
v→0

dn

d vn

[
∞

∑
m=0

(∫ ∞

0

eu−1− u
eu um−1 e−xu d u

)
vm

(m + 1)!

]k

=

(
n + k

k

)
lim
v→0

dn

d vn

{∫ ∞

0

eu−1− u
eu

[
∞

∑
m=0

um−1 vm

(m + 1)!

]
e−xu d u

}k

=

(
n + k

k

)
lim
v→0

dn

d vn

[∫ ∞

0

eu−1− u
u

euv−1
uv

e−(x+1)u d u
]k

=

(
n + k

k

)
lim
v→0

dn

d vn

[∫ ∞

0

eu−1− u
u

(∫ e

1
θuv−1 d θ

)
e−(x+1)u d u

]k

.

This is an alternative possibility to derive a closed-form formula of partial Bell polynomials
Bn,k(H0(x),H1(x), . . . ,Hn−k(x)) for n ≥ k ≥ 0 and x > 0.

5. A Closed-Form Formula of Bn,k(H0(x),H1(x), . . . ,Hn−k(x))

In this section, we present a closed-form and explicit formula of the partial Bell
polynomials Bn,k(H0(x),H1(x), . . . ,Hn−k(x)) for n ≥ k ≥ 0.

Theorem 5. For n ≥ k ≥ 0 and x > 0, we have

Bn,k(H0(x),H1(x), . . . ,Hn−k(x))

= (−1)n−kn!
k

∑
q=0

1
q!

[
ln
(

1 +
1
x

)
− 1

1 + x

]q

∑
r+t=k−q

(−1)t ∑
`+m=n−q

Q(r, t; `, m)

x`−r(1 + x)m−t , (26)

where

Q(r, t; `, m) =

[
r

∑
σ=0

(−1)σ

(r− σ)!

`−r

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

`− r− τ

)]
∑

i+j=t

1
j! ∑

λ+µ=m

1
(µ− j)!

×
[

i

∑
σ=0

(−1)σ

(i− σ)!

λ−i

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

λ− i− τ

)][ j

∑
p=0

(−1)p
( j

p)

(µ−p
µ−j)

s(µ− p, j− p)

]
. (27)

Proof. By virtue of the identities (5), (6), and (4) in sequence, we acquire

Bn,k(H0(x),H1(x),H2(x), . . . ,Hn−k(x))

=
k

∑
q=0

(
n
q

)
Hq

0(x)Bn−q,k−q(0,H1(x),H2(x), . . . ,Hn−k(x))
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=
k

∑
q=0

(
n
q

)
Hq

0(x)Bn−q,k−q

(
0,

0!
x
− 0!

1 + x
− 1!

(1 + x)2 ,
1!
x2 −

1!
(1 + x)2

− 2!
(1 + x)3 , . . . ,

(n− k− 1)!
xn−k − (n− k− 1)!

(1 + x)n−k −
(n− k)!

(1 + x)n−k+1

)
=

k

∑
q=0

(
n
q

)
Hq

0(x) ∑
r+t=k−q

∑
`+m=n−q

(
n− q
`

)
B`,r

(
0,

0!
x

,
1!
x2 , . . . ,

(`− r− 1)!
x`−r

)

× Bm,t

(
0,− 0!

1 + x
− 1!

(1 + x)2 , . . . ,− (m− t− 1)!
(1 + x)m−t −

(m− t)!
(1 + x)m−t+1

)
=

k

∑
q=0

(
n
q

)
Hq

0(x) ∑
r+t=k−q

∑
`+m=n−q

(
n− q
`

)
B`,r

(
0,

0!
x

,
1!
x2 , . . . ,

(`− r− 1)!
x`−r

)

× ∑
i+j=t

∑
λ+µ=m

(
m
λ

)
Bλ,i

(
0,− 0!

1 + x
,− 1!

(1 + x)2 , . . . ,− (λ− i− 1)!
(1 + x)λ−i

)

× Bµ,j

(
0,− 1!

(1 + x)2 ,− 2!
(1 + x)3 , . . . ,− (µ− j)!

(1 + x)µ−j+1

)
=

k

∑
q=0

(
n
q

)
Hq

0(x) ∑
r+t=k−q

∑
`+m=n−q

(−1)t
(

n− q
`

)
B`,r(0, 0!, 1!, . . . , (`− r− 1)!)

x`−r(1 + x)m−t

× ∑
i+j=t

∑
λ+µ=m

(
m
λ

)
Bλ,i(0, 0!, 1!, . . . , (λ− i− 1)!)Bµ,j(0, 1!, 2!, . . . , (µ− j)!).

Further making use of the Formulas (7) and (10), we arrive at

Bn,k(H0(x),H1(x),H2(x), . . . ,Hn−k(x))

=
k

∑
q=0

(
n
q

)
Hq

0(x) ∑
r+t=k−q

(−1)t ∑
`+m=n−q

[(
n− q
`

)
B`,r(0, 0!, 1!, . . . , (`− r− 1)!)

× ∑
i+j=t

∑
λ+µ=m

(
m
λ

)
Bλ,i(0, 0!, 1!, . . . , (λ− i− 1)!)

× Bµ,j(0, 1!, 2!, . . . , (µ− j)!)

]
1

x`−r(1 + x)m−t

= (−1)n−k
k

∑
q=0

(
n
q

)[
ln
(

1 +
1
x

)
− 1

1 + x

]q

∑
r+t=k−q

(−1)t

× ∑
`+m=n−q

{(
n− q
`

)[
`!

r

∑
σ=0

(−1)σ

(r− σ)!

`−r

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

`− r− τ

)]

× ∑
i+j=t

∑
λ+µ=m

(
m
λ

)[
λ!

i

∑
σ=0

(−1)σ

(i− σ)!

λ−i

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

λ− i− τ

)]

×
[(

µ

j

) j

∑
p=0

(−1)p
( j

p)

(µ−p
µ−j)

s(µ− p, j− p)

]}
1

x`−r(1 + x)m−t

= (−1)n−k
k

∑
q=0

n!
q!

[
ln
(

1 +
1
x

)
− 1

1 + x

]q

∑
r+t=k−q

(−1)t

× ∑
`+m=n−q

{[
r

∑
σ=0

(−1)σ

(r− σ)!

`−r

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

`− r− τ

)]

× ∑
i+j=t

∑
λ+µ=m

[
i

∑
σ=0

(−1)σ

(i− σ)!

λ−i

∑
τ=0

s(τ + σ, σ)

(τ + σ)!

(
σ

λ− i− τ

)]
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×
[

1
j!(µ− j)!

j

∑
p=0

(−1)p
( j

p)

(µ−p
µ−j)

s(µ− p, j− p)

]}
1

x`−r(1 + x)m−t .

The closed-form Formula (26) is derived. The proof of Theorem 5 is complete.

6. A Closed-Form Formula of the nth Derivative of (1 + x)α/x

Combining Formula (26) in Theorem 5 with Formula (13) in Theorem 1, we can easily
deduce an alternative closed-form and explicit formula of the power-exponential function
hα(x) =

(
1 + 1

x
)αx.

Corollary 1. For α ∈ R and x > 0, the nth derivative of the power-exponential function
hα(x) =

(
1 + 1

x
)αx can be computed using

h(n)α (x) = n!hα(x)
n

∑
k=0

αk
k

∑
q=0

1
q!

[
ln
(

1 +
1
x

)
− 1

1 + x

]q

× ∑
r+t=k−q

(−1)t ∑
`+m=n−q

Q(r, t; `, m)

x`−r(1 + x)m−t , (28)

where n ≥ 0 is an integer and Q(r, t; `, m) is defined using (27).

Finally, we derive a closed-form formula of the nth derivative of (1 + x)α/x for n ≥ 0,
x > 0, and α ∈ R.

Theorem 6. For α ∈ R and x > 0, we have the nth derivative formula

[
(1 + x)α/x](n) = (−1)nn!

(1 + x)α/x

xn

n

∑
κ=0

(
n− 1
κ − 1

) κ

∑
k=0

αk

xk

×
k

∑
q=0

1
q!

[
ln(1 + x)− x

1 + x

]q

∑
r+t=k−q

(−1)t ∑
`+m=κ−q

Q(r, t; `, m)

(1 + x)m−t , (29)

where n ≥ 0 is an integer and Q(r, t; `, m) is defined using (27).

Proof. It is clear that

(1 + x)α/x = hα

(
1
x

)
.

Therefore, by virtue of the Faà di Bruno Formula (3), the identity (4), and (11) in sequence,
we reveal that

[
(1 + x)α/x](n) = n

∑
κ=0

h(κ)α

(
1
x

)
Bn,κ

(
− 1!

x2 ,
2!
x3 , . . . , (−1)n−κ+1 (n− κ + 1)!

xn−κ+2

)
=

n

∑
κ=0

h(κ)α

(
1
x

)
(−1)n

xn+κ
Bn,κ(1!, 2!, . . . , (n− κ + 1)!)

=
n

∑
κ=0

(
n− 1
κ − 1

)
n!
κ!

(−1)n

xn+κ
h(κ)α

(
1
x

)
.

From the closed-form Formula (28), we deduce

h(κ)α

(
1
x

)
= κ!hα

(
1
x

) κ

∑
k=0

αkxκ−k
k

∑
q=0

1
q!

[
ln(1 + x)− x

1 + x

]q
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× ∑
r+t=k−q

(−1)t ∑
`+m=κ−q

Q(r, t; `, m)

(1 + x)m−t .

Consequently, we conclude

[
(1 + x)α/x](n) = (−1)n n!

xn hα

(
1
x

) n

∑
κ=0

(
n− 1
κ − 1

) κ

∑
k=0

αk

xk

×
k

∑
q=0

1
q!

[
ln(1 + x)− x

1 + x

]q

∑
r+t=k−q

(−1)t ∑
`+m=κ−q

Q(r, t; `, m)

(1 + x)m−t .

Formula (29) is, thus, proved. The proof of Theorem 6 is complete.

7. Conclusions

In this paper, via Formula (13) for the nth derivative of the power-exponential function(
1 + 1

x
)αx, we discovered the relation (16) for the nth derivative of the power-exponential

function
(
1 + 1

x
)αx, found a sufficient and necessary condition 0 < α ≤ α∗ ∈ (2, 3) in

Theorem 3 for the power-exponential function
(
1 + 1

x
)αx to be a Bernstein function, and

derived a closed-form formula (21) for the nth derivative of the power-exponential function(
1 + 1

x
)αx.

The derivative Formulas (24) and (25) are also useful and interesting.
Formula (26) in Theorem 5, Formula (28) in Corollary 1, and the closed-form For-

mula (29) in Theorem 6 are also our main results of this paper.
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