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Abstract: In this article, we consider the problem of resilient base containment control for fractional-
order multi-agent systems (FOMASs) with mixed time delays using a reliable and simple approach,
where the communication topology among followers is a weighted digraph. A disturbance term is
introduced into the delayed and non-delayed controller part to make it more practical. Our method
involves proposing algebraic criteria by utilizing non-delayed and delayed protocols, applying the
Razumikhin technique and graph theory respectively. The presented method can well overcome the
difficulty resulting from fractional calculus, time delays and fractional derivatives. To demonstrate
the validity and effectiveness of our findings, we provide an example at the end of our study.

Keywords: fractional order multi-agent system; resilient control; Razumikhin technique; mixed
time delay
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1. Introduction

In recent years, due to numerous applications, cooperative control for multi-agent
systems has gained attention for software systems [1], neural networks [2], intelligent
robotics [3] and traffic control [4]. Consensus has drawn a lot of attention as a fundamental
and important issue of cooperative control. Both leader-following consensus [5-7] and
leaderless consensus [8-10] have been seriously considered. However, many practical
control systems have several leaders, such as satellite-formation control systems [11]
and robot cooperation systems [12]. The corresponding consensus control is known as
containment control (CC). Designing suitable control protocols to force the followers to
converge to the convex hull created by the leaders is the main focus of CC. To solve
CC, a variety of protocols are used such as adaptive protocols [13,14], periodic sampling
protocols [15-17] and observational protocols [18-20].

However, many existing studies have paid considerable attention. In recent years,
due to unique advantages for modelling some physical phenomena and processes, such
as biological systems [21], complex networks [22,23] and rock blasting [24], fractional
derivatives have gained increasing interest. In [25,26], the CC of both linear and nonlinear
FOMAS:s is explained. In [27], a novel projection protocol is selected to resolve the CC of
linear FOMASs. It is important to note that time delays can occur in many real models
and have a significant impact on stability [28,29]. It would be preferable to implement
delayed control protocols in order to achieve CC because time delays will arise among the
process of agents transmitting data. To solve CC of linear FOMASs, the sampled-data-based
technique with time delays is provided [30,31]. Today the basic method for handling CC of
linear FOMASs with dynamical leaders [32] or static [33] leaders is the frequency domain
method. For fractional-order differential systems, it is generally known that the Lyapunov
function technique provides a very practical and efficient way to deal with consensus, CC
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and stability. However, the fractional calculus’s lack of the semigroup property makes it
very challenging to research and analyze the CC of delayed FOMASs. In fact, there are still
some important problems that need to be resolved, such as how to deal with the CC of such
systems using the Lyapunov function method and how to provide some basic algebraic
conditions. This study’s objective is to partially fill this gap.

On the other hand, the geometric extent of communication delays is crucial, and many
multi-agent systems cannot be accurately represented by dynamical systems with discrete
delays. Instead, distributed delays may better capture the complexity of such lag events.
On the basis of the above analysis, resilient base containment control (CC) of fractional-
order multi-agent systems (FOMASs) with mixed time delays, where communication
topology is a weighted digraph among followers, will be addressed in this paper. Using
the fractional Razumikhin method and graph theory, some sufficient criteria are preferred
for achieving resilient base CC by using the non-delayed and delayed control protocols.
A concluding example is presented to demonstrate the validity and effectiveness of the
proposed approach. The major contributions of this study are
(1) Initially FOMASs with mixed time delays are considered, and a practical and efficient

method is developed for achieving resilient base CC.

(2) The proposed method may handle well the problems resulting from time delays and
fractional derivatives.

(3) Matrix inequalities are used to provide resilient base CC criteria that can be easily
verified in practical applications.

2. Preliminaries

First, several essential definitions and lemmas are remembered.

Definition 1 ([34]). The B-order derivative for a function x(t) in the Caputo sense is given by

¢ u
tonx(t) = F(ul— 5 /to 0 _xpggll_udp, u—1<p<u, 1)

where T(y) = f0+°° p(yfl)efpdp,
Definition 2 ([35]). If (1 — {)x1 + {xp € Q forany xq,xp € Qand { € [0,1], aset Q C R" is

said to be convex. Points x1,%y,...,xn € R" are contained in the smallest convex hull which is
represented by

N N
Cofx, x2,..., xn} ={)_ x| ¢ € [0,1], Y i =1}
i=1 i=1
Examine a delayed differential equation with p order.
WDEx(t) = f(t,x), £ = to, @

where 0 < B < 1and x4(0) = x(t+6),0 € [—r,0]. The continuous function f : R x R" — R"
satisfies f(t,0) = 0.

Lemma 1 ([29]). If there are three positive constants v1,vo, v3 and a differentiable function V :
R™ — R, then the trivial solution of Equation (2) is asymptotically stable such that

o1 ||| < V(x) < oo [x]2,
and the B-order derivative fulfils

W DPV(x()|2) < —vsllx[[
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whenever
V(x(t+0)) <AV(x(t)), 6 € [-1,0],

for some A > 1.

Lemma 2 ([36]). The following relationship holds for any differentiable vector function x(t) € R"
and n X n matrix P > 0

WwDP(xT(1)Px(t) < 2xT(#)P, DPx(t), 0<p<1

3. Resilient Base Containment Control of FOMAS

To deal with resilient base CC of FOMASs an efficient and easy method is adopted.
Certain practical algebraic conditions to ensure resilient base CC are presented by using
delayed and non-delayed control protocols with disturbance term using the fractional
Razumikhin technique and graph theory, respectively. The problems arising from time
delays and fractional derivatives can be effectively overcome by the suggested method.

Initially some necessary graph definitions are recalled.

A weighted digraph G = (V, E) is used to represented the communication topology
of a FOMAS, whose vertex setis theset V = {1,2,...,N} and E C V x V is the edge set.
e;j = (ij) € E denotes the ability of agent i to communicate with agent j. The adjacency
matrix is denoted by B = (b;j) nx N, whose entries are given by b;; > 0if ¢j; € E and b;j =0
if ¢; ¢ E. Self-links are eliminated in the article, which give b;; = 0. L = (I;;)nx N denotes
the Laplacian matrix of G. Its entries are [;; = Zjlil,j#i bijand [;; = —bl-j(i £7).

The FOMAS consist of N — F leaders and F followers, denoted by R = {F+1,...,N}
and F = {1,2,..., F} respectively. The ith agent’s dynamics are shown by

wDPxi(t) = Axi(t) + Bxy(t— 1) + [°, Cxi(t+p)dp+w(t), i€ F .
tODtﬁx,-(t) = Ax;(t) + Bx;(t —r) + fEQ Cxi(t+p)dp, i€ R

where 0 <, <1w; € R" and x; € R" indicate the ith agent’s state feedback protocol and
state vector. Constant matrices A, B,C € R"*" and time delays r; >0, , > 0.

The next assumption is used to gain the major conclusion.

(H). At least one leader must provide information to each follower, and the leader may
not receive any data from other agents.

If (H) is true, then Laplacian matrix L can be expressed in the following form.

[ — Lr Lr
ON—F)xF 9N—-F)x(N-F)
where Ly € RF*F and Lg € RFX(N-F),

Lemma 3 ([37]). Under (H), L is a nonsingular N-matrix, -LI_TlL R 15 a non-negative matrix and
its row sums are equal to 1.

The delayed and non-delayed state feedback protocols are used respectively in the following. By
using graph theory and the fractional Razumikhin approach, we propose some practical algebraic
conditions to ensure resilient base CC of FOMAS (3).

3.1. Case-I
Resilient base CC of FOMAS (3) under a non-delayed control protocol.
We designed the following non-delayed control protocol w;.

N
wi(t) =K 2 b,](x](t) — xi(t)) + A(di(i’), ie F, (4)
j=1

where K € R"*" is the gain matrix and Aw;(t) is the disturbance term.
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to

tODtﬁxi(l‘) = Ax;(t) + Bx;(t — ) + fET’z Cx;(t+ p)dp + szlil {li]‘(x]‘(t) —x;i(H)) + Aw;i(t), i € F
tODfxi(t) = Ax;(t) + Bx;j(t —r) + fET’z Cxi(t+p)dp,ie R

Dfa(t)

Substituting Equation (4) into Equation (3), we can obtain

©)
which the help of the Kronecker product, Equation (5) can be written as

wDPxp(t) = (IF ® A)xp(t) + (Ir @ B)xp(t —r1) + [°, (I ® O)xp(t + p)dp
— (Lr ® K)xp(t) — (Lr @ K)xr(t) + Aw(t), (6)
D xr(t) = (In—p @ A)xg () + (In— ® B)xp(t — 1) + [, (In—p ® C)xx(t + p)dp,

where xg(t) =[x, (t),...,y§(H)]" and xp(t) = [x] (£), %3 (), ..., x}(1)].
Let error state a(t) = xp(t) — [(—Lp'Lr) ® Ly|xr(t) = xp(t) + [(LF'Lr) ® Li)xr(t).
Then its B-order derivative is given by

= 1D [xr(f) + [(Lp L) @ Ln]xg(8)]
= toDfxp(t) + toDP [(Lg'Lr) ® Li]xr (1))
=, Dfxp(t) + [(Lp'Lr) ® In)x, DY xg (1)

— (e A + (U0 Byaet=n) + [ (1@ e+ pip
~(Lp @ K)(1) — (Lx @ Kpxw(6) + Aw(t) + (L L) @ L @ A) (1)
iy @ Bxet =) + [ (e © Coralt + p)dp ?
= (Ir@ A)l(xp(t) + [(Ly'Lr) @ Ln)xr (1)) + (Ip ® B) [xp(t — 1) + [(L 'Lr) @ Ln]xr(t —11)]
+8w(t)+ [ (1@ Or(t+p) + (L L) © Dt + )y
—(Lr @ K)[xp(t) + [(L'LR) @ L]xg(t)]
= (Ir®@A)a(t)+ (Ir@B)a(t —r1) + _OrZ(IF @ Cla(t+ p)dp — (Lp @ K)a(t) + Aw(t)
= (IF®@A—Lr@K)a(t)+ (Ir@B)a(t—r1) + ’ (Ir ® C)a(t + p)dp + Aw(t).

)

Theorem 1. Under (H), if there exist three scalars n; > 0 (i = 1, 2, 3) and a matrix P > 0 then
resilient base CC of FOMAS (3) with protocol (4) is achieved such that

$11 Ir ® (PB)
LF ® (BTP) —m(lr® p)} <0, 8)

(13 —m)(Ir®P)  Ir® (PC)
{ Ir® (CTP) —;73<1P®p>} <0. ©
where ¢p1; = Ir @ [PA+ ATP + (11 +12r2)P + a1 (Ir @ (P + PT)Aw(t))] — Lr ® (PK) —

LI ® (KTP).
Proof. Select a Lyapunov function
V(t) = al (t)(Ir @ P)a(t).

It follows from Equation (7) and Lemma (2) that
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WDV () < 24T (1) (I ® P)y, DP a(t)

= (t

0

—19

)(

YIF@P)(IF®A—Lr @ K)a(t) + (Ir@B)a(t —r) + [ (Ir @ C)a(t + p)dp + Aw(t)]

= 227(8)[(Ir ® P)(Ir ® A) — (Ir ® P)(Lp @ K)]a(t) + 207 (Ir ® P)(Ir @ B)a(t — 1)

+20cT(t) /j (I ® P)(Ir ® C)a(t + p)dp + 227 () (I ® P)Aw(t)

= 2aT(t)[[r® EPA) — Ly ® (PK)]a(t) 4 24T (1) [Ir © (PB)]a(t — 1)
(

0
1247 (1) / [Ir ® (PO)]a(t + p)dp + 24T (£) (Ir ® P)Aw(t)
,,2
whenever «(t) fulfills

V(a(t+0)) <AV(a(t)), —max(r;,rp) <60<0,

0 <AV(a(t)) —V(a(t+6)
for some A > 1, or equivalently
AT () (Ir @ P)a(t) — aT(t 4+ 0)(Ir @ P)a(t +60) >0,  —max(r;,r2) <0 <0
Thus we have forany 71 > 0, 72 >0, 13 >0,
WDPV() < aT(#)[Ir® (PA+ ATP) — Ly ® (PK) — LE ® (KT P)]a(t)

+al (1) [(Ir ® (PB))a(t — 1) + o (t —r1)[Ir © (BT P)]a(t)
i [Aal (8 (IF © P)a(t) —al (t —11) (IF @ P)a(t —11)]

+[ WO © (POa(t+p) + a7+ p)l1r @ (CTP)a(0))dp

[ AT (8 (I © Pa(t) — T (5)(t + p)(Ir @ Phalt + p)ldp

-1

+aT(H)[(Ir ® (P + PT)]Aw(t)

WDPV() = «a ()[1F®(PA+ATP)—LF®(PK)—L£®(KTP)]a(t)
a" ()[(Ir @ (PB)Ja(t — 1) + ' (t —r1)[Ir © (BT P)]a(t)
+’71M (1) (Ir ®@ P)a(t) — ma’ (t —r1)(Ir @ P)a(t — r1)

+/ B[Ir @ (PC)]a(t + p) dp+/ ()t + p)[Ir ® (CTP)|a(t)dp
120 (8) (Iy @ P)a(t) — 12 /Orzzx (In ® P)a(t)ds

+ [ A1 @ P)alt) — [ s e+ )1 © P+ php

)

+al ()[(Ir ® (P + PT)]Aw(t)
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= al(t)[Ip ® (PA+ ATP +11AP 4+ 1joroH) — L ® (PK) — LE @ (KTP)
+a (B)[(Ir @ (P + PT)]Aw(t)]a(t)
+al ()[(Ir @ (PB)Ja(t — 1) + & (t — r1)[Ir @ (BTP)]a(t)
—ma’ (t = r1)(Ip @ P)a(t — r1)]

+ [ 102 = T (0 © Phalt) +T (Ol & (POLalt + p)

+al (t+ p)[Ir ® (CTP)]a(t) — yza” (t+ p)(Ir ® P)a(t + p)]dp
SO )| P A A N [ RO

0 [.T T (13A —m2)(Ir®P)  Ip® (PC) T
0 a4 p)) |V P I PO [ e T,
where ¢11 = Ir ® (PA+ ATP + AP +1prP) — Lp ® (PK) — LE @ (KT P)
+a V() [Ir @ (P + PT)]Aw(t).
Relationships (8) and (9) imply that for an adequately small A; > 0,A = A +1,

$11 Ir ® (PB)
LF ®(B'P) —m(lF® P)} <0 (10)

(mi3A —12)(Ir@P)  Ip® (PC)
{ " Ir @’)72(@;) —’1;3(1F ® P)} <0 1

which indicates that ¢, Df V(t)< 0. This implies Equation (7) is asymptotically stable by
Lemma (1). Hence, resilient base CC of FOMAS (3) with protocol (4) can be achieved. [

3.2. Case-II

Resilient base CC of FOMAS (3) under a delayed control protocol.
We designed the following delayed control protocol w;

N
wi(t) = Ky Y bij(xj(t —r3) — xi(t —13)) + Awy(t), i€ F, (12)
=

where K; € R"*" is the gain matrix.
Substituting Equation (12) into Equation (3), we can obtain

KDfxi(t) = Axi(t) + Bxy(t — 1) + S, Cxilt+ p)dp + Ky TN byj(xj(t — r3) — x;(t — 13))

+ Awj(t), i e F

tODfxi(t) = Axi(t) + Bxl-(t - 7’1) + fi)rz Cxl-(t + P)dp, ieR

Under protocol (12) Equation (3) can be rewritten as

1Dfxp(t) = (Ir @ A)xp(t) + (Ir @ B)xp(t — 1) + f,OrZ(IF ® C)xp(t+ p)dp
— (L ® Kq)xp(t —r3) — (Lr @ Ky)xR(t —13) + Dw (1),
tonxR(t) = (IN—F ® A)XR(t) + (IN—F ® B)XR(t — 1’1) + f_OrZ(IN—F X C)XR(i’ + P)dp

Then the p-order derivative of a(t) is given by
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to

Dfa(t)

fo

DPV(¢)

tDP[xr(8) + [(LF'Lr) © L]xr (8)]
toDxp(t) + toDf [(Ly'Lg) ® LJxx (t)
tyDPxe (1) + [(L7'Lr) @ Lnlsy D xx (1)

(Ir @ A)xp(t) + (Ir @ B)xp(t — 1) + / (Ir @ C)xg (t + p)dp

)

—(Lp® Ky)xp(t —r3) — (Lr ® Ky)xg(t — 3) + Aw(t) + [(LF 'Lr) ® L] [(IN—F ® A)xg(t)
iy r@Bpe(t=m)+ [ (v ¢ @ Coxx(t + p)dp) 1)

(Ir ® A)[xp(t) + [(Lp'Lr) ® Ln]xg (t)] + (I @ B) [xp(t — 11)
—F[(LElLR) X In}xR(t — 7‘1)} + Aw(t)
+ [° (Ur @Ol + p) + (L L) © LJxa(t + p)ldp

)

—(Lr ® Kq)[xp(t = r3) + [(LF 'LR) @ Ly]xg (t — 13)]
(Ir® A)a(t) + (Ir@B)a(t —r) + ’ (Ir ® C)a(t + P)dp — (L@ Ky)a(t —r3) + Aw(t)

J =1

(Ir® A)a(t) — (L@ Ky)a(t —r3) + (I @ B)a(t —rq) + /_O (Ir @ Cla(t+ P)dp + Aw(t).

Theorem 2. Under (H), if there exist two matrices P > 0, Q > 0 and scalers n; >0 (i =1, 2, 3)
then resilient base CC of FOMAS (3) with protocol (12) is attain as

Ir®(PA+ATP+mP+Q Ir® (PB)
+a 1 (t)(P+ PT)Aw(t)) <0, (14)
Ir® (B"P) —m(Ir ® P)
Ir®[(n3ra+12)P— Q] —Lr® (PKy)
[ —L{ ® (K{P) —(Ir ® P)] <0 (15)
(s —m3)(Ir®P)  Ir® (PC)
[ Ir® (CTP) —14(IF ® P)} <0. (16)

Proof. A Lyapunov function is chosen
V(t) = aT (t)(Ir @ P)a(t).
From Lemma (2) and Equation (13), we have

t)(Ir ® P);, DP a(t)
Ir@P)[(Ir® A)a(t) — (Lr ® K1)a(t —7r3) + (Ir @ B)a(t —11)

IIA

o’ (
2aT(

T

207 (O)[(Ir ® P)(Ip @ A)Ja(t) — 207 (8)[(Ir @ P) (L © Ky)Ja(t — 13)

(
£)(
+ (IF®C)0¢(t—I—p)dp+Aa)(t)]
[
t

)

2aT(t)(Ir @ P)(Ir ® B)a(t — 1)

+20cT(t)/_ (I @ PY(Ir @ C)a(t + p)dp + 24T (t) (Ir © P)Aw(t)

= 2a"(t)[Ir ® (PA)]a(t) — 2a” (t)[Lr ® (PKy)]a(t — r3) + 2" (t)[Ir © (PB)]a(t — 11)
(

1247 t)/i [Ir @ (PC)]a(t + p)dp + 247 (t)(Ir @ P)Aw(t)
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whenever «(t) fulfills

Via(t+0)) < AV(a(t)), —max(ry,ra,13) <60<0
AV (a(t)) = V(a(t+6) > 0

for some A > 1,or equivalently
AT (t)(Ir @ P)a(t) — aT(t 4+ 60)(Ir @ P)a(t +60) >0,  —max(r,r2,13,) <O <0
Thus we have forany n; > 0 (i = 1,2,3,4),

fonV(t)

IN

sz(t) [Ir @ (PA + ATP)]a(t) 4+ a” (t)[Ir ® (PB)]a(t — 1) +al (t — r1) [Ir ® (BT P)]a(t)
o' (t)[Lp @ (PKy)]a(t — r3) — &’ (t = r3) [LF @ (K{ P)]a(t)

+/ H[Ir @ (PC)|a(t + p) +a’ (t + p)[Ir @ (CTP)]a(t)]dp

+m[MT<t>(1p®P> (t) —a (t—r1) (I @ Pa(t —1q)]
na[AaT () (I @ P)a(t) — al (t — r3) (Ir ® P)a(t — 13)]
(

Sl (00 © Pa(0) ~ [ a7(1r 0 Pl

t—
t—

[ T () (I P)alt) — aT(t + p)(Ir @ Pa(t + p)ldp

+al (1) [(Ir @ (P + PH)]Aw(t) + o (1)[Ip @ Qla(t) — aT (£)[Ir @ Qla(t)
= “T(t)[IF ® (PA+ ATP)Ja(t) +a (t)[Ir @ (PB)]a(t — 1) +aT(t — r1)(Ir ® (BT P))]a(t)
o (t)[Lp @ (PKy)]a(t —r3) —al (t — 13) [Lf © (K{ P)]a(t)

+/_ D[Ir @ (PC)]a(t + p) dp+/ T(t+ p)[Ir ® (CTP)]a(t)dp

+mAal ()(Ip @ P)a(t) — ma’ (t —r)(Ip ® Pa(t —r1)
+mAal (8)(Ir @ P)a(t) — goa (t — r3) (I @ P)a(t — r3)

taraaT (1) (Ip © P)a(t) — /7 Or e’ (Ir @ P)a(t)dp
w00 @ Phatt) — [ a6+ )1 @ Phate-+ plp

—1)

+a' ()[(Ir® (P + PT)]AW( t) + o’ (1) [Ir @ Qla(t) — &’ (1) [Ir ® Qla(t)
= al()[Ir® (PA+ ATP + AP+ Q+a 1 (t)(P + PT)Aw(t)]zx(t)
+aT (1) [(Ir @ (PB)Ja(t — r1) +a” (t — r1)[Ir ® (BTP)]a(t)
—mal (t =) (I @ Pa(t —r1) + &l (t)[Ir @ (y3r2P + 72AP — Q)]a(t)
—aT (1) [Lp @ (PKy)]a(t —r3) — aT (¢ — rg)[LE ® (KlTP)]zx(t) - ﬂzaT(t —73)(Ir @ P)a(t —73)

4 [ [sA — )T ()1 @ Pha(t) + o7 (1)1 @ (PC)a(t + p)

+al (t+ p)[Ir @ (CTP)]a(t) — naa” (t + p)(Ir @ P)a(t + p)]dp.

I[F@[PA+ ATP+ AP+ Q Ir® (PB)
= II} | +a7'(t)(P+ PT)Aw(t)] I,
Ir® (BTP) —11(Ir® P)
) Ir @ [(y312 + 12A)P — Q] —Lp ® (PKy) I
r3 —LI® (KTP) —m(Ir@P) | "

0 (14A — 173) (I @ P) Ir ® (PC)
- HT[ " Ip @gch;) _71;4(IF®P>]de
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where IT,, = [aT(t),al (t — r1)]T, 11, = [aT(t),aT(t — r3)]T and 1T, = [T (¢),aT (¢t + p)]T.
Relationships (14)-(16) imply that, for an adequately small A; > 0,A = A1 +1,

I[r®[PA+ATP+mAP+Q Ir® (PB)

o (O(P 4 PT) A 1) <0, a7)
Ir ® (BTP) —ni(Ir®P)
Ir @ [(3r2 + m2A)P = Q] —Lp ® (PKy)
{ F *zg@ (Iif P) fni(lp ®Pl)] 0 (18)
(1A —13)(Ir®P)  Ir ® (PC)
[ 4 IF® ?CTIIE’) —11;4(11: ® P)} <0 (19)

which indicate that 4, Df V(t) <0, this demonstrates that from Lemma (1) Equation (13) is
asymptotically stable. As a result, resilient base CC of FOMAS (3) with protocol (12) is
possible. In particular, if r; = rp = r3 = r, one obtains a simpler criterion. [

Corollary 1. Under (H), If both a matrix P > 0 and a scalar n; > 0 (i = 1,2,3) exist, then the
resilient base CC of FOMAS (3) with protocol (12) is obtained.

Ir ® [PA+ ATP+ (11 + 2r)P Ir ® (PB) — Lr ® (PKy)
+a~1(t) (P + PT)Aw(t)] <0, (20)
Ir® (B"P) — Lf ® (K{P) —n(IF®P)
(13 —m)(Ir@P)  Ip® (PC)
{ Ir @ (CTP) —13(If ® P)} <0 =
If C =0, FOMAS (3) is reduced to
wDPxi(t) = Axi(t) + Bxi(t — 1) + w(t) + Aw;(t), i=1,2,...,N. (22)

The following conclusion can be reached according to the proof of the previous
theorem.

Theorem 3. Under (H), if there exist constants y > 0 and a matrix P > 0, then resilient base CC of
FOMAS (22) with protocol (4) is obtained.

Ir @ [PA+ ATP + 5P + a1 (t)(P + PT)Aw(t)] Ir® (PB)
—Lr® (PK) — LT ® (KTP)
Iy ® (BTP) —1(Iy ® P)

< 0. (23)

Theorem 4. Under (H), if there are two matrices Q > 0, P > 0 and a scalar 17 > 0, then resilient
base CC of FOMAS (22) with protocol (12) is obtained.

Ir @ [PA+ATP+yP+Q  1r® (PB)
+a~L(t)(P+ PT)Aw(t)] <0, 28)
Ir ® (BTP) —y(I ® P)
Ir® (P -Q) —Lr® (PKy)
{—Llf ®(K[P)  —n(Ir@P) ] <0 (25)

In particular, if r{ = rp = r3 = r, one can obtain a simpler criterion.

Corollary 2. Under (H), if there are constants n > 0 and a matrix P > 0 then resilient base CC of
FOMAS (22) with protocol (12) is obtained.
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I[r®[PA+ATP+yP  Ir® (PB)— Lr ® (PKy)
+a~1(t) (P + PT)Aw(t)] <0. (26)
Ir ® (BTP) — LT ® (KTP) ~11(Ir ® P)

Remark 1. This study offers a more practical and efficient method to resolve resilient base CC of
delayed FOMASs in comparison to the frequency domain method used in [25,32,33]. Additionally,
the suggested approach works well for fractional-order systems with different kinds of delays.

4. Examples
Two examples are used in this section to clarify the effectiveness of the result achieved.

Example 1. Consider FOMAS (3) with five followers and two leaders describe as Figure 1, where
A, B,C € R" " gre constant matrices.

Figure 1. Communication topology of FOMAS (3) consisting of leader and follower is a weighted

digraph.
According to Figure 1 one has
[
0 O

[1.01 -1 0 0 0 —0.01 0 T
0 2 0 0o -11 -02 =07
0 -05 1.7 0 -03 0 —-0.9

L = 0 -0.03 0 0.03 0 0 0

0 0 0o -2 2 0 0

0 0 0 0 0 0 0
| O 0 0 0 0 0 0
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According to the Schur lemma, association (8) and (9) are equivalent to the inequalities

[Ir @ [PA + ATP + (351 4 or2) P+ 2~ Y(P + PT)Aw(t)] — Lr ® (PK)
—LE® (K'P)|(—=m(Ir ® P)) — (Ir® (PB))(Ir @ BTP) < 0

Ir @ [PA+ ATP + (311 + n2r2)P + o~ 1(P + PT)Aw(t)] — L ® (PK)
—LE® (K"P))(~m(Ir®P)) < [Ir® (PBBTP)] (27)
Ir @ [PA+ ATP + (51 + 112r2) P + a1 (P + PT)Aw(t)] — Lr ® (PK)
~LIe (KTP) < ll[lp ® (PBP'BTP)]

m
IN ® [PA+ ATP + (371 + 11212) P + a~2(P + PT)Aw(t)] — Lr ® (PK)

1
[Ir® (PBP'BTP)] < 0

—LT® (KTP) + —
m

o

(73 = m12)(Ir ® P)(—=13(Ir ® P))] — (Ir ® (PC))(Ir ® (C'P)) <
(13 = 12)(Ir @ P)(—n3(Ir® P)) < [Ir @ (PCCTP)] (28)
<

(13— 1) (I © P) _1,73[1p ® (PCP~1CTP))

1
(773_7]2)(IF®P)+%[IP®(PCP71CTP)] < 0
01 1

0.01 -1
1 01

Choose P = [ 05 —001

],171 =2,y =3,13 =2and ry =0.3. Then, K = [

can be chosen to satisfy (31) and (32), where K € R™ " is the gain matrix and P is the n X n
matrix.
From Equation (32) we have

—0.1118897306 —0.7830639731 <0
—0.7830639731 —0.1493063973

Thus, Theorem (1) is used to achieve CC of FOMAS (3). If we assume that B = 0.6 and
r1 = 0.4, Figure 2 displays the error a;(t).

15
1 i )
\
0.5 (‘_\. ]
I A e
or e e e e s
|- - - B 7
-0.5 % /]
/ ~ v
1 r / )
/
1.5, )
|
21 1
|
25 ]
I
3F ]
35 : ‘ : : : : ‘ ‘ ‘

(@) aj

Figure 2. Cont.
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(b) ajp

Figure 2. Resilient base CC errors a;(t) = (af (t),a5(t))T of FOMAS (3) under communication
topology with non delayed control protocol (4).

On contrary, the Schur lemma demonstrates that mutual relations between (20) and (21) are
equivalent to the inequalities

Ir® [PA+ ATP + (g1 +112r)P +a 2 (t) (P + PT)Aw(t)] (=11 (Ir ® P))
—(Ir® (PB) — L ® (PKy))(Ir @ (BTP) — L} ® (KIP)) < 0O

Ir ® [PA+ATP+ (51 + )P +a1(t)(P+ PT)Aw(t)](—n1(IF ® P))
< (Ir®(PB) - Lp @ (PKy))(Ir @ (BTP) — Lf ® (K{ P))

Ir ® [PA+ATP+ (51 +mr)P+a () (P+ PT)Aw(t)](—n1(IF @ P))
< [Ir® (PBBTP) — LI ® (PBKIP) — L; ® (PK;BTP)

+LL} @ (PK{K{ P)]

Ir ® [PA+ATP+ (g1 +mr)P+a1(t)(P+ PT)Aw(t)]

;1[11: ® (PBP~'BTP) — Lt ® (PBP'KIP) — Ly ® (PK;P'BTP)
1

+LrLY ® (PKyPTIKT P)]

1
Ir ® [PA+ATP+ (g1 +yr)P+a () (P+ PT)Aw(t)] + P [I[r ® (PBP~1BTP)
1
—LF® (PBP7'KTP) — Lr ® (PK;P7'BTP) + LrLt ® (PK; P~ K] P)]

< 0

Ir @ [PA+ ATP + (51 4+ 2r)P 4+ a1 (£)(P + PT)Aw(t) + 171(PBP1BTP)]
1

1
+;7—[(LFL£) ® (PK;P~KTP) (29)
1

—Lr® (PKyP7'BTP) — LF ® (PBP7IKIP)] < 0
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(13 = 12) (Ir ® P) (—13(Ir ® P)) — (Ir ® (PC))(Ir ® (C"P)) < 0
(73 — m2)(Ir ® P)(—n3(I ® P)) — (Ir ® (PCCTP)) < 0
(13 —m)(Ir @ P)(—y3(Ir ® P)) < (Ir® (PCC'P))
(33— ) (@ P) < ;73)1(11:@ (PCP~ICTP)) (30)
(73 — 12) (I @ P) + L (Ir® (PCPICTP)) < 0

3

1
Ir®[(73 — 112) P + ﬂ—(PCP*lcTP)} < 0.
3

1 01

Choose P = {0.1 1

},171 =2, =3,y43=2andr =0.3. Then, K; = [_0'3 _0'3}

0 -0.3

can be chosen to satisfy (33) and (34), where K1 € R™ " and P is an n X n matrix.
From Equation (34) we have

—0.5976190476 —0.8445238095 0
—0.8445238095 —0.2754047619

Thus, Corollary (1) is used to achieve resilient base CC of FOMAS (3). Taking p = 0.6,
Figure 3 shows the error w;(t).

(a) i1

Figure 3. Cont.
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(b) aip

Figure 3. Resilient base CC errors «;(t) of FOMAS (3) under communication topology with delayed
control protocol (12).

Example 2. We examine FOMAS (3) with five followers and two leaders, as shown in Figure 1,
where A, B,C € R"™ " gre constant matrices.

—6 0
=05
2 —03
b= {2 —0.2]

026 —0.16
€= [ 0.6 —0.6}

According to Figure 4, one has

_ |Lr Lg
=15 %)

26 —02 O 0 -13 -11 0 7

0 29 -1 0 0 -07 -12

0 0 03 0 0 0 -03
L=|0 —-04 -15 19 0 0 0

0 -09 o0 -0 09 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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Figure 4. Communication topology of FOMAS (3) shows the arrangement of vertices in the network.

The Schur lemma implies that relationship (8) and (9) are equivalent to the inequalities

[Ir @ [PA + ATP + (351 4 7or2) P+ &~ (P + PT)Aw(t)] — Lr ® (PK)

—Lf ® (K'P)](=m (I ® P)) — (Ir ® (PB))(Ir ® B'P)
[Ir @ [PA+ ATP 4 (11 + 112r2) P+ a1 (P + PT)Aw(t)] — Lr ® (PK)
)
)
)

~LI @ (K"P)](-m(I[r®P)) < [Ir® (PBBTP)]
]

Ir ® [PA+ ATP + (i1 + 112r2) P+ a1 (P + PT)Aw(t)] — Ly ® (PK (31)
~LTe (KTP) < ;—1[& ® (PBP~'BTP)]
1
In ® [PA+ ATP + (71 + 12r2) P+ a1 (P + PT)Aw(t)] — Lr ® (PK)
~LE® (KTP) + Wl[lp ® (PBP~'BTP)] < 0
1
[(73 — 12) (Ir ® P)(—=n3(I @ P)] — (Ir ® (PC))(Ir ® (C"P)) < 0
(13— m2)(Ir @ P)(—3(Ir® P)) < [Ir® (PCCTP)]
(13— m)Ir®P) < —-[lr® (PCP~'CTP)] (32)
1
(13 —m)(Ip® P) + %[IF ® (PCP7'CTP)] < 0
2 02 -02 02

Choose P = [0.2 ’ },171 =16, =21,13 =1.1and rp = 0.5. Then, K = [_0'4 _0'2}

can be chosen to satisfy (31) and (32), where K € R"*" is the gain matrix and P is n X n matrix.
From Equation (32) we have

—1.8391919192  —0.157519192 <0
—0.157519194 —0.4249519198

Thus, Theorem (1) is used to achieve CC of FOMAS (3). If we assume that B = 0.6 and
r1 = 0.4, Figure 5 displays the error a;(t).
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Figure 5. Graph represents resilient base CC errors «;(t) = (af} (t),a5(t))T of FOMAS (3) under
communication topology with non delayed control protocol (4).

Conversely, the Schur lemma shows that relations (20) and (21) are equivalent to the inequalities

Ir @ [PA+ ATP + (51 + 112r)P + a2 (t) (P + PT)Aw(t)] (=1 (Ir @ P))

Ir

N B N R

—(Ir® (PB) — Lr @ (PKy))(Ir® (B"P) = Lf @ (K{P)) < 0
[PA + ATP + (1 + 12r)P + &' (£) (P + PT)Aw(8)] (= (Ir ® P))
(Ir @ (PB) — Lp ® (PK1)) (I @ (B"P) — Lf @ (K{ P))

[PA+ ATP + (51 + 12r)P + 2 L(t) (P 4+ PT)Aw ()] (=1 (Ir @ P))
[Ir ® (PBBTP) — LI ® (PBKIP) — Lr ® (PK;BTP)

+LrLE ® (PK KT P))
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Ir ® [PA+ATP+ (m+mr)P+a t(t)(P+PT)Aw(t)]

< ;11[11: ® (PBP~'BTP) — Lt ® (PBP'KIP) — Ly ® (PK;P1BTP)
+LrLY ® (PKyP7IKT P)]

’711[11: ® (PBP~'BTP)
~L{ ® (PBPT'K{P) — Ly ® (PKyP~'B"P) + L¢Lf ® (PKyP~'K{ P)]

< 0

Ir @ [PA+ ATP + (51 4 2r)P 4+ a1 (£) (P + PT)Aw(t) + Tll(PBP_lBTP)]
1

1
+,7[(LFL£> ® (PKP71KTP) (33)
1

Ir ® [PA4+ATP+ (51 +mr)P+a1(t)(P+ PT)Aw(t)] +

—Lr® (PKyP7'BTP) — L} ® (PBPTKIP)] < 0
(13— 12) (I © P)(—=13(Ir ® P)) — (Ir ® (PC))(Ir ® (CP)) < 0

(13 —12) (Ir @ P) (—13(Ig ® P)) — (Ir ® (PCCTP)) < 0
(13— 12)(Ir @ P) (—n3(Ir® P)) < (Ip® (PCCTP))
71 _
(1= m)(Ir®P) < ——(Ir® (PCP 'c’p)) (34)
1
(113 —1m2)(Ir ® P) + %(IP ® (PCP7'C"P)) < 0
1
Ir®[(13 — 112) P + ﬂ—(PCP*lcTP)} < 0.
3
3 02 —-04 -04
Choose P = {0_2 0'9} M1 =3, =4,13 =3 andr = 0.5. Then, K; = [ 0 0.4}

can be chosen to satisfy (33) and (34), where Ky € R™™" is the gain matrix and P is the n x n matrix.
From Equation (34) we have

—2.8353834587 —0.1094255639 0
—0.1094255639 —0.7361483703

Thus, Corollary (1) is used to achieve resilient base CC of FOMAS (3). Taking B = 0.8,
Fioure 6 shows the errors a:(t).

°
ol

3k

(a) i1

Figure 6. Cont.
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References

(b) aip

Figure 6. Graph represents resilient base CC error «;(t) of FOMAS (3) under communication topology
with delayed control protocol (12).

5. Conclusions

We have provided an easy and effective way to look into the resilient base CC of
fractional order multi-agent system with mixed time delays. In order to achieve resilient
base CC, both delayed and non-delayed control protocols are used. By applying graph
theory, the fractional Razumikhin technique and the Lyapunov function technique, certain
useful algebraic criteria have been proposed to ensure resilient base CC. Delayed and non
delayed control protocol with disturbance term have been designed to solve resilient base
containment control. An additional numerical example demonstrates the reliability of the
results presented and it is easy to verify the criteria using matrix inequalities. Our approach
offers a reliable and easy method to overcome the problems resulting from fractional
derivatives and time delays. Our upcoming research will concentrate on CC of single
delayed fractional order multi-agent systems that are nonlinear.
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