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Fractional-order differential and integral operators and fractional differential equa-
tions have extensive applications in the mathematical modelling of real-world phenomena
which occur in scientific and engineering disciplines such as physics, chemistry, biophysics,
biology, medical sciences, financial economics, ecology, bioengineering, control theory,
signal and image processing, aerodynamics, transport dynamics, thermodynamics, vis-
coelasticity, hydrology, statistical mechanics, electromagnetics, astrophysics, cosmology,
and rheology. Fractional differential equations are also regarded as a better tool for the
description of hereditary properties of various materials and processes than the correspond-
ing integer-order differential equations. The Special Issue “Advances in Boundary Value
Problems for Fractional Differential Equations” covers aspects of the recent developments
in the theory and applications of fractional differential equations, inclusions, inequalities,
and systems of fractional differential equations with Riemann–Liouville derivatives, Ca-
puto derivatives, or other generalized fractional derivatives subject to various boundary
conditions. In the papers published in this Special Issue, the authors study the existence,
uniqueness, multiplicity, and nonexistence of classical or mild solutions, the approximation
of solutions, and the approximate controllability of mild solutions for diverse models. I will
present these papers in the following, grouped according to their subject.

1. Equations and Systems of Equations with Sequential Fractional Derivatives

In paper [1], the authors investigate the differential equation

Dσn z(t) = Az(t) + f(t), t ∈ (0, T], (1)

with the initial conditions

Dσk z(0) = zk, k = 0, 1, . . . , n− 1, (2)

where the operator A : DA ⊂ Z → Z is linear and closed with its domain DA (a dense
set), Z is a Banach space, f : [0, T] → Z is a given function, and Dσk , k = 0, 1, . . . , n are
the Dzhrbashyan–Nersesyan fractional derivatives. For the set of numbers {αk}n

0 , with
αk ∈ (0, 1], k = 0, 1, . . . , n, they introduced the numbers σk = ∑k

j=0 αj − 1, k = 0, 1, . . . , n,
with the condition σn > 0. The fractional derivatives Dσk , k = 0, 1, . . . , n are given by
Dσ0z(t) = Dα0−1

t z(t), Dσk z(t) = Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), for k = 1, 2, . . . , n, where
Dβ

t is the Riemann–Liouville integral for β ≤ 0 and the Riemann–Liouville derivative
for β > 0. The Dzhrbashyan–Nersesyan fractional derivative Dσn is a generalization of
the Riemann–Liouville and Caputo fractional derivatives. The authors prove firstly the
existence and uniqueness of the k-resolving families of operators (for k = 0, . . . , n − 1)
for the homogeneous equation Dσn z(t) = Az(t), and then they give a criterion for the
existence and uniqueness of analytic k-resolving families, namely A belongs to a class of
operators denoted by A{αk}(θ0, a0). Different properties of the resolving families are also
studied, and a perturbation theorem for operators from A{αk}(θ0, a0) is presented. Then,
the authors prove the existence and uniqueness of a solution for problem (1),(2), where
f is continuous in the graph norm of A or it is a Hölderian function. As an application,
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they show the existence of a unique solution for an initial boundary value problem to a
fractional linearized model of viscoelastic Oldroyd fluid dynamics.

Paper [2] deals with a nonlinear coupled system of sequential fractional differen-
tial equations {

(cDq+1 +c Dq)x(t) = f(t, x(t), y(t)), t ∈ [0, 1],
(cDp+1 +c Dp)y(t) = g(t, x(t), y(t)), t ∈ [0, 1],

(3)

supplemented with the coupled multipoint and Riemann–Stieltjes integral boundary conditions

x(0) = 0, x′(0) = 0, x′(1) = 0,

x(1) = k
∫ ρ

0
y(s) dA(s) +

n−2

∑
i=1

αiy(σi) + k1

∫ 1

ν
y(s) dA(s),

y(0) = 0, y′(0) = 0, y′(1) = 0,

y(1) = h
∫ ρ

0
x(s) dA(s) +

n−2

∑
i=1

βix(σi) + h1

∫ 1

ν
x(s) dA(s),

(4)

where p, q ∈ (2, 3], cDκ denotes the Caputo fractional derivative of order κ ∈ {q, p},
0 < ρ < σi < ν < 1, f, g : [0, 1]×R×R→ R are continuous functions, k, h, k1, h1, αi, βi ∈ R,
for i = 1, 2, . . . , n− 2, andA is a function of bounded variation. The word sequential is used
in the sense that the operator cDq+1 +c Dq can be written as the composition of operators
cDq and D + I, where D is the usual differential operator and I is the identity operator.
Under some assumptions of the data of the problem, the authors prove the existence and
uniqueness of solutions for problem (3),(4) by applying the Leray–Schauder alternative
and the Banach contraction mapping principle.

2. Resonance Problems for Caputo Fractional Differential Equations

Paper [3] is concerned with the nonlinear boundary value problem for a fractional
differential equation of variable order at resonance{

cDu(t)
0+ x(t) = g(t, x(t)), t ∈ [0, T],

x(0) = x(T),
(5)

where cDu(t)
0+ is the Caputo derivative of variable order u(t) with u : [0, T] → (0, 1]

and g : [0, T] × R → R is a continuous function. This problem is at resonance, that
is, the corresponding linear homogeneous boundary value problem has non-trivial so-
lutions. The authors transform firstly problem (5) to an equivalent standard boundary
value problem at resonance with a fractional derivative of constant order by using some
generalized intervals and piece-wise constant functions. Then, by applying Mawhin’s
continuation theorem, they demonstrate the existence of at least one solution to (5).

In paper [4], the authors study the fractional differential equation in space Rn

cDα
0+u(t) = f(t, u(t),cDα−1

0+ u), t ∈ (0, 1), (6)

subject to the boundary conditions

u(0) = Bu(ξ), u(1) = Cu(η), (7)

where cDk
0+ denotes the Caputo fractional derivative of order k ∈ {α, α− 1}, ξ, η ∈ (0, 1),

α ∈ (1, 2], f : [0, 1]× R2n → Rn satisfies Carathéodory conditions, and B, C are n-order
nonzero square matrices. They prove the existence of solutions of problem (6),(7) by using
Mawhin coincidence degree theory.
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3. Approximations of Solutions for Caputo Fractional Differential Equations

Paper [5] is devoted to the Caputo fractional differential equation with variable coefficients

Dλ
x u(x) + c1(x)u′(x) + c0(x)u(x) = g(x), 0 < x < 1, (8)

with the boundary conditions

p0u(0)− q0u′(0) = b0, p1u(1) + q1u′(1) = b1, (9)

where λ ∈ (1, 2], Dλ
x is the Caputo fractional derivative of order λ, c1, c0, and g are

continuous functions, p0, p1, q0, q1 ≥ 0, and p0 p1 + p0q1 + q0 p1 6= 0. By using the shifted
Chebyshev polynomials of the first kind and the collocation method, the authors present
approximate solutions to problem (8),(9).

4. Systems of Fractional Differential Equations with p-Laplacian Operators

In paper [6], the authors investigate the system of fractional differential equations with
r1-Laplacian and r2-Laplacian operators Dγ1

0+

(
ϕr1

(
Dδ1

0+u(t)
))

= f
(
t, u(t), v(t), Iσ1

0+u(t), Iσ2
0+v(t)

)
, t ∈ (0, 1),

Dγ2
0+

(
ϕr2

(
Dδ2

0+v(t)
))

= g
(
t, u(t), v(t), Iς1

0+u(t), Iς2
0+v(t)

)
, t ∈ (0, 1),

(10)

supplemented with the uncoupled nonlocal boundary conditions

u(i)(0) = 0, i = 0, . . . , p− 2, Dδ1
0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(τ)) dH0(τ), Dα0
0+u(1) =

n

∑
k=1

∫ 1

0
Dαk

0+u(τ) dHk(τ),

v(j)(0) = 0, j = 0, . . . , q− 2, Dδ2
0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(τ)) dK0(τ), Dβ0
0+v(1) =

m

∑
k=1

∫ 1

0
Dβk

0+v(τ) dKk(τ),

(11)

where γ1, γ2 ∈ (1, 2], p, q ∈ N, p, q ≥ 3, δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], n, m ∈ N,
σ1, ς1, σ2, ς2 > 0, αi ∈ R, i = 0, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ α0 < δ1 − 1,
α0 ≥ 1, β j ∈ R, j = 0, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ β0 < δ2 − 1, β0 ≥ 1,
ϕrk (τ) = |τ|rk−2τ, rk > 1, k = 1, 2, the functions f, g : (0, 1)×R4

+ → R+ are continuous,
singular at t = 0 and/or t = 1, (R+ = [0, ∞)), Iκ0+ is the Riemann–Liouville fractional
integral of order κ (for κ = σ1, ς1, σ2, ς2), Dκ

0+ is the Riemann–Liouville fractional deriva-
tive of order κ (for κ = γ1, γ2, δ1, δ2, α0, . . . , αn, β0, . . . , βm), and the integrals from the
boundary conditions (11) are Riemann–Stieltjes integrals withHi : [0, 1]→ R, i = 0, . . . , n
and Kj : [0, 1] → R, j = 0, . . . , m functions of bounded variation. By using the Guo–
Krasnoselskii fixed point theorem of cone expansion and norm-type compression, they
prove the existence and multiplicity of positive solutions for problem (10),(11).

Paper [7] is focused on the system of fractional differential equations (10) subject to
the nonlocal coupled boundary conditions

u(i)(0) = 0, i = 0, . . . , p− 2, Dδ1
0+u(0) = 0,

ϕr1(Dδ1
0+u(1)) =

∫ 1

0
ϕr1(Dδ1

0+u(τ)) dH0(τ), Dα0
0+u(1) =

n

∑
i=1

∫ 1

0
Dαi

0+v(τ) dHi(τ),

v(j)(0) = 0, j = 0, . . . , q− 2, Dδ2
0+v(0) = 0,

ϕr2(Dδ2
0+v(1)) =

∫ 1

0
ϕr2(Dδ2

0+v(τ)) dK0(τ), Dβ0
0+v(1) =

m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ),

(12)

where αi ∈ R, i = 0, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R,
j = 0, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ α0 < δ1 − 1, α0 ≥ 1. The authors present existence
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and multiplicity results for the positive solutions of problem (10),(12) by applying the
Guo–Krasnoselskii fixed point theorem.

Paper [8] deals with a system of fractional differential equations with $1-Laplacian
and $2-Laplacian operators{

Dγ1
0+(ϕ$1(Dδ1

0+u(t))) + a(t) f (v(t)) = 0, t ∈ (0, 1),
Dγ2

0+(ϕ$2(Dδ2
0+v(t))) + b(t)g(u(t)) = 0, t ∈ (0, 1),

(13)

with the coupled nonlocal boundary conditions
u(i)(0) = 0, i = 0, . . . , p− 2; Dδ1

0+u(0) = 0, Dα0
0+u(1) =

n

∑
i=1

∫ 1

0
Dαi

0+v(τ) dHi(τ) + c0,

v(j)(0) = 0, j = 0, . . . , q− 2; Dδ2
0+v(0) = 0, Dβ0

0+v(1) =
m

∑
j=1

∫ 1

0
D

β j
0+u(τ) dKj(τ) + d0,

(14)

where γ1, γ2 ∈ (0, 1], p, q ∈ N, p, q ≥ 3, δ1 ∈ (p − 1, p], δ2 ∈ (q − 1, q], n, m ∈ N,
αi ∈ R for all i = 0, 1, . . . , n, 0 ≤ α1 < α2 < . . . < αn ≤ β0 < δ2 − 1, β0 ≥ 1, β j ∈ R
for all j = 0, 1, . . . , m, 0 ≤ β1 < β2 < . . . < βm ≤ α0 < δ1 − 1, α0 ≥ 1, the functions
f , g : R+ → R+ and a, b : [0, 1] → R+ are continuous, c0 and d0 are positive parameters,
$1, $2 > 1, ϕ$i (ζ) = |ζ|$i−2ζ, i = 1, 2, the functions Hj, j = 1, . . . , n and Ki, i = 1, . . . , m
have bounded variation, and Dκ

0+ denotes the Riemann–Liouville derivative of order κ (for
κ = γ1, γ2, δ1, δ2, αi for i = 0, 1, . . . , n, β j for j = 0, 1, . . . , m). The authors give sufficient
conditions for the functions f and g, and intervals for the parameters c0 and d0 such that
problem (13),(14) have at least one positive solution or they have no positive solutions.
They apply the Schauder fixed point theorem in the proof of the main existence result.

In paper [9], the authors study a system of nonlinear Fredholm fractional integro-
differential equations with p-Laplacian operator

tD
γj
T (kj(t)φp(c

0D
γj
t zj(t))) + lj(t)φp(zj(t))

= λfzj(t, z1(t), . . . , zm(t)) +
∫ T

0
gj(t, s)φp(zj(s)) ds, t ∈ [0, T], j = 1, 2, . . . , m,

zj(t) =
∫ T

0
gj(t, s)φp(zj(s)) ds, t ∈ [0, T], j = 1, 2, . . . , m,

(15)

supplemented with the Sturm–Liouville boundary conditions cjkj(0)φp(zj(0))− c′j tD
γj−1
T (kj(0)φp(c

0D
γj
t zj(0))) = 0, j = 1, 2, . . . , m,

djkj(T)φp(zj(T)) + d′j tD
γj−1
T (kj(T)φp(c

0D
γj
t zj(T))) = 0, j = 1, 2, . . . , m,

(16)

where λ is a positive parameter, ki, li ∈ L∞[0, T] with ess inf[0,T]ki(t) > 0 and ess inf[0,T]
li(t) ≥ 0, ci, di, c′i, d′i, i = 1, 2, . . . , m, are positive constants, p ∈ (1, ∞), φp(s) = |s|p−2s,
(s 6= 0), φp(0) = 0, the functions f : [0, T] × Rm → R and gi : [0, T] × [0, T] → R,
i = 1, . . . , m satisfy some conditions, and c

0D
γj
t and tD

γj
T denote the left Caputo fractional

derivative and the right Riemann–Liouville fractional derivative of order γj, respectively.
By using the critical point theory, they prove the existence of infinitely many solutions of
problem (15),(16).

5. Approximate Controllability for Fractional Differential Equations in Banach Spaces

Paper [10] is concerned with the fractional evolution equation of Sobolev type in the
Hilbert space X, with a control and a nonlocal condition{ LDα

t (Ex(t)) = Ax(t) + f(t, x(t)) + Bu(t), t ∈ (0, b],
I1−α
t (Ex(t))|t=0 + g(x) = x0,

(17)
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where α ∈ (0, 1), A : D(A) ⊂ X → X and E : D(E) ⊂ X → X are linear operators,
B : U → X is a linear bounded operator, U is another Hilbert space, the control function
u ∈ Lp([0, b], U) for pα > 1, x0 ∈ X, the functions f and g satisfy some assumptions, I1−α

t
is the Riemann–Liouville fractional integral operator of order 1− α, and LDα

t denotes the
Riemann–Liouville fractional derivative of order α. By using the Schauder fixed point
theorem and operator semigroup theory, the authors prove firstly the existence of mild
solutions for problem (17) without the compactness of the operator semigroup. Then, they
show that if the corresponding linear problem is approximately controllable on [0, b], then
problem (17) is also approximately controllable on [0, b]. An example with an initial bound-
ary value problem for a partial differential equation with Riemann–Liouville fractional
derivatives is finally presented.

Paper [11] is devoted to the fractional differential evolution equation in the Banach
space X with a finite delay and a control

cDβx(t) = Ax(t) + f(t, xt) + Bu(t), t ∈ [0, a], (18)

subject to the initial date
x(t) = φ(t), t ∈ [−b, 0], (19)

or to the nonlocal condition with a parameter

x(t) + λgt(x) = φ(t), t ∈ [−b, 0], (20)

whereA : D ⊂ X → X is a closed linear unbounded operator on X, where its domainD is a
dense set; u is the control function; B : L2([0, a]; U)→ L2([0, a];D) is a linear bounded oper-
ator, where U is another Banach space; φ ∈ L1([−b, 0]; X), xt denotes the history of the state
function defined by xt(θ) = {x(t + θ), if t + θ ≥ 0; φ(t + θ), if t + θ ≤ 0} for θ ∈ [−b, 0];
λ is a parameter; gt : C([−b, a]; X)→ X is a given function satisfying some assumptions;
and cDβ is the Caputo fractional derivative of order β, with β ∈ (1/2, 1]. Under the assump-
tion that A is the infinitesimal generator of a differentiable resolvent operator, the authors
prove the existence and uniqueness of mild solutions for problems (18),(19) and (18),(20)
by utilizing the Banach contraction mapping principle. Then, based on the iterative method,
they give sufficient conditions for the approximate controllability of (18),(19) and (18),(20).
As an application, an example of a Caputo fractional partial differential equation with delay
in the space X = L2([0, π]) is finally addressed.

6. Fractional Differential Inclusions and Inequalities

In paper [12], the authors investigate the neutral impulsive semi-linear fractional
differential inclusion with delay and initial date

cDα
0,t[x(t)− h(t,κ(t)x)] ∈ Ax(t) +F (t,κ(t)x), a.e. t ∈ [0, b] \ {t1, . . . , tm},

Iix(t−i ) = x(t−i )− x(t+i ), i = 1, . . . , m,
x(t) = ψ(t), t ∈ [−r, 0],

(21)

where α ∈ (0, 1), 0 = t0 < t1 < . . . < tm < tm+1 = b, r > 0, the operator A is the
infinitesimal generator of the non-compact semigroup T = {Y(t), t ≥ 0} on the Banach
space E, and F : [0, b] × Θ → 2E \ {φ} is a multifunction. Here, h : [0, b] × Θ → E,
Ii : E → E, i = 1, . . . , m, ψ ∈ Θ, and for every t ∈ [0, b], the function κ(t) : H → Θ
is defined by (κ(t)x)(θ) = x(t + θ) for θ ∈ [−r, 0]. cDα

0,t denotes the Caputo fractional
derivative of order α and the spaces Θ andH are defined in the paper. They show that the
set of mild solutions to problem (21) is nonempty, compact, and an Rδ-set in a complete
metric space H.
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Paper [13] is focused on the Hilfer fractional neutral integro-differential inclusion with
initial date Dk,ε

0+[y(t)−N (t, y(t))] ∈ Ay(t) + G
(

t, y(t),
∫ t

0
e(t, s, y(s)) ds

)
, t ∈ (0, d],

I(1−k)(1−ε)
0+ y(0) = y0,

(22)

where Dk,ε
0+ denotes the Hilfer fractional derivative of order k and type ε, with k ∈ (0, 1) and

ε ∈ [0, 1], I(1−k)(1−ε)
0+ is the Riemann–Liouville fractional integral of order (1− k)(1− ε),

and A is an almost sectorial operator of the analytic semigroup {T (t), t ≥ 0} on the
Banach space Y. Here, G : [0, d] × Y × Y → 2Y \ {φ} is a nonempty, bounded, closed,
convex multivalued map and N : [0, d] × Y → Y and e : [0, d] × [0, d] × Y → Y are
appropriate functions. By using the Martelli fixed point theorem, the authors prove the
existence of mild solutions to problem (22).

In paper [14], the authors study the damped wave inequality

∂2u
∂t2 −

∂2u
∂x2 +

∂u
∂t
≥ xσ|u|p, t > 0, x ∈ (0, L), (23)

subject to initial boundary conditions (u(t, 0), u(t, L)) = (f(t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(24)

where L > 0, σ ∈ R, p > 1, f ∈ L1
loc([0, ∞)), g(t) = Cgtγ with Cg ≥ 0 and γ > −1,

and u0, u1 ∈ L1([0, L]). They also investigate the time-fractional damped wave inequality

∂αu
∂tα
− ∂2u

∂x2 +
∂βu
∂tβ
≥ xσ|u|p, t > 0, x ∈ (0, L), (25)

supplemented with the initial boundary conditions in (24), where α ∈ (1, 2), β ∈ (0, 1),
and ∂κ

∂tκ is the time Caputo fractional derivative of order κ, for κ ∈ {α, β}. By using the test
function method, the authors give sufficient conditions depending on the above data under
which problems (23),(24) and (23),(25) admit no global weak solutions.

7. Fractional q-Difference Equations and Systems

Paper [15] deals with the fractional q-difference equation in a Banach space E, with non-
linear integral conditions

(cDα
q y)(t) = f(t, y(t)), a.e. t ∈ [0, T],

y(0)− y′(0) =
∫ T

0
g(s, y(s)) ds,

y(T) + y′(T) =
∫ T

0
h(s, y(s)) ds,

(26)

where T > 0, q ∈ (0, 1), cDα
q denotes the Caputo fractional q-derivative of order α, with

α ∈ (1, 2], and f, g, h : [0, T] × E → E are given functions satisfying some assumptions.
By using the measures of noncompactness technique and the Mönch fixed point theorem,
the authors prove the existence of solutions to problem (26).

Paper [16] is concerned with the system of nonlinear fractional q-difference equations{
(Dα

q u)(t) + P(t, u(t), v(t), Iω1
q u(t), Iδ1

q v(t)) = 0, t ∈ (0, 1),

(Dβ
q v)(t) + Q(t, u(t), v(t), Iω2

q u(t), Iδ2
q v(t)) = 0, t ∈ (0, 1),

(27)
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subject to the coupled nonlocal boundary conditions
u(0) = Dqu(0) = . . . = Dn−2

q u(0) = 0, Dζ0
q u(1) =

∫ 1

0
Dζ

qv(t) dqH(t),

v(0) = Dqv(0) = . . . = Dm−2
q v(0) = 0, Dξ0

q v(1) =
∫ 1

0
Dξ

qu(t) dqK(t),
(28)

where q ∈ (0, 1), α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1, m], n, m ∈ N, n, m ≥ 2,
ω1, δ1, ω2, δ2 > 0, ζ ∈ [0, β − 1), ξ ∈ [0, α − 1), ζ0 ∈ [0, α − 1), ξ0 ∈ [0, β − 1). Here,
Dκ

q denotes the Riemann–Liouville q-derivative of order κ for κ ∈ {α, β, ζ0, ζ, ξ0, ξ}, Ik
q is

the Riemann–Liouville q-integral of order k for k ∈ {ω1, δ1, ω2, δ2}, P and Q are nonlinear
functions, and the integrals from conditions (28) are Riemann–Stieltjes integrals withH, K
functions of bounded variation. By applying varied fixed point theorems, the authors
obtain existence and uniqueness results for the solutions of problem (27),(28).

Finally, I would like to thank all the authors for submitting papers to this Special
Issue, and hope that their results will be useful to other researchers working in the field of
fractional differential equations.
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