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Abstract: Let ∂T be a super-critical Galton–Watson tree. Recently, the first author computed almost
surely and simultaneously the Hausdorff dimensions of the sets of infinite branches of the boundary
of ∂T along which the sequence SnX(t)/SnX̃(t) has a given set of limit points, where SnX(t) and
SnX̃(t) are two branching random walks defined on ∂T. In this study, we are interested in the study
of the speed of convergence of this sequence. More precisely, for a given sequence s = (sn), we

consider Eα,s =
{

t ∈ ∂T : SnX(t)− αSnX̃(t) ∼ sn as n→ +∞
}

. We will give a sufficient condition

on (sn) so that Eα,s has a maximal Hausdorff and packing dimension.

Keywords: random walk; Hausdorff and packing dimensions; Galton–Watson tree

1. Introduction

Multifractal analysis is typically used to describe objects possessing some type of scale
invariance. It was developed around 1980, following the work of B. Mandelbrot [1,2] and,
since then, it has shown results of outstanding significative in theory and applications.
Specifically, consider a signal X : Rd −→ R, the multifractal analysis is a processing
method that allows the examination of the signal X using the characteristics of its pointwise
regularity, which are measured by using the exponent of pointwise regularity αX(x). More
precisely, consider the set

Eα =
{

x ∈ Rd, αX(x) = α
}

. (1)

The aim of the multifractal spectrum is to give a geometric and global account of the
variations in X’s regularity along x by computing the Hausdorff and packing dimensions
of the set Eα, for each α ∈ R. Especially, the multifractal analysis is a powerful tool to study
the time series since such series present complex statistical fluctuations that are associated
with long-range correlations between the dynamical variables present in these series, and
which obey the behavior usually described by the decay of the fractal power law.

Let ∂T be the boundary of the Galton–Watson tree T with defining element N. T is an
elementary model for the genealogy of a branching population. Roughly speaking, for a
given generation, each individual gives birth to a random number of children in the next
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generation independently of each other and all with the same distribution. For each t ∈ ∂T,
we may define the branching random walks SnX(t) and SnX̃(t) defined as

SnX(t) =
n

∑
k=1

Xt1···tk and SnX̃(t) =
n

∑
k=1

X̃t1···tk ,

(see definitions and notation in Section 2). Consider the level sets of the asymptotic behavior
of the sequence SnX(t)/SnX̃(t) , that is,

EX,X̃(α) =
{

t ∈ ∂T : lim
n→∞

SnX(t)
SnX̃(t)

= α
}

, (2)

where α ∈ R. It is natural to consider the multifractal analysis of EX,X̃(α) and then compute
the Hausdorff and packing dimensions of these sets [3].

we can show that there exists α1 such that EX,X̃(α1) is of full Hausdorff and packing
dimensions in the boundary of Galton–Watson tree [3,4] and then, it is natural to explore
the other branches over which SnX(t)/SnX̃(t) → α for α 6= α1 [5,6]. These level sets
EX,X̃(α) have been considered in many papers, see for instance [7–11] (the interested
readers might consult [4,12] for a general case). The size of EX,X̃(α) is related to the
Legendre transform of some function, this principle is known as the multifractal formalism.
In [13], the authors highlighted the link between the existence of auxiliary measures and
multifractal formalism. In particular, almost all papers cited above are associated with the
construction of Mandelbrot measures (see [14–16] for more details on these measures).

If X̃i = 1, 1 ≤ i ≤ N. Then, the set EX,X̃(α) will be denoted by EX(α) and it was
treated in [4,12]. More precisely, we define the functions

SX(q) =
N

∑
i=1

exp(qXi) and P̃(q) = log SX(q) = logE
( N

∑
i=1

exp(qXi)
)

and assume that P̃(q) < ∞ for all q ∈ R. In addition, assume that there exists γ > 1
such that E

(
SX(q)γ

)
< ∞, then the set IX =

{
α ∈ R : P̃∗(α) ≥ 0

}
is a non-empty convex

compact set [4,12] and, almost surely (a.s.), for all α ∈ R, we have EX(α) is non-empty if
and only if α ∈ IX. Moreover, in this case, we have

dim EX(α) = P̃∗(α),

where dim stands for Hausdorff dimension and P̃∗ is the Legendre transform of the
P̃ defined by f ∗(α) = infq∈R f (q) − q α, for any function f : R → R ∪ {∞} and any
α ∈ R [4,12]. Let α ∈ int(IX) and let s = {sn} be a positive sequence such that sn = o(n).
We set

Ẽα,s =
{

t ∈ ∂T : SnXn(t)− nα ∼ sn as n→ +∞
}

, (3)

where SnXn(t) − nα ∼ sn means that (SnXn(t) − nα)n and (sn)n are two equivalent se-
quences. Kahane and Fan in [17] computed almost surely, for given α, the Hausdorff
dimension of Ẽα,s when ∂T = {0, 1}N. They assume in addition that

√
n ln ln n = ◦(sn) and ηn = sn − sn−1 = o(1).

This assumption is verified, in particular, when sn = nβ with β ∈ (1/2, 1). Later, Attia
in [18,19], generalize this result by computing that almost surely, for all α ∈ int(IX), the
Hausdorff dimensions of the sets Ẽα,s. In the present work, we are interested in the study
of the set

Eα,s =
{

t ∈ ∂T : SnX(t)− αSnX̃(t) ∼ sn as n→ +∞
}

, (4)

for α belongs to the given set K. We will give a sufficient condition on the sequence (sn)
so that the set Eα,s has a maximal Hausdorff and packing dimension. The motivation to
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introduce this kind of set comes from the idea of studying the dimension of the set EX(α)
under the distance dX̃ defined as

dX̃ : (s, t) 7→ exp(−S|s∧t|X̃(s ∧ t)) (5)

for all s, t ∈ ∂T, where s ∧ t stands for the longest common prefix of s and t, and with the
convention that exp(−∞) = 0. This article is organized as follows: in the next section,
we will recall the definitions of the various notation used in the paper and give some
preliminary results. In Section 3, we will state and prove our main result concerning the
study of the Hausdorff and packing dimension of the set Eα,s. Finally, we mention that
the method used here is not a direct extension of that used in [18]. Indeed, in this paper,
we build simultaneously (on q and α) the Mandelbrot measures µs

q,α. This measure will be
carried on the set Eα,s and approximate from below the Hausdorff dimension.

2. Notation and Preliminaries Results
2.1. Hausdorff and Packing Dimensions

Let K ⊆ NN+
+ and let d be a metric on K making it σ-compact. For x ∈ K, we denote by

B(x, r) the closed ball centered at x and with radius r. In the next, for s > 0, we recall the
construction of the s-dimensional Hausdorff and packing measures denoted, respectively,
Hs and Ps. We set, for E ⊆ K,

Hs(E) = lim
δ→0+

inf
{

∑
i∈N

(diam(Ui)
s
}

and Ps
(E) = lim

δ→0+
sup

{
∑
i∈N

(diam(Bi)
s
}

,

where the infimum is taken over all the countable family (Ui)i∈N such that E ⊆ ⋃i Ui and
diam(Ui) ≤ δ and the supremum is taken over all the packings {Bi := B(xi, ri)}i∈N with
xi ∈ E and diam(Bi) ≤ δ. Then,

Ps(E) = lim
δ→0+

inf
{

∑
i∈N

Ps
(Ei)

}
,

where the infimum being taken over all the countable family (Ei)i∈N such that E ⊆ ⋃i Ei
and diam(Ei) ≤ δ. The Hausdorff and packing dimensions of E are defined, respectively,
by

dim E = inf{s > 0 : Hs(E) = 0} and DimE = inf{s > 0 : Ps(E) = 0}

with the convention inf ∅ = ∞. [20,21].
Let µ be a positive and finite Borel measure supported on the set K, then the lower

and upper Hausdorff dimensions of µ are defined, respectively, as follows [22]:

dim(µ) = ess infµ lim inf
r→0+

log µ(B(x, r))
log(r)

, dim(µ) = ess supµ lim inf
r→0+

log µ(B(x, r))
log(r)

and the lower and upper packing dimensions of µ are defined, respectively, as follows

Dim(µ) = ess infµ lim sup
r→0+

log µ(B(x, r))
log(r)

, Dim(µ) = ess supµ lim sup
r→0+

log µ(B(x, r))
log(r)

.

In addition, if dim(µ) = dim(µ) (resp. Dim(µ) = Dim(µ)), then the common
value will denoted by dim µ (resp. Dim(µ)). One says that µ is exactly dimensional if
dim µ = Dimµ.

2.2. Branching Random Walk on the Boundary of Galton–Watson Tree

Let (Ω,A,P) be a probability space and denote by E the expectation with respect to the
probability P. Let N denote the set of non-negative integers andL = (N, (X1, X̃1), (X2, X̃2), . . .)
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be a random vector with independent components taking values in N× (R× (R∗+))N+ .
Consider a family of independent copies of L :

{(Nu0, (Xu1, X̃u1), (Xu2, X̃u2), . . .)}u∈⋃n≥0 Nn
+

indexed by u = u1 . . . un, n ≥ 0, ui ∈ N∗+ (n = 0 corresponds to the empty sequence
denoted ∅). Consider T to be the Galton–Watson tree with defining elements {Nu} that is,

• ∅ ∈ T
• if u ∈ T and i ∈ N+ then ui ∈ T if and only if 1 ≤ i ≤ Nu, where ui is the concatenation

of u and i, and if ui ∈ T then u ∈ T.

Let u ∈ ⋃n≥0 Nn
+, then we will denote by T(u) to be the Galton–Watson tree rooted

at u with defining elements {Nuv}, v ∈ ⋃n≥0 Nn
+. We suppose that the Galton–Watson

tree T is supercritical and the probability of extinction is equal to 0, that is, E(N) > 1
and P(N ≥ 1) = 1. Let t = t1t2 · · · ∈ NN+

+ be an infinite word then, for n ≥ 0, we set
t|n = t1 · · · tn ∈ Nn

+ with the convention t|0 = ∅. If u ∈ Nn
+ for some integer n ≥ 0, then

the length of u is equal n and it is denoted by |u|. Hence, we denote by the cylinder [u] the
set of infinite words t = t1t2 · · · such that t||u| = u.

The space NN+
+ is endowed with the distance d defined as

d : (u, v) 7→ e− sup{|w|:u∈[w],v∈[w]},

with the convention exp(−∞) = 0. Let Tn = T∩Nn
+ and define the boundary of T as the

compact set
∂T =

⋂
n≥1

⋃
u∈Tn

[u].

For each (q, α, p) ∈ R3, let us consider

Sα(q) =
N

∑
i=1

exp
(
q(Xi − αX̃i)− P̃α(q)

)
and we suppose that for all q ∈ R there exists γ > 1 such that

E(SX(q)γ) +E(SX̃(q)
γ) < ∞. (6)

In particular, for all (q, α) ∈ R2, we have

∃ γ > 1,E(Sα(q)γ) < ∞ (7)

and

∀γ ∈ R, E
( N

∑
i=1

e−γX̃i
)
< ∞. (8)

In fact, Lemma 2.1 in [23], under (8), there exist 0 < β1 < β2 < 1 such that, almost
surely, for n large enough,

0 < log(1/β2) ≤ min
{SnX̃(u)

n
: u ∈ Tn

}
≤ max

{SnX̃(u)
n

: u ∈ Tn

}
≤ log(1/β1).

Hence,
{

t ∈ ∂T : SnX(t)/SnX̃(t) → α
}

=
{

t ∈ ∂T : Sn(X− αX̃)(t)/n → 0
}

.

Therefore, for each (q, α, p) ∈ R3, we introduce the functions

P̃α(q) = logE
( N

∑
i=1

exp
(
q(Xi − αX̃i))

)
and ψα(q, p) = P̃α(pq)− pP̃α(q).
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Assume (6) then K =
{

α ∈ R : P̃∗α (0) ≥ 0
}

is a non-empty compact interval. In
addition, almost surely, for every α ∈ R, the set EX,X̃(α) = {t ∈ ∂T : SnX(t)/SnX̃(t) →
α} 6= ∅ if and only if α ∈ K. In this case, we have

dim EX,X̃(α) = Dim EX,X̃(α) = P̃
∗
α (0) = inf

q∈R
P̃α(q).

It follows, if sn = o(n) and since Eα,s ⊂ EX,X̃(α), that, almost surely, for all α ∈ R,

dim Eα,s ≤ dim Eα ≤ DimEα ≤ P̃∗α (0) (9)

[3,12,23].

2.3. Mandelbrot Measures; Some Basic Properties

Let S = (N, (X1,X′1), (X2,X′2), . . .) be a random vector taking values in N+ × (R×
R∗+)N+ . Assume that the random variable N satisfies the assumptions above and suppose
in addition 

E
(

∑N
i=1 X

′
i exp(X′i)

)
< 0,

E
(

∑N
i=1 exp(X′i)

)
= 1,

E
((

∑N
i=1 exp(X′i)

)
log+

(
∑N

i=1 exp(X′i)
))

< ∞

, (10)

and

E
( N

∑
i=1
|Xi| exp(X′i)

)
< ∞. (11)

Let {(Nu, (Xu1,X′u1), (Xu2,X′u2), . . .)}u be a family of independent copies of S , defined
on a probability space (Ω′,A′,P′) and indexed by u = u1 · · · un, n ≥ 0, ui ∈ N+. Therefore,
(10) implies that with almost surely, for all n ≥ 1 and u ∈ Nn

+,

Y′p(u) = ∑
v∈Tp(u)

exp(Sn+pX
′(uv)− SnX

′(u)) (p ≥ 1)

converges to a positive limit Y′(u), while, if the condition is violated then the limit exists
and vanishes [14,24]. Therefore, using the family {(Nu0, (Xu1,X′u1), (Xu2,X′u2), . . .)}u, we
can associate the Mandelbrot measure defined on the σ-field C generated by the cylinders
of NN+

+ by

µ′([u]) =

{
exp(SnX

′(u))Y′(u) if u ∈ Tn

0 otherwise
,

and supported on ∂T. Moreover, since E(Y′) < ∞ [14,25], we have the following result.

Proposition 1. Almost surely, for µ′-almost every (a.e.) t ∈ ∂T, we have

1. lim
n→∞

SnX(t)
n

= E
( N

∑
i=1

Xi exp(X′i)
)

.

2. lim sup
n→∞

log Y′(t|n)
−n

≤ 0.

3. lim sup
n→∞

log Y′(t|n)
−n

≤ 0 and lim sup
n→∞

log µ′([t|n])
−n

≤ −E
( N

∑
i=1

X′i exp(X′i)
)

.

Assume that E(
∣∣∑N

i=1 exp(X′i)
∣∣γ) < ∞ for some γ > 1. Then, under the property

E(Y′ log+ Y′) < ∞ ( in particular when E(Y′h) < ∞ for some h > 1), we obtain the next
result [14,25]. For more details on the multifractal analysis of Mandelbrot measures, the
reader is referred to [10,11,16].
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Proposition 2. Almost surely, for µ′-almost every t ∈ ∂T,

lim inf
n→∞

log µ′([t|n])
−n

≥ −E
( N

∑
i=1

X′i exp(X′i)
)

.

2.4. Preliminaries Results

In the following, we give a useful lemma that generalizes Lemma 2.11 in [4]. This
result may be used, in particular, in the proof of Proposition 3.

Lemma 1. Let, for k ≥ 1, the function fk : C −→ C and (N, W1, W2, . . .) be a random vector
taking values in N+ ×CN+ and such that ∑N

i=1 fk(Wi) is integrable and E
(

∑N
i=1 fk(Wi)

)
= 1.

Consider a sequence
{
(Nu, Wu1, Wu2, . . .)

}
u∈⋃n≥0 Nn

+
of independent copies of (N, W1, . . . , WN).

We define the sequence (Zn)n≥0 by Z0 = 1 and for n ≥ 1

Zn = ∑
u∈Tn

n

∏
k=1

fk(Wu|k ).

Let p ∈ (1, 2], there exists a constant Cp which depend only on p such that for all n ≥ 1

E(|Zn − Zn−1|p) ≤ CpE
(∣∣ N

∑
i=1

fn(Wi)
∣∣p) n−1

∏
k=1

E
( N

∑
i=1
| fk(Wi)|p

)
.

Proof. For n ≥ 1 we have

Zn − Zn−1 = ∑
u∈Tn−1

n−1

∏
k=1

fk(Wu|k )
( Nu

∑
i=1

fn(Wui)− 1
)

. (12)

Now, for n ≥ 1, letFn = σ
{
(Nu, Wu1, . . .) : |u| ≤ n− 1

}
and letF0 be the trivial sigma-

field. For u ∈ Tn−1, we set Bu(q) = ∑Nu
i=1 fn(Wui). In fact, the random variables (Bu(q)−

1), u ∈ Tn−1, are centered, independent, identically distributed (i.i.d.), and independent
of Fn−1. Hence, conditionally on Fn−1, we can apply Lemma 2.10 in [4] to the family{
(Bu(q)− 1)∏n−1

k=1 fk(Wu|k )
}

. Since Bu(q), u ∈ Tn−1 has the same distribution, then

E
(
|Zn − Zn−1|p

)
= E

(
E
(
|Zn − Zn−1|p | Fn−1

))
≤ 2p−1E

(
|B(q)− 1|p

)
E
(

∑
u∈Tn−1

n−1

∏
k=1
| fk(Wu|k )|

p
)

,

where B(q) stands for any of the identically distributed variables Bu(q). Using the indepen-
dence of the random vectors (Nu, Wu1, . . .) and the branching property, we obtain

E
(

∑
u∈Tn−1

n−1

∏
k=1
| fk(Wu|k )|

p
)

= E
[
E
(

∑
u∈Tn−2

n−2

∏
k=1
| fk(Wu|k ))|

p( Nu

∑
i=1
| fn−1(Wui)|p

)∣∣Fn−2

)]
= E

( N

∑
i=1
| fn−1(Wi)|p

)
E
(

∑
u∈Tn−2

n−2

∏
k=1
| fk(Wu|k )|

p
)

and then

E
(

∑
u∈Tn−1

n−1

∏
k=1
| fk(Wu|k )|

p
)
=

n−1

∏
k=1

E
( N

∑
i=1
| fk(Wi)|p

)
.
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Recall that, for r > 1, we have |x + y|r ≤ 2r−1(|x|r + |y|r), which implies that

E
(∣∣ Nu

∑
i=1

fn(Wui)− 1
∣∣p) ≤ 2p−1E

(∣∣∣ Nu

∑
i=1

fn(Wui)
∣∣∣p + 1

)
.

Since 1 =
(
E
( Nu

∑
1=1

fn(Wui)
))p
≤ E

∣∣∣ Nu

∑
i=1

fn(Wui)
∣∣∣p then, it follows from (Lemma 2.10)

in [4] that

E
(∣∣∣ Nu

∑
i=1

fn(Wui)− 1
∣∣∣p) ≤ 2pE

(∣∣ Nu

∑
i=1

fn(Wui)
∣∣p) = 2pE

(∣∣ N

∑
i=1

fn(Wi)
∣∣p).

Finally, we have

E
(∣∣Zn − Zn−1

∣∣p) ≤ 2pE
(∣∣ N

∑
i=1

fn(Wi)
∣∣p) n−1

∏
k=1

E
( N

∑
i=1
| fk(Wi)|p

)
.

We end this section with the Cauchy formula for holomorphic functions, which will
be useful in Propositions 5 and 6.

Definition 1. Let D ⊆ Cd is an open polydisc that is D = D1 × · · · × Dd, where Di is an open
disc of C for all i = 1, . . . , d. We denote D(ζ, r), the polydisc with center ζ = (ζ1, . . . , ζd), and
radius r = (r1, . . . , rd). The set ∂D = ∂D1 × · · · × ∂Dd is the distinguished boundary of the
polydisc D.

Let f be a continuous function on ∂D, the boundary of the polydisc D = D(ζ, r) in Cd. The
integral of the function f on ∂D is defined as∫

∂D
f (ζ)dζ1 . . . dζd = (2iπ)dr1 . . . rd

∫
[0,1]d

f (ζ(θ))ei2πθ1 . . . ei2πθd dθ1 . . . dθd,

where the function ζ(θ) = (ζ1(θ), . . . , ζd(θ)) and, for j = 1, . . . , d, one has ζ j(θ) = ζ j + rje
i2πθj .

Theorem 1. Let D = D(a, r) be a polydisc in Cd and f be a holomorphic function in a neighbor-
hood of D. Then, for z ∈ D, one has

f (z) =
1

(2iπ)d

∫
∂D

f (ζ)dζ1 . . . dζd
(ζ1 − z1) . . . (ζd − zd)

.

It follows that

sup
z∈D(a,r/2)

| f (z)| ≤ 2d
∫
[0,1]d
| f (ζ(θ))|dθ1 . . . dθd. (13)

3. Main Result

In this section, we give our main result concerning the study of the size of the set Eα,s
(Theorem 2). Let us mention that the method used in [18] to compute the Hausdorff and
the packing dimension of the set Ẽα,s does not give results on dim Eα,s. Let s = (sn)n≥0 be
a positive sequence and for n ≥ 1, ηn = sn − sn−1. Assume

sn = o(n), ηn = o(1) (14)
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and there exist εn → 0 such that

∑
n≥1

exp
(
− ε

n

∑
k=1

εk η2
k

)
< +∞, ∀ε > 0. (15)

In particular, we can choose for n ≥ 1,

sn =
n

∑
k=1

1
kα

and εn = n−ξ (16)

such that α ∈ (0,
1
2
) and ξ > 0 such that 1− 2α− ξ > 0. We are now able to state our

main result.

Theorem 2. Let s = (sn)n≥1 be a positive sequence such that (14) and (15) are satisfied. Then,
a.s., for all α ∈ int(K),

dim Eα,s = Dim Eα,s = P̃∗α (0) = inf
q∈R
P̃α(q).

In fact, we have dim Eα,s ≤ dim Eα ≤ P̃∗α (0), this result also yields the packing
dimensions simultaneously (9). Therefore, we need to prove Theorem 2, a simultaneous
building, for v belonging to a suitable set J of Mandelbrot measures µs

v and computing
their Hausdorff and packing dimensions; it uses extensive techniques combining analytic
functions theory and large deviations estimates. However, our approach covers only levels
α ∈ int(K) and cannot be applied to cover the set Eα,s with α ∈ ∂K (see Section 4). In the
following, we will prove that µs

v

(
Eα,s

)
= 1 (Proposition 5). Moreover, almost surely, for all

v ∈ J , for µs
v-almost every t ∈ Eα,s, we have (Propositions 5 and 6)

dim µs
v := lim

n→∞

log(µs
v [t|n])

log(diam([t|n]))
= P̃∗α (0)

then, using (Theorem 4.2 in [20]), we get

dim Eα,s ≥ P̃∗α (0) = inf
q∈R
P̃α(q). (17)

which gives the desired result.

3.1. Construction of Inhomogeneous Mandelbrot Measures

We consider the set J =
{
(q, α) ∈ R× int(K) : P̃∗α (P̃ ′α(q)) > 0

}
. The same lines

as in (Proposition 3.2) in [23] show, for each α ∈ int(K), the existence of unique q := qα

such that P̃ ′α(q) = 0. Moreover, α ∈ int(K) 7−→ qα is analytic. This fact will be used in the
construction of the inhomogeneous Mandelbrot measures.

Lemma 2. Let K be a nontrivial compact set of J . Then, there exists a real number

1. 1 < pK < 2 such that for all p ∈ (1, pK] we have

sup
(q,α)∈K

ψα(q, pK) < 0.

2. p̃K > 1, for which

sup
(q,α)∈K

E
(∣∣∣ N

∑
i=1

eq(Xi−αX̃i)
∣∣∣ p̃K)

< ∞.
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Proof.

1. Let v = (q, α) ∈ J . One has
∂ψα

∂p
(q, 1+) < 0. Therefore, ∃ pv > 1, such that

ψα(q, pv) < 0 and, in a neighborhood Vv of v, one has

ψα′(q
′, pv) < 0, for all (q′, α′) ∈ Vv.

If K is a nontrivial compact of J , it is covered by a finite number of such Vvi . Finally,
we may take pK = inf

i
pvi . If 1 < p ≤ pK and supv∈K ψα(q, p) ≥ 0, there exists

(q0, α0) ∈ K such that

ψα0(q0, p) ≥ 0, and (q0, α0) ∈ Vvi , for some i.

Now, the function p 7→ ψα(q, p) is convex and ψα(q, 1) = 0. Since 1 < p ≤ pvi , we
have ψα0(q0, p) < 0, which is a contradiction.

2. Since the mapping v = (q, α) 7−→ E
((

∑N
i=1 eq(Xi−αX̃i)

) p̃K
)

is continuous over J and

K is a compact subset of J then, using (7), there exists γ := p̃K ∈ (1, 2] such that

sup
v∈K

E
(∣∣∣ N

∑
i=1

eq(Xi−αX̃i)
∣∣∣ p̃K)

< ∞.

In the following, for v = (q, α) ∈ J , we will construct an auxiliary measure µv. We
define, for k ≥ 1, ψk(v) as the unique real t, such that

P̃ ′α(t) = ηk. (18)

For u ∈ ⋃n≥0 Nn
+ and v ∈ J , we set for 1 ≤ i ≤ Nu,

V(ui, v) =
exp

(
qXui − qαX̃ui

)
E
( N

∑
i=1

exp
(
qXi − qαX̃i

)) = exp
(
qXui − qαX̃ui − P̃α(q)

)

and, for all n ≥ 0,

Ys
n(v, u) = ∑

v1···vn∈Tn(u)

n

∏
k=1

V
(
u · v1 · · · vk, ψ|u|+k(v)

)
.

In addition, Ys
n(v, ∅) will be denoted by Ys

n(v) and Ys
0(v, u) = 1.

It is not difficult to observe that
(
Ys

n(v, u)
)

n≥1 is a positive martingale such that
E
(
Ys

n(v, u)
)
= 1. Therefore, it converges almost surely and in L1 norm to a positive random

variable Ys(v, u) (see for instance [3,4,14,24,26] for a study of a similar sequence). In this
paper, we need the almost surely simultaneous convergence of

(
Ys

n(v, u)
)

n≥1 to positive
limits. This fact will be proven in the next proposition which generalizes Proposition 2.3
in [4] and Proposition 2 in [18]. The proof is almost the same lines as Proposition 2 in [18],
the difference is that in the next proposition, we will prove the convergence of

(
Ys

n(v, u)
)

n≥1
almost surely and simultaneously on (q, α) ∈ J and not only on q. However, this idea will
be considered during the hold of the paper (see the proof of Propositions 5 and 6) so we
keep the proof of Proposition 3 to the reader.

Proposition 3. Let K ⊂ J be a compact set and consider the continuous functions gn : v ∈
K 7→ Ys

n(v, u). We can find a real number pK ∈ (1, 2] such that g converge uniformly, a.s. and in
LpK norm, to a limit v ∈ K 7→ Ys(v, u). In particular, E(sup

v∈K
Ys(v, u)pK ) < ∞. Furthermore,

Ys(·, u) is positive a.s.
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In addition, for all n ≥ 0, σ
(
{(Xu1, X̃u1), . . . , (XuNu , X̃uNu), u ∈ Tn}

)
and σ

(
{Ys(·, u), u ∈

Tn+1}
)

are independent, and the random functions Ys(·, u), u ∈ Tn+1, are independent copies of
Ys(·):= Ys(·, ∅).

It follows, using the branching property

Ys
n(v, u) =

N

∑
i=1

exp
(
qXui − qαX̃ui − P̃α(q)

)
Ys

n(v, ui)

that we can construct the inhomogeneous Mandelbrot measures µs
v.

Proposition 4. Almost surely, for all v ∈ J , we have

µs
v([u]) =

[ n

∏
k=1

exp
(

ψk(q)(Xu1 ...uk − αX̃u1 ...uk )− P̃α(ψk(q))
)]

Ys(v, u)

define a positive measure on the boundary of the Galton–Watson tree, where ψk is defined in (18).

The measure µs
v will be useful to estimate below the dimension of Eα,s.

3.2. Proof of Theorem 2

Theorem 2 is a direct consequence of the following two propositions. Their proofs are
developed in the next subsections.

Proposition 5. Almost surely, for all v := (qα, α) ∈ J ,

SnX(t)− αSnX̃(t) ∼ sn for µs
v-a.e. t ∈ ∂T.

Proposition 6. Almost surely, for all v ∈ J , for µs
v-a.e. t ∈ ∂T,

lim
n→∞

log Ys(v, t|n)
n

= 0.

Using Proposition 5, we deduce that a.s., for all v := (qα, α) ∈ J , µs
v

(
Eα,s

)
= 1. Fur-

thermore, a.s., for all v := (qα, α) ∈ J , for µs
v-a.e. t ∈ Eα,s, we have (Proposition 5 and 6)

dim µs
v := lim

n→∞

log(µs
v [t|n])

log(diam([t|n]))

= lim
n→∞

− 1
n

log
[ n

∏
k=1

exp
(

ψk(q)(Xt1 ...tk − αX̃t1 ...tk )− P̃α(ψk(q))
)]

Ys(v, t|n)

= lim
n→∞

− 1
n

n

∑
k=1

ψk(q)(Xt1 ...tk − αX̃t1 ...tk ) + P̃α(ψk(q))−
log Ys(v, t|n)

n

= P̃α(q) = P̃∗α (0).

We deduce the result from (Theorem 4.2 in [20]) and (9).

Example 1. Let p ∈ (0, 1). In this example, we suppose that X is random variable with Bernoulli
distribution, that is,

P(X = 1) = p = 1− P(X = 0).

Therefore, for t ∈ ∂T, the random walk SnX(t) should be interpreted as the covering number
of t by the family of cylinder [u] of generation k ≤ n with Xu = 1. Therefore, the result proven in
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this paper improves and covers the result in [17] which only proves the multifractal analysis for each
α a.s.

Example 2. In this example, we consider the branching random walk SnX(t) to be the branching
process itself, that is, X is the branching numbers N defined above assuming it is not constant.
Therefore, the natural branching random walk is denoted by

SnN(t) = Nt1 + Nt1t2 + · · ·+ Nt1···tn .

The result in this paper provides a geometric and large deviation description of the heterogeneity
of the birth process along different infinite branches.

3.3. Proof of Proposition 5

Let K ⊆ int(K) be a compact set and consider K = {(qα, α) : α ∈ K}, where qα is a
number such that P̃ ′α(qα) = 0. For n ≥ 1, ε > 0, v = (qα, α) ∈ K, and s = (sn)n≥1, we set

E1
v,s,n,ε =

{
t ∈ ∂T :

n

∑
k=1

Xt1···tk (t)− αX̃t1···tk (t)− ηk ≥ ε
n

∑
k=1

ηk

}
E−1

v,n,s,ε =
{

t ∈ ∂T :
n

∑
k=1

Xt1···tk (t)− αX̃t1···tk (t)− ηk ≤ −ε
n

∑
k=1

ηk

}
.

For λ ∈ {−1, 1}, suppose that we have shown

E
(

sup
v∈K

∑
n≥1

µs
v(Eλ

v,n,s,ε)
)
< ∞. (19)

Then, almost surely, for all α ∈ int(K), ε ∈ Q∗+ and λ ∈ {−1, 1}, we have

∑
n≥1

µs
v(Eλ

v,n,s,ε) < ∞. Whence, we obtain the desired result using the Borel–Cantelli lemma.

In the following, we will prove (19) for λ = 1 (the case λ = −1 is similar). Consider a
positive sequence θ = (θn) and v ∈ K one has

sup
v∈K

µs
α

(
E1

v,n,s,ε

)
≤ sup

v∈K
∑

u∈Tn

µs
v([u]) 1{

E1
v,n,s,ε

}(tu)

where tu is any point in the cylinder [u]. For simplicity, we will denote tu by t, then

sup
v∈K

µs
v

(
E1

v,n,s,ε

)
≤ sup

v∈K
∑

u∈Tn

µs
v [u]

n

∏
k=1

exp
(

θkXt1···tk − θkαX̃t1···tk − θkηk(1 + ε)
)

≤ sup
v∈K

∑
u∈Tn

n

∏
k=1

Ak(α, ω, θ, ε) Ys(v, u),

where
Ak(α, ω, θ, ε) := exp

(
(ψk(v) + θk)Xt1···tk − P̃α(ψk(v))− (θk + ψk(v))αX̃t1···tk − θkηk(1 + ε)

)
.

For v ∈ K, θ = (θn) and n ≥ 1, we set

Fs
n(v, θ) = ∑

u∈Tn

n

∏
k=1

Ak(α, ω, θ, ε)Ys(u),

where
Ys(u) = sup

α∈K
Ys(v, u).
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There exists a neighborhood VK ⊂ C2 of K such that,

Γ(z, z′) =
E
(

∑N
i=1(Xi − z′X̃i) exp(zXi − zz′X̃i)

)
E
(

∑N
i=1 exp(zXi − zz′X̃i)

) and ψk(ω),

(k ≥ 1), are well defined for all ω = (z, z′) ∈ VK. For ε > 0 and n ≥ 1, we define

Fs
n(ω, θ) = ∑

u∈Tn

n

∏
k=1

exp
(
(ψk(ω) + θk)Xu|k − θkΓ(z, z′)− θkηk(1 + ε)

)
×

E
( N

∑
i=1

exp
(
ψk(ω)Xi

))−1
Ys(u).

Proposition 7. There exist a positive constant CK, a positive sequence θ, and a neighborhood
V ⊂ VK of K, such that for all ω = (z, z′) ∈ V, for all n ∈ N∗,

E(|Fs
n(ω, θ)|) ≤ CKe−bn/2

where bn = ε
4 ∑n

k=1 εkη2
k and (εn)n is the sequence defined in (15).

Proof. Assume, we have proved for all v ∈ K, that

E
(

Fs
n(v, θ)

)
≤ CKe−bn , (20)

where θ = (θn) is a positive sequence and CK is a positive constant. Then, we can find a
neighborhood Vv ⊂ VK of v such that E(|Fs

n(ω, θ)|) ≤ CKe−bn/2, for all ω = (z, z′) ∈ Vv.
By extracting, from

⋃
v∈K

Vv , a finite covering of K, we construct a neighborhood V ⊂ VK of

K such that
E(|Fs

n(ω, θ)|) ≤ CKe−bn/2.

Now, we will prove (20). First, remark, for any positive sequence θ = (θn), we have

E
(

Fs
n(v, θ)

)
=

n

∏
k=1

E
( N

∑
i=1

exp
(
(ψk(v) + θk)Xi − (θk + ψk(v))αX̃i

)
×

exp
(
− P̃α(ψk(v))− θkηk(1 + ε)

)
E(Ys(u))

≤ C ′K
n

∏
k=1

exp
(
P̃α(ψk(v) + θk)− P̃α(ψk(v))− θkηk(1 + ε)

)
,

where, using Proposition (3), we have

C ′K = E
(
Ys(u)

)
= E

(
Ys(∅)

)
< ∞,

∀u ∈ ⋃n≥0 Nn
+. Notice that ηk = o(1), therefore, we can find a compact neighborhood

K′ of K such that ψk(v) ∈ K′, for all ∀ k ≥ 1 and ∀ v ∈ K. Now, consider the function
h : θ 7→ P̃α(ψk(v) + θ), then a direct application of the Taylor expansion with integral rest
of order 2 of h at 0, we obtain

h(θ) = h(0) + θh′(0) + θ2
∫ 1

0
(1− t)h′′(tθ)dt,

where h′′(tθ) ≤ mK = sup
t∈[0,1]

sup
v∈K

h′′(tθ). Therefore,

P̃α(ψk(v) + θk)− P̃α(ψk(v))− θkP̃ ′α(ψk(v)) ≤ θ2
k mK, (k ≥ 1).
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Recall that P̃ ′α(ψk(v)) = ηk. Then

E
(

Fs
n(v, θ)

)
≤ C ′K

n

∏
k=1

exp
(
P̃α(ψk(v) + θk)− P̃α(ψk(v))− θkηk(1 + ε)

)
≤ C ′K

n

∏
k=1

exp
(
− θkηkε + θ2

k mK

)
.

since θ is an arbitrarily positive sequence, we may consider θk = εkηk. Hence, we get

E
(

Fs
n(v, θ)

)
≤ C ′K

n

∏
k=1

exp
(
− εkη2

k (ε− εkmK)
)

.

Since the sequence (εk) tends to zero, we have ε − εkmK >
ε

2
, for k large enough.

Then, we obtain (20) with bn = ε
2 ∑n

k=1 εkη2
k .

With probability 1, the mapping ω ∈ V 7−→ Fs
n(ω, θ) is analytic. Fix ρ > 0 and a

closed polydisc D(ω0, 2ρ) ⊂ V, ρ > 0. Using Theorem 1, we obtain

sup
ω∈D(ω0,ρ)

∣∣Fs
n(ω, θ)

∣∣ ≤ 4
∫
[0,1]2

∣∣Fn(ζ(t), θ)
∣∣dt,

where, for t = (t1, t2) ∈ [0, 1]2, ζ(t) = ω0 + 2ρ(ei2πt1 , ei2πt2). Furthermore, Fubini’s
Theorem gives

E
(

sup
ω∈D(ω0,ρ)

|Fs
n(ω, θ)|

)
≤ E

(
4
∫
[0,1]2
|Fs

n(ζ(t), θ)|dt
)
≤ 4

∫
[0,1]2

E|Fs
n(ζ(t), θ)|dt

≤ 4CKe−bn/2.

Finally, we get

E
(

sup
v∈K

µs
v

(
E1

α,n,s,ε
))
≤ 4CKe−bn/2

and, then, under (15), we get (19) as required.

3.4. Proof of Propostion 6

Let K ⊂ J be a compact set and a > 1. We define the following set

E+
n,a =

{
t ∈ ∂T : Ys(v, t|n) > an} and E−n,a =

{
t ∈ ∂T : Ys(v, t|n) < a−n},

where v := (q, α) ∈ K and n ≥ 1. We suppose, for some ν̃ > 0 and C > 0, that

sup
v∈K

µs
v(E) < Ce−nν̃/2, (21)

for all E ∈ {E+
n,a, E−n,a}. This implies that E

(
sup
v∈K

∑
n≥1

µs
v(E)

)
< ∞ and then a.s., for each

q ∈ K and E ∈ {E+
n,a, E−n,a} we have ∑n≥1 µs

v(E) < ∞. Therefore, using the Borel–Cantelli
lemma, we get, for µs

v-a.e. t ∈ ∂T and n, which is large enough,

− log a ≤ lim inf
n→∞

1
n

log Ys(v, t|n) ≤ lim sup
n→∞

1
n

log Ys(v, t|n) ≤ log a,

which gives the desired result by letting a tend to 1.
In the next, we will only prove (21) for E = E+

n,a (the case E = E−n,a is similar). First
we have,
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sup
v∈K

µs
v(E+

n,a) = sup
v∈K

∑
u∈Tn

µs
v([u])1{Ys(v,u)>an

}
= sup

v∈K
∑

u∈Tn

Ys(v, u)
n

∏
k=1

exp
(

ψk(v)(Xu|k − αX̃u|k )− P̃α(ψk(v))
)

1{
Ys(v,u)>an

}
≤ sup

v∈K
∑

u∈Tn

(Ys(v, u))1+ν
n

∏
k=1

exp
(

ψk(v)(Xu|k − αX̃u|k )− P̃α(ψk(v))
)

a−ν

≤ sup
v∈K

∑
u∈Tn

Ys(u)1+ν
n

∏
k=1

exp
(

ψk(v)(Xu|k − αX̃u|k )− P̃α(ψk(v))
)

a−ν,

where Ys(u) = sup
v∈K

Ys(v, u) and ν > 0. For v ∈ K and ν > 0, we set

Hn(v, ν) = ∑
u∈Tn

Ys(u)1+ν
n

∏
k=1

exp
(

ψk(v)(Xu|k − αX̃u|k )− P̃α(ψk(v))
)

a−ν.

We can find a neighborhood UK ⊂ C2 of K such that for all ω = (z, z′) ∈ UK, and
k ≥ 1

ψk(ω) is defined and E
( N

∑
i=1

eψk(ω)(Xi−z′X̃i)
)
6= 0,

so that, we may define, for ω = (z, z′) ∈ UK, the mapping

Hn(ω, ν) =
[ n

∏
k=1

E
( N

∑
i=1

exp
(
ψk(z)(Xi − z′X̃i)

))−1]
×

∑
u∈Tn

Ys(u)1+ν
n

∏
k=1

exp
(

ψk(z)(Xu|k − z′X̃u|k )
)

a−ν.

Moreover, we can find a neighborhood V ⊂ C2 of K and a positive constant CK such
that, for all ω ∈ V, for all n ≥ 1,

E
(∣∣∣Hn(ω, pK − 1)

∣∣∣) ≤ CKa−n(pK−1)/2, (22)

where pK is the real defined in Proposition (3).
Now, almost surely, the mapping ω ∈ V 7−→ Hn(ω, ν) is analytic. Fix ρ > 0 and

D(ω0, 2ρ) ⊂ V. It follows, using Theorem 1, that

sup
ω∈D(ω0,ρ)

∣∣Hn(ω, pK − 1)
∣∣ ≤ 4

∫
[0,1]2

∣∣Hn(ζ(t), pK − 1)
∣∣dt,

where ζ(t) = ω0 + 2ρ(ei2πt1 , ei2πt2), for t = (t1, t2) ∈ [0, 1]2. Therefore, by Fubini’s
Theorem, we obtain

E
(

sup
ω∈D(ω0,ρ)

|Hn(ω, pK − 1)|
)
≤ E

(
4
∫
[0,1]2
|Hn(ζ(t), pK − 1)|dt

)
≤ 4

∫
[0,1]2

E|Hn(ζ(t), pK − 1)|dt

≤ 4CKa−n(pK−1)/2.

Since a > 1 and pK − 1 > 0, we get (21).
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Now, turn back to prove the Equation (22). For ω ∈ UK and ν > 0, we set

H̃1(ω, ν) =
∣∣∣E( N

∑
i=1

exp
(
z(Xi − z′X̃i)

))∣∣∣−1
E
( N

∑
i=1

∣∣∣ exp
(
z(Xi − z′X̃i)

)∣∣∣) a−ν.

Let v = (q, α) ∈ K. Since E(H̃1(v, ν)) = a−ν, there exists a neighborhood Vv ⊂ UK of
v such that

E
(∣∣H̃1(z, ν)

∣∣) ≤ a−ν/2,

for all z ∈ Vq. Therefore, from
⋃

v∈K
Vv, we can extract a finite covering of K and then find

a neighborhood V ⊂ UK of K such that E
(∣∣H̃1(ω, ν)

∣∣) ≤ a−ν/2, for all ω = (z, z′) ∈ V.

Without loss of generality, since ηk = o(1), we can assume that

E
(∣∣H̃1(ωk, ν)

∣∣) ≤ a−ν/2 (k ≥ 1),

where ωk = (ψk(ω), z′). Therefore,

E
(∣∣Hn(ω, ν)

∣∣) =
[ n

∏
k=1

∣∣∣E( N

∑
i=1

exp
(
ψk(z)(Xi − z′X̃i

))∣∣∣−1]
×

E
(∣∣∣ ∑

u∈Tn

Ys(u)1+ν
n

∏
k=1

exp
(

ψk(z)(Xu|k − z′X̃u|k )
)∣∣∣) a−nν

≤
[ n

∏
k=1

∣∣E( N

∑
i=1

exp
(
ψk(z)(Xi − z′X̃i)

))∣∣−1
]
×

E
(

∑
u∈Tn

Ys(u)1+ν
n

∏
k=1

∣∣∣ exp
(

ψk(z)(Xu|k − z′X̃u|k )
)∣∣∣) a−nν.

According to Proposition 3, we can find a real 1 < pK ≤ 2 such that

E
(
Ys(u)pK

)
= E

(
Ys(∅)pK

)
= CK < ∞,

for all u ∈ ⋃n≥0 Nn
+. Since σ

(
{(Xu1, X̃u1), . . . , (XuNu X̃uNu)), u ∈ Tn−1}

)
and σ

(
{Ys(·, u), u ∈

Tn}
)

are independent for all n ≥ 1, then, for ν = pK − 1, we obtain

E
(∣∣∣Hn(ω, pK − 1)

∣∣∣) ≤
[ n

∏
k=1

∣∣E( N

∑
i=1

exp
(

ψk(z)(Xi − z′X̃i)
))∣∣−1

]
·

n

∏
k=1

E
( N

∑
i=1

∣∣∣ exp
(

ψk(z)(Xi − z′X̃i)
)∣∣∣)n

CKa−n(pK−1)

= CK

n

∏
k=1

E
(∣∣H̃1(ωk, pK − 1)

∣∣) ≤ CKa−n(pK−1)/2,

which gives the desired result.

4. Perspective and Concluding Remarks

1. As mentioned in (16), we can choose the sequence (sn) as follows:

sn := sn,β =
n

∑
k=1

1
kβ

with β ∈ (0, 1/2).
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Therefore, using Theorem 2 for each β ∈ (0, 1/2) such that (14) and (15) are satisfied,
we have almost surely for all α ∈ int(K),

dim Eα,s = Dim Eα,s = P̃∗α (0) = inf
q∈R
P̃α(q). (23)

That is, Eα,s has a maximal Hausdorff and packing dimension. It is natural to ask
whether it is possible to have the dimension uniformly on β. For this, we first define
ηn(β) = sn,β − sn−1,β and let us consider the set Λs such that

Λs ⊆
{

β ∈ R, such that (sn,β) satisfies (14) and (15)
}

.

Assume, for k ≥ 1, that
η̃k = inf

γ∈Λs
ηk(β) > 0

and we suppose that there exists a sequence εn → 0 such that

∑
n≥1

exp
(
−

n

∑
k=1

εkη̃2
k

)
< +∞.

our approach gives the result in this context and we can prove that, under the previous
assumptions, almost surely, for all α ∈ int(K) and all β ∈ Λs, we have the result
mentioned in (23). This result generalizes Theorem 1.3 in [23].

2. Our approach gives results for the sequences (sn) satisfying (14) and (15). It is natural
to ask, for a given sequence sn = ◦(n), what is the size of the set Eα,s. In particular, it
is possible to obtain

(a) DimEα,s = 0 with Eα,s 6= ∅.
(b) dim Eα,s 6= DimEα,s.

3. As mentioned in the introduction, the set EX,X̃(α) 6= ∅ if and only if α ∈ K [3]. It
remains then the nontrivial question of whether the approach introduced in this
paper can be used to study the sets Eα,s for α ∈ ∂K. Since, for α ∈ ∂K, there is no
qα in general, such that P̃ ′α(qα) = 0, then the method used in this paper cannot be
used to compute the Hausdorff and packing dimension of the set Eα,s in this case.
However, it would be possible to use a concatenation method used in [12] to construct
a Mandelbrot measure carried by Eα,s and with dimension P̃∗α (0). In this case, it is
possible to obtain P̃∗α (0) and then dim Eα,s = DimEα,s = 0 but the set Eα,s 6= ∅.
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